
UNIVERSITY OF ŽILINA IN ŽILINA

FACULTY OF MANAGEMENT SCIENCE AND INFORMATICS

Visual Object Tracking

Using Siamese Neural Networks

DISSERTATION THESIS

28360020223003

Study Program: Applied Informatics

Field of Study: Informatics

Workplace: Department of Mathematical Methods and Operations Research

Faculty of Management Science and Informatics

University of Žilina in Žilina

Supervisor: doc. Mgr. Ondrej Šuch, PhD.

Supervisor (specialist): Ing. Peter Tarábek, PhD.

Žilina, 2022 Ing. Milan Ondrašovič

Declaration
I sincerely declare that this thesis named Visual Object Tracking Using Siamese Neural

Networks has been composed solely by myself and that it has not been submitted, in

whole or in part, in any previous application for a degree. Except for the cases where

stated otherwise, either by reference or an acknowledgment, the work presented is entirely

my own created under the guidance of the aforementioned supervisors.

Author signature: ..

Acknowledgements
My deepest gratitude belongs to both my supervisors and my closest family for showing

understanding in situations where not only did the health-related problems interfere with

my studies, but also with my life in general.

Abstract

ONDRAŠOVIČ Milan, Ing.: Visual Object Tracking Using Siamese Neural Networks.

[Dissertation thesis] University of Žilina in Žilina. Faculty of Management Science and

Informatics. Department of Mathematical Methods and Operations Research. - Thesis

supervisor: doc. Mgr. Ondrej Šuch, PhD. - Žilina: FRI ŽU, 2022, 140 pages.

In this dissertation thesis, we disseminate the results concerning our research in visual

object tracking using deep machine learning with an emphasis on traffic analysis. This

treatise largely revolves around similarity learning, an area dominated by Siamese neural

networks. Based on the review of modern approaches to tracking and their weaknesses,

an object occlusion was selected as the problem to focus on. To address this, object

re-identification was explored to tackle a complete occlusion, whereas to tackle partial

occlusion, we adopted an attention mechanism. Latent spaces and embeddings were

exploited to enhance the object ID propagation between frames. The attention-based

approach is able to consistently improve a state-of-the-art architecture of our choice as

measured by the established metrics for evaluating multi-object tracking frameworks,

making our first contribution. In addition, there are two other contributions from this

work. Specifically, an up-to-date comprehensive survey of Siamese-based visual object

tracking and the development of a new homography ranking method, which was our

attempt to aid the tracking process using a perspective transformation.

Keywords: visual object tracking, deep machine learning, Siamese neural networks,

latent spaces, attention mechanism, homography, traffic analysis

Abstrakt

ONDRAŠOVIČ Milan, Ing.: Vizuálne trasovanie objektov použitím siamských neuróno-

vých sietí. [Dizertačná práca] Žilinská univerzita v Žiline. Fakulta riadenia a informatiky.

Katedra matematických metód a operačnej analýzy. - Vedúci dizertačnej práce: doc.

Mgr. Ondrej Šuch, PhD. - Žilina: FRI ŽU, 2022, 140 strán.

V tejto dizertačnej práci predstavíme výsledky nášho výskumu v rámci vizuálneho traso-

vania objektov použitím hlbokého strojového učenia so zameraním na analýzu dopravy.

Táto rozprava sa vo veľkej miere opiera o podobnostné učenie, ktorému dominujú siamské

neurónové siete. Na základe prieskumu moderných prístupov k trasovaniu spoločne s ich

nedostatkami bolo prekrývanie objektov vybrané ako problém, na ktorý sa budeme zame-

riavať. Dôsledky úplného prekrytia bola snaha riešiť pomocou re-identifikácie objektov,

pričom čiastočné prekrytie sme adresovali použitím mechanizmu pozornosti. Latentné

a vnorené priestory boli využité pre zlepšenie propagácie ID objektu medzi snímkami.

Spomínaný prístup založený na pozornosti je schopný konzistentne vylepšiť jednu z naj-

lepších architektúr trasovačov objektov podľa nášho výberu, čo tvorí náš prvý príspevok.

Evaluácia je postavená na ustanovených metrikách určených na vyhodnocovanie traso-

vania viacerých objektov. Naše dva ďalšie príspevky sú aktuálny, hĺbkový prehľadový

článok zameraný na siamské vizuálne trasovanie objektov a vývoj novej metódy slúži-

acej na posudzovanie kvality reprojekcie homografie, ktorá bola súčasťou nášho pokusu

pomôcť procesu trasovania za použitia perspektívnej transformácie.

Kľúčové slová: vizuálne trasovanie objektov, hlboké strojové učenie, Siamské neurónové

siete, latentné priestory, mechanizmus pozornosti, homografia, analýza dopravy

Contents

1 Introduction 15

2 Dissertation Thesis Goals 18

3 Theoretical Foundations 20

3.1 Neural Networks . 20

3.1.1 Artificial Neural Networks . 20

3.1.2 Convolutional Neural Networks . 20

3.2 Object Detection . 22

3.2.1 Non-Maximum Suppression . 22

3.2.2 YOLO . 23

3.2.3 Faster R-CNN . 24

3.3 Latent Spaces and Embeddings . 24

3.3.1 Learning Metric Embedding . 24

3.3.2 Embedding Vector Similarity . 25

3.3.3 Siamese and Triplet Networks . 25

3.3.4 Triplet Mining Strategies . 27

3.4 Evaluating Information Retrieval . 30

3.4.1 Evaluating Bounding Box Prediction 30

3.4.2 Mean Average Precision . 31

3.5 Evaluating Visual Multiple Object Tracking 32

3.5.1 Establishing Correspondences . 34

3.5.2 Tracking Consistency . 34

3.5.3 Mapping Procedure . 35

3.5.4 Performance Metrics . 37

5

3.6 Single Object Tracking . 37

3.6.1 Initial Deep Learning-Based Solutions 37

3.6.2 Fully Convolutional Tracking . 38

3.6.3 Tracking Using Siamese Networks 40

3.7 Multiple Object Tracking . 49

3.7.1 Siamese-based Multiple Object Tracking 49

3.8 Feature Extraction and Feature Fusion . 51

3.8.1 Residual Neural Networks . 51

3.8.2 Feature Pyramid Networks . 52

3.8.3 Deep Layer Aggregation . 52

4 Overview of Relevant Datasets 55

4.1 Object Detection Datasets . 55

4.1.1 MS-COCO . 55

4.2 Object Re-identification Datasets . 55

4.2.1 VeRI-776 . 55

4.3 Visual Object Tracking Datasets . 56

4.3.1 KITTI Object Tracking . 56

4.3.2 MOT17 . 56

4.3.3 UA-DETRAC . 57

5 Developed Homography Ranking Method 59

5.1 Introduction . 59

5.2 Preliminaries . 63

5.3 Developed Method . 65

5.4 Experiments and Discussion . 69

5.4.1 Dataset Creation . 71

5.4.2 Evaluation Methodology . 73

5.4.3 Experimental Results . 75

5.5 Conclusion . 78

6 Developed Approaches to Visual Object Tracking 80

6.1 Siamese Multi-Object Tracking Framework 80

6.1.1 Motivation For Model and Dataset Selection 80

6

6.1.2 General description . 81

6.1.3 Model architecture . 82

6.1.4 Training and Inference Phases . 87

6.1.5 Training and Testing Details . 90

6.2 Siamese Multi-Object Tracking and ReID 92

6.2.1 Motivation . 92

6.2.2 Proposed ReID-Enhanced Architecture 92

6.2.3 Training Phase . 92

6.2.4 Inference Phase . 93

6.2.5 Experimental Evaluation and Discussion 94

6.3 Siamese Multi-Object Tracking and Embedding 99

6.3.1 Motivation . 99

6.3.2 Feature Embedding Head Architecture 100

6.3.3 Training Phase . 100

6.3.4 Inference Phase . 102

6.3.5 Experimental Evaluation and Discussion 103

6.4 Siamese Multi-Object Tracking and Attention 106

6.4.1 Motivation . 106

6.4.2 Attention Mechanism . 108

6.4.3 Deformable Convolutional Neural Networks 110

6.4.4 Modulated Deformable Convolutional Neural Networks 112

6.4.5 Deformable Siamese Attention . 113

6.4.6 Experimental Evaluation and Discussion 117

6.5 Overall Discussion of Siamese-based Experiments 122

7 Conclusion 127

7

List of Figures

3.1 Non-Maximum Suppression (NMS) visualization 23

3.2 Faster Region-based Convolutional Neural Network (Faster R-CNN) 24

3.3 Contrastive and triplet loss . 25

3.4 Triplet loss learning . 27

3.5 Triplet loss categories visualization. 28

3.6 Triplet loss online mining architecture . 29

3.7 Intersection over Union (IoU) visualization 31

3.8 Classification of Events, Activities and Relationships (CLEAR) hypotheses 34

3.9 Sequence-based correspondence mismatches 35

3.10 Object-hypothesis re-initialization . 36

3.11 Local vs. global ratio evaluation . 38

3.12 Fully convolutional tracking . 40

3.13 Siamese Fully Convolutional Network (SiamFC) architecture 42

3.14 Cosine window . 42

3.15 Semantic Network (S-Net) attention module 43

3.16 Siamese Region Proposal Network (SiamRPN) architecture 45

3.17 Siamese Classification and Regression Network (SiamCAR) architecture . . 47

3.18 Siamese Multi-Object Tracking (MOT) with track R-CNN 50

3.19 Siamese Multi Tracker (SiamMT) architecture 50

3.20 Residual Neural Network (ResNet) motivation 52

3.21 Feature Pyramid Network (FPN) . 53

3.22 Deep Layer Aggregation (DLA) comparison 54

4.1 VeRI-776 dataset . 56

4.2 UA-DETRAC dataset . 57

4.3 UA-DETRAC dataset overview . 58

8

5.1 Square marker on a road . 61

5.2 Homography ranking motivation diagram 62

5.3 Multiple markers on the road . 63

5.4 Homography ranking terminology . 64

5.5 Graphical abstract for homography ranking 66

5.6 Homography ranking system diagram . 67

5.7 Homography ranking heatmaps . 70

5.8 Description of creation of test scenarios . 73

5.9 Influence of similarity transformation . 76

5.10 Influence of noise . 77

5.11 Influence of marker shape . 77

5.12 Influence of number of markers . 78

6.1 Interreg dataset sample . 81

6.2 Siamese Multi-Object Tracker (SiamMOT) architecture 84

6.3 Centerness visualization . 86

6.4 SiamMOT inference diagram . 87

6.5 SiamMOT online solver . 89

6.6 Re-identification (ReID) baseline . 93

6.7 Partial occlusion in UA-DETRAC dataset 96

6.8 Pillar occlusion in UA-DETRAC dataset 97

6.9 Progressing occlusion in UA-DETRAC dataset 97

6.10 Embedding-enhanced SiamMOT architecture 100

6.11 Partial occlusion in the UA-DETRAC dataset 107

6.12 Scaled dot-product attention . 109

6.13 Standard vs. deformable convolution . 111

6.14 Deformable Convolutional Neural Network (DCNN) 112

6.15 Various sampling locations in DCNNs . 112

6.16 SiamMOT with attention . 114

6.17 Deformable Siamese Attention (DSA) diagram 115

6.18 DSA attention visualization . 117

6.19 DSA evaluation - primary metrics . 119

6.20 DSA evaluation - secondary metrics . 120

9

6.21 DSA evaluation with Gradient Accumulation (GA) - primary metrics . . . 121

6.22 DSA evaluation with GA - secondary metrics 122

6.23 PR-Multiple Object Tracking Accuracy (MOTA) visualization 126

10

List of Tables

3.1 Triplet categories. 27

3.2 Other MOT metrics . 39

5.1 Description of synthetic dataset scenarios 79

6.1 Feature Embedding (FEMB) head . 101

6.2 The effect of FEMB head inclusion . 104

6.3 DSA extension performance table comparison 121

6.4 DSA extension inference time comparison 124

11

List of Abbreviations

A-Net Appearance Network . 42, 43

AP Average Precision. 31, 32

BBOX Bounding Box . 18, 19, 22–24, 30–32, 34, 38, 44–47, 56–58, 71, 83, 85–87, 89, 94,

96, 97, 99, 100, 102, 103, 105–107, 123

CenterNet Center Point-based Network . 105

CLEAR Classification of Events, Activities and Relationships . 8, 32–34, 39, 104, 118,

121, 126

CNN Convolutional Neural Network . 16, 21, 23, 38–40, 110, 111, 127

CPU Central Processing Unit . 91, 124

CUDA Compute Unified Device Architecture. 91

DCNN Deformable Convolutional Neural Network . 9, 110–114, 124

DenseNet Densely Connected Convolutional Network . 54

DLA Deep Layer Aggregation. 8, 52–54, 87

DoF Degrees of Freedom. 59, 63, 68, 113

DSA Deformable Siamese Attention. 9–11, 113, 115, 117–122, 124, 129

Faster R-CNN Faster Region-based Convolutional Neural Network . 8, 22, 24, 82

FCOS Fully Convolutional One-stage Object Detector . 85

FEMB Feature Embedding . 11, 100, 101, 103–105, 123, 124

12

FN False Negative. 39, 96

FP False Positive. 31, 39

FPN Feature Pyramid Network . 8, 50–54, 87

FPS Frames per Second . 22, 57, 58, 105, 122, 124

GA Gradient Accumulation. 10, 90–92, 103, 104, 119–122

GAP Global Average Pooling . 99

GMM Gaussian Mixture Model . 98

GOTURN Generic Object Tracking Using Regression Networks . 37, 38

GPU Graphics Processing Unit . 90, 91, 102, 103, 117, 119–122, 124, 129

HDA Hierarchical Deep Aggregation. 53, 54

IDA Iterative Deep Aggregation. 53

IoU Intersection over Union. 8, 22, 23, 30, 31, 34, 86, 88, 102, 103, 105

mAP mean Average Precision. 31

MDCNN Modulated Deformable Convolutional Neural Network . 112–114

MOT Multi-Object Tracking . 8, 11, 17, 32, 33, 39, 49, 56, 81, 83, 94, 95, 106, 113, 115,

123, 128, 129

MOTA Multiple Object Tracking Accuracy . 10, 37, 39, 96, 104, 118–121, 124–126, 129

MOTP Multiple Object Tracking Precision. 37, 39, 104, 118–121, 125

NMS Non-Maximum Suppression. 8, 22, 23, 88, 89, 93–96, 102–104, 123

PR Precision-Recall . 32, 118–120, 122, 125, 126

ReID Re-identification. 9, 16, 19, 24, 31, 40, 49, 50, 55, 80, 92–99, 102, 104–106, 122,

123, 127–129

13

ReLU Rectified Linear Unit . 51, 101

ResNet Residual Neural Network . 8, 46, 51, 52

ROI Region of Inteset . 47, 50, 83, 87, 99, 100, 104, 105, 107

RPN Region Proposal Network . 22–24, 44, 45, 48, 51, 81, 82, 88, 101, 102, 123, 128, 129

S-Net Semantic Network . 8, 43

SA-Siam Semantic-Appearance Siamese Network . 41, 42

SiamCAR Siamese Classification and Regression Network . 8, 46, 47

SiamFC Siamese Fully Convolutional Network . 8, 41, 43–47, 49, 50

SiamMask Siamese Network with Segmentation Mask . 41, 45, 46, 107

SiamMask-E Siamese Network with Segmentation Mask and Ellipse Fitting . 41, 46, 107

SiamMOT Siamese Multi-Object Tracker . 9, 51, 80–82, 84, 87, 88, 90–92, 94, 95, 99,

100, 114, 115, 121, 123–126, 128

SiamMT Siamese Multi Tracker . 8, 49, 50

SiamRM Siamese Network with Re-detection Mechanism. 98

SiamRPN Siamese Region Proposal Network . 8, 41, 44, 114

SOT Single-Object Tracking . 48, 49, 80, 113, 114, 124, 129

SOTA state-of-the-art . 15–17, 19, 38, 41, 80, 92, 106, 125, 128

SSD Single Shot Detector . 22

STN Spatial Transform Network . 110

TP True Positive. 31

VOT Visual Object Tracking . 15–18, 38, 46, 48, 59, 60, 80, 110, 122, 127, 128

VRAM Video Random Access Memory . 90, 91, 103, 117, 120, 121, 124, 129

YOLO You Look Only Once. 22, 23

14

Chapter 1

Introduction

Visual Object Tracking (VOT) is one of the principal challenges in the field of computer

vision. The aim is to locate a certain object in all frames of a video, given only its

position in the first frame. An object is firstly detected in the image (frame) and a unique

identifier is assigned to it. Subsequently, the same identifier has to be correctly assigned

if the object is present in future images.

Object tracking is the task of following one or more objects in a scene, from their

first appearance to their exit [1]. In general, this problem is still wide-open, with state-

of-the-art (SOTA) performances lagging far behind human levels. However, there are

successful real-world applications, particularly when a certain amount of control over the

environment is possible, e.g. in industrial settings. Major difficulties stem from a change

in object illumination, position, and orientation due to movement, object and camera

viewpoint variations, and partial or full occlusion [2].

The goal of an object tracker is to produce a trajectory of a given object with respect

to time using its position in every video frame. A practically unattainable (ideal) tracking

algorithm should have the properties below:

• properly detect all the objects that enter and exit the scene,

• differentiate between instances of multiple objects,

• consistently maintain the uniquely assigned identifier to each object,

• motion of the object or lack thereof should not influence the object tracking,

• partial or full object occlusion, even a long-term one, should be resolved.

15

Recently, the most influential approaches to VOT were the ones involving the modern

tools of deep machine learning. This approach which has in the past decade reaped an

upsurge in its utility is the key element of this thesis. Krizhevsky et al. [3] showed that an

outstanding tool, when it comes to the application of deep learning in computer vision,

are Convolutional Neural Networks (CNNs) (Section 3.1.2). It is a predominant approach

to extracting valuable visual features from the pixel space of images.

Visual tracking of single or multiple objects is often just an intermediate step for various

ends. In this work, traffic analysis, specifically tracking vehicles, is considered to be the

primary target of our applied research, even though our developed methods are generally

applicable. Besides traffic analysis [4], whether from a static camera or as part of self-

driving cars, there are pedestrian detection and tracking [5], activity understanding [6],

and imitation based on a video [7].

While this is an important problem, the current SOTA solutions still lack high accuracy

in unconstrained scenarios with potential object occlusion [8]. Understandably, the object

might re-emerge after the occlusion in a significantly different form, thus it might be

mistaken for a new object. Occlusion comes in three separate types [9]:

• self-occlusion, where the object occludes itself (a person holding a phone),

• intra-object occlusion, in which multiple different objects occlude each other (a small

vehicle passing behind a truck),

• or object-background occlusion, when the occlusion is caused by a static object in

the background (a tree occluding a cat).

A key element for a tracking algorithm to hold onto when dealing with occlusion is to

discern between new and previously seen objects. For this purpose, a repeated identi-

fication of some object, or Re-identification (ReID), is indispensable. Various advances

in the creation of latent spaces and embeddings using deep learning (Section 3.1.1) have

shown promising results [10, 11]. One use case of embeddings is to create a metric space

into which the tracked visual objects are encoded as vectors.

A broad range of real-life applications requires tracking multiple objects, which only

adds complexity to an already tough problem. But [12] shows that approaching the

problem of vehicle ReID using embeddings (Section 3.3) trained with contrastive or triplet

16

loss (Section 3.3.3) brings substantial improvement. We plan to explore this idea and

utilize it as a basis for VOT when it comes to repeatedly re-identify occluded objects.

The primary objective of this thesis is to explore, implement, and experiment with

methods for VOT by use of deep learning. Considering the performance of SOTA ap-

proaches as well as the practical demand for an accurate tracking outcome, be it traffic

or other scenarios [4], we think that an emphasis should be put on occlusion handling,

whether partial or full, as it causes major difficulties for existing methods [8].

The secondary objective is to extend the current knowledge in the field of computer

vision and deep learning regarding dynamic scenes involving VOT. At the time of writing

this document, there is still a lack of freely available implementations. Widely used open-

source libraries such as OpenCV [13] provide only tracking algorithms for single objects,

as opposed to Multi-Object Tracking (MOT), which is demanded in practice, yet concrete

solutions exist but are not ubiquitous and easy to use.

The rest of the document is organized as follows. The main goals of this dissertation

thesis are described in Chapter 2, discussed next. To equip the reader with the necessary

foundational knowledge we provide Chapter 3. Right after that chapter, we composed

a short treatise on available and used datasets in Chapter 4. At this point, we start

with our first relevant experiment related to homography transformations to which an

entire Chapter 5 is dedicated. This chapter is a one-to-one re-write and expansion of our

published paper. Then, we have Chapter 6, focused on our developed approaches to VOT.

It is the most important chapter presenting the greatest part of our work. Our overall

achieved results are discussed in Chapter 7, which closes the entire document.

17

Chapter 2

Dissertation Thesis Goals

VOT has been increasingly studied in recent years due to its real-world applications. The

research area is vast, very active, and encompasses a broad range of approaches. Deep

learning has occupied a great deal of the time we spent studying and researching. The

intention to build a working solution and incrementally advance the domain of object

tracking has been the main incentive behind the choice of the topic of this dissertation

thesis. With this in mind, the general goal of this dissertation thesis is to improve

the accuracy of visual object tracking using deep machine learning tools.

Tracking of objects using visual features may produce the output in many forms,

the usual axis-aligned Bounding Boxes (BBOXes), rotated BBOXes [14], segmentation

masks [15], or even object contours [16], to name a few. We plan to primarily focus on

solutions producing axis-aligned BBOXes since they are ubiquitous. We have mentioned

our intention to deal with traffic-related scenarios. So far, there have been no restrictions

as to why our tracker would have to run at real-time speed. Many of our real-world appli-

cations have involved camera-recorded videos that were processed offline. The decision to

deal with traffic-related scenarios is also driven by projects supported by the University of

Žilina. Companies in the private or public sector are interested in the automated analysis

of traffic. Currently, a great deal of work such as vehicle counting is performed with hu-

man intervention. The author of this thesis as well as one of the supervisors was actively

involved in solving problems related to tracking and traffic analysis using recorded videos

during the research performed as part of this dissertation.

There are diverse factors that contribute to the overall performance of a tracker. Our

analysis has led us to narrow our focus to occlusion handling. Occlusion can impose a

18

huge precision penalty as the tracked object may be lost, or worse, the tracker’s attention

may be dragged away to a different object. Many of the SOTA solutions lack explicit

occlusion handling [17, 18, 15] and we have identified this to be one of the leading causes

of failure. Thus, the specific goal is to propose a solution to problems regarding

visual tracking that stem from the presence of occlusion, the transformation

of the tracked objects as well as varying lighting conditions in the scene.

Given what has been presented so far, we have chosen the path of similarity learning

and a closely related ReID (Section 3.3.1). Despite the existence of different techniques,

we have been convinced during this initial research phase about the great potential of

metric spaces and their properties that seem to fit our needs. Some works argue that a

well-built similarity function based upon metric learning in combination with a simple

matching algorithm on the level of BBOXes can produce a reasonable performance [19].

We think that even humans would be capable of discerning between objects when shown

their pictures from distinct times in a video even dozens of seconds apart. The inherent

visual clue about the object that makes it stand out among the set of others should be

present most of the time. However, it may not be always possible to unambiguously

identify an object given its appearance, especially when it comes to vehicles. Special

marks such as customized paintings, decorations, or even scratches become relevant [20].

Consequently, the use of attention-based [21] approaches has yielded promising results. In

addition, attention may serve the purpose of enhancing the tracker’s discriminating power

when it comes to detecting objects undergoing a partial occlusion. Thus, expanding upon

the foundation of the specific goal, we will strive to propose and implement a solution that

can improve the performance of a tracker by considering the obstacles mentioned above.

Therefore, the goal from a methodological perspective is the application of

approaches based on attention or similarity learning to handle object occlusion

of varying intensity, change in the position and viewpoint of the tracked object,

and fluctuations in the scene illumination.

19

Chapter 3

Theoretical Foundations

3.1 Neural Networks

3.1.1 Artificial Neural Networks

Neural networks are computing systems that are inspired by, but not identical to, bio-

logical neural networks that constitute animal brains. Such systems essentially learn to

perform tasks by considering multiple samples, generally without being programmed with

task-specific rules. They form a basis for deep machine learning [22].

The goal of a neural network is to approximate some unknown function f . For instance,

when considering a classifier, the transformation y = f (x) maps the given input x to a

category y. Such a network, therefore, defines a mapping and learns the value of the

parameters that result in the best function approximation.

These models can be described with a directed acyclic graph denoting the sequential

composition of several functions. More concretely, we might have three functions f (1), f (2)

and f (3), forming a chain, f (x) = f (3)
(
f (2)

(
f (1) (x)

))
. These chain structures are the

most commonly used structures in neural networks. Deep machine learning consists of

multiple such layers of neurons that are trained using the backpropagation algorithm [23].

3.1.2 Convolutional Neural Networks

This type of neural network has gained popularity in the computer vision community

thanks to a never-seen-before performance on image classification task [3]. This approach

processes images or other high dimensional, grid-like input and then learns the importance

20

(weights and biases) of various aspects of the input data.

The successful ability of these networks to capture spatial properties via learned convo-

lutional filters is the fundamental principle. Let f and g be functions. Then, the operation

of convolution denoted by ? produces a third function, as a result of the following com-

putation (demonstrating the commutativity property, too) [22]:

(f ? g) (t) =

∫ ∞
−∞

f (τ) g (t− τ) dτ =

∫ ∞
−∞

f (t− τ) g (τ) dτ. (3.1)

In this setting, f is the input, g is the kernel, and the output of this operation is a feature

map. During training, the aim is to learn the weights of the kernel matrix that produces

a feature map based on which the model can solve the given task.

Let I be a two-dimensional input image and K be a two-dimensional kernel. Then, for

a given position (i, j) in the input image I, the discrete convolution can be written as

(f ? g) (i, j) =
∑
m

∑
n

I (m,n)K (i−m, j − n) . (3.2)

Many machine learning libraries implement the cross-correlation operation, not the con-

volution operation by its strict definition. This operation is the same except for the fact

that the kernel is not flipped. Thus, the result of the cross-correlation is given by

(f ? g) (i, j) =
∑
m

∑
n

I (i+m, j + n)K (m,n) . (3.3)

An indispensable outcome of CNNs is the ability to capture hierarchical relations.

Layers placed near the input of the model capture low-level features such as edges, colors,

gradient orientations, and so on. On the other hand, layers placed further, deeper in the

model, highlight semantic, abstract features that are specific to the task at hand.

Another prominent use case of CNNs is transfer learning, where a pre-trained model is

adopted for a new task, utilizing the already learned features. These pre-trained models

may come in various flavors, but typical ones are pre-trained for an image classification

task using the ImageNet dataset [24]. The reasoning is that visual features such as edges

and contours are vital to general object recognition tasks, hence it is not needed to learn

coarse, rudimentary, low-level features from scratch all the time.

21

3.2 Object Detection

Since the topic of this thesis concerns the task of visual object tracking, an indispensable

step in the processing pipeline will unquestionably be object detection. Holistically, there

are fast object detectors, e.g., You Look Only Once (YOLO) [25] (Section 3.2.2) or Single

Shot Detector (SSD) [20]. We use the term fast to denote that the detector can operate on

high Frames per Second (FPS). This comes at a cost of relatively lower accuracy, though,

as compared to slower but more accurate approaches based on Region Proposal Networks

(RPNs), such as various versions of Faster Region-based Convolutional Neural Network

(Faster R-CNN) (Section 3.2.3).

Object detection is a very difficult task because the number of objects is unknown in

advance, which means that the number of outputs of the model is variable. Numerous

attempts have been proposed to evade this inherent shortage of standard neural networks.

An obvious solution is to only produce a constant number of BBOXes, as utilized by SSD

and YOLO. But methods based on RPNs try to circumvent the obstacle of having to

predict only a fixed set of BBOXes. Other differences between object detectors stem from

the architecture itself, whether the training is an end-to-end pipeline or the model consists

of various parts. Fully convolutional architectures are also becoming more prevalent [26].

3.2.1 Non-Maximum Suppression

Object detectors have profited from the end-to-end learning paradigm in which features,

object proposals, and the classifier become part of one model [27]. A proposal is nothing

but a region containing a potential object of interest. However, the number of proposals

may grow considerably, outnumbering the real count of present objects. Moreover, these

proposals may have a large overlapping region as measured by Intersection over Union

(IoU) (Section 3.13), rendering most of them useless in terms of conveying new informa-

tion. To filter such proposals, the Non-Maximum Suppression (NMS) algorithm is used

(Fig. 3.1). The objective is to iteratively select only proposals the IoU of which is below

a specific threshold. Let B = {b1,b2, . . . ,bn} be a set of n region proposals described by

n BBOXes. Scores for each detection are contained in a set S = {s1, s2, . . . , sn}, where

si denotes a detection score for the i-th box, bi. Let λ, such that 0 ≤ λ < 1, denote the

threshold for the maximum allowed portion of the overlap between regions. Bnms is the

22

Algorithm 1 Non-Maximum Suppression
1: function NMS(B, S, λ)
2: Bnms ← ∅ . initialize the output (filtered) set of region proposals
3: while B 6= ∅ do . loop until all the proposals are processed
4: m← arg max

i∈{1,2,...,|S|}
S . find an index of a proposal with the highest score

5: B ← B − bm, S ← S − sm . remove the proposal
6: Bnms ← Bnms ∪ bm . save the proposal with the highest score
7: for i← 1 to |B| do . iterate through remaining proposals
8: if iou(bm, bi) ≥ λ then . IoU (Equation 3.13) exceeds the threshold
9: B ← B − bi, S ← S − si . remove the proposal
10: end if
11: end for
12: end while
13: return Bnms
14: end function

NON-MAXIMUM
SUPPRESSION

Fig. 3.1: An illustration of a potential effect of the NMS algorithm on BBOXes. Multiple
proposals (left) are filtered so that only the ones with the highest detection score (right) remain
while satisfying the condition that the overlap does not exceed a specific threshold.

set of filtered proposal instances from the set B produced using NMS (Algorithm 1).

3.2.2 YOLO

YOLO is a very popular single-stage object detector thanks to its ability to run in real-

time and yet be sufficiently accurate. Its speed is primarily a consequence that it looks

only once at a given input image. Compared to RPN-based approaches, the authors of

YOLO devised a CNN model capable of performing extraction of region proposals as

well as classification in a single run [25]. Besides, the backbone CNN model processes an

entire image during the training and test time, allowing an implicit inclusion of contextual

information about classes together with their visual representation. During the testing

phase, the NMS algorithm is employed to filter predictions to make sure that each object

instance is detected just once. Since the initial introduction of this approach, multiple

updates have been brought forward [28, 29, 30, 31].

23

Region Proposal Network

Input image CNN backbone

Anchor boxes

Region proposal
layer

Regions Filtering,
NMS

ROI Pooling

Classifier Regressor

size

Fig. 3.2: A conceptual processing diagram of the Faster R-CNN model.

3.2.3 Faster R-CNN

Faster R-CNN [32] is the most prominent two-stage object detector. The first stage

consists of generating region proposals using the RPN [33]. This set of class-agnostic,

rectangular BBOXes is produced from an input of arbitrary size (Fig. 3.2). Regarding the

second stage, the proposed regions (usually 300) serve as a basis for subsequent cropping

of features from the same intermediate feature maps that are then fed to the remaining

feature extractor to predict the class. Based on this class prediction, the proposed box is

further refined. Despite the endeavor to diminish unnecessary computations, there is still

a part of the computation that has to be executed once per each proposed region, so the

performance depends on the number of regions generated by the RPN.

3.3 Latent Spaces and Embeddings

3.3.1 Learning Metric Embedding

As Hermans et al. [34] describe, the goal of learning metric embedding is to learn a function

fθ (x) : RF → RD which maps semantically similar points from the data manifold in RF

onto metrically close points in RD. Analogously, fθ (·) should map semantically different

points in RF onto metrically distant points in RD.

Suppose the use of this transformation for vehicle ReID. The corresponding embedding

vector would be produced by a learned function that would map the images of vehicles

into a latent space where images of the same vehicle would be mapped closer together.

Moreover, such mapping should be invariant to variations in lighting conditions, vehicle

rotations, and many others. Among other things, embedding trained this way can be used

to produce a feature vector for classification, one-shot learning tasks [35], clustering [10],

face recognition [36] and last, but not least, object ReID [12].

24

CNNimage

em
b

ed
d

in
g

contrastive loss

CNNimage

em
b

ed
d

in
g

shared weights

(a)

CNNimageanchor

positive

negative

em
b

ed
d

in
g

triplet lossCNNimage

em
b

ed
d

in
g

CNNimage

em
b

ed
d

in
g

shared weights

shared weights

(b)

Fig. 3.3: Comparison of the Siamese (a) and the triplet (b) network architectures. The concept
of weight sharing implies that only one set of model weights is trained.

3.3.2 Embedding Vector Similarity

The two most common approaches to evaluating the degree of similarity between em-

bedding vectors are Euclidean distance and cosine similarity. Let u and v be arbitrary

D-dimensional vectors representing our embedding vectors. The Euclidean distance be-

tween the vector u and v is defined as

‖u− v‖2 =

√√√√ D∑
i=0

(ui − vi)
2, (3.4)

and the cosine similarity is defined as

cos 6 (u,v) = cos (θ) =
u · v

‖u‖2‖v‖2
, (3.5)

where θ is the angle between the vectors u and v.

3.3.3 Siamese and Triplet Networks

For the upcoming discussion, let D (x, y) : RD ×RD → R be a metric function measuring

distances in the embedding space. Without a loss of generality, we resort to use of the

Euclidean distance (L2 norm), so D (x, y) = ‖x− y‖2.

25

Contrastive Loss

Consider a sample (x0, x1, y), where x0 and x1 represent the input, and the label y = 1 if

x0 and x1 belong to the same category, otherwise y = 0. Let α be the margin representing

the minimum distance in the metric space to separate positive from negative samples.

The contrastive function for any sample is then defined as [37]

Lcontr (θ) =
1

2
yD (fθ (x0) , fθ (x1))

2 +
1

2
(1− y)

(
[α−D (fθ (x0) , fθ (x1))]+

)2
. (3.6)

The two inputs x0 and x1 are fed to the shared model at the same time. The output is

then evaluated by the contrastive loss function (Fig. 3.3 (a)). Positive samples should

have a small distance between each other as measured by the D (·) to decrease the loss

towards 0. Conversely, negative samples should have a distance beyond the threshold α.

Triplet Loss

Apart from the contrastive loss, this time three samples are required to compute the loss.

The rationale is to supply additional context when forming the metric space. Siamese

networks are usually implemented using shared model weights, but there are better ap-

proaches when the triplet loss is used. Conceptually speaking, the model could be im-

plemented as shown in Fig. 3.3 (b). However, as we will discuss later, triplet mining

strategies are required for the triplet loss to work properly.

Let N be the number of all possible valid triplets
(
xia, x

i
p, x

i
n

)
for a given dataset. For

any i-th triplet, let xia be the anchor for a specific object (person, vehicle, etc.) with

label y (xia), xip be the positive sample of the same object with label y
(
xip
)
, such that

xia 6= xip ∧ y (xia) = y
(
xip
)
, and let xin with label y (xin) be a sample of any other object,

satisfying y (xia) 6= y (xin), ∀i = 1, . . . , N . Let α be the margin value that is enforced

between positive and negative pairs. Then, we want the relationship

D
(
fθ
(
xia
)
, fθ
(
xip
))

+ α < D
(
fθ
(
xia
)
, fθ
(
xin
))
,∀i = 1, . . . , N, (3.7)

to hold true. The triplet loss function is therefore defined as

Ltriplet (θ) =
N∑
i=1

[
α +D

(
fθ
(
xia
)
, fθ
(
xip
))
−D

(
fθ
(
xia
)
, fθ
(
xin
))]

+
. (3.8)

26

Anchor

Positive

Negative

Anchor
Positive

Negative
LEARNING

Fig. 3.4: The objective is to learn embeddings such that the anchor is closer to the positive
example than it is to the negative example by some specified margin value. (source: [10])

triplet constraint

easy D
(
fθ (xia) , fθ

(
xip
))

+ α < D (fθ (xia) , fθ (xin))

semi-hard D
(
fθ (xia) , fθ

(
xip
))
< D (fθ (xia) , fθ (xin)) < D

(
fθ (xia) , fθ

(
xip
))

+ α

hard D (fθ (xia) , fθ (xin)) < D
(
fθ (xia) , fθ

(
xip
))

Table 3.1: Definitions of various categories of triplets (regardless whether it is positive or
negative) as imposed by their distance relationship.

During the training, the model should learn to push negative samples further away from

the positive samples, ideally exceeding the margin α. When a negative sample is mapped

closer than a positive sample, the training should result in the desired situation of bringing

the positive sample closer while pushing the negative one further (Fig. 3.4).

3.3.4 Triplet Mining Strategies

Contrastive (Equation 3.6) and triplet (Equation 3.8) loss functions play an important

role in training an embedding model. However, the way that pairs or triplets are selected

is crucial as it may significantly influence the training [34, 38]. Moreover, as the dataset

gets larger, then the number of possible triplets grows cubically, rendering the use of all

of them impractical. The majority of those triplets would be so-called easy triplets. To

paraphrase the analogy from [34], showing the model that people with different clothes

are not the same person after a certain point does not bring any new information. On

the other hand, explicitly mining images of similar-looking yet different people with the

same clothes (hard negatives) or of the same person with dramatically different poses

(hard positives) vastly contributes to an understanding of the notion of the same person.

As suggested, there are different kinds of triplets which are defined in Table 3.1, using a

general
(
xia, x

i
p, x

i
n

)
triplet for clarity. We encourage the reader to observe Fig. 3.5, too.

In order to attain an effective convergence during the training, it is necessary to select

triplets that violate the triplet constraint in Equation 3.7. This means that given xia, the

27

ANCHOR POSITIVE

EASY POSITIVES

SEMI-HARD POSITIVES

HARD POSITIVES

MARGIN

(a)

ANCHOR POSITIVE

HARD NEGATIVES

SEMI-HARD NEGATIVES

EASY NEGATIVES

MARGIN

(b)

Fig. 3.5: Given a fixed anchor xia and positive sample xip as well as some positive margin value
α, we discriminate between three different types of categories in terms of their level of difficulty.
These categories vary in relation to positive (a) or negative (b) perspective.

goal is to select a hard positive xip given by arg maxxip
{
D
(
fθ (xia) , fθ

(
xip
))}

and a hard

negative xin as a result of arg minxin {D (fθ (xia) , fθ (xin))}. Admittedly, it is often infeasible

to compute the arg min {·} and arg max {·} over the entire training set. In this regard,

there are two possible approaches to tackle this problem, either by selecting these hard

triplets online or doing it offline [10].

Offline Triplet Mining

Given a training set, the task is to produce reasonable triplets off-line, for instance, at

the epoch beginning. First, a list of N different valid triplets is randomly generated, then

separated into bN/Bc batches of B triplets, followed by computation of 3N embeddings

using the most recent model checkpoint. Then, hard or semi-hard triplets may be selected.

Since this strategy has been shown on multiple occasions [10, 34, 12] as an inferior choice

compared to online triplet mining, we will not discuss this approach further.

Online Triplet Mining

Online mining is performed by selecting the hard positive/negative exemplars from within

a minibatch (Fig. 3.6). A condition that minimum number of exemplars for any identity is

present in each minibatch has to be met. For example, Schroff et al. [10] used 40 different

images of a single person (an identity) per minibatch. Let P be the number of different

objects/identities (e.g., people, vehicles) and K be the number of different images for

28

CNN triplet loss
(online mining)

images

em
b

ed
d

in
g

s

Fig. 3.6: A triplet network with an online triplet loss function. In this architecture, no weight
sharing is required as the triplet selection happens online solely in the loss function.

a concrete identity (e.g. different views of the same vehicle). There are two prominent

approaches to online mining: batch all and batch hard.

Online Triplet Mining: Batch All

This strategy aims for selecting all valid triplets and averaging the loss only on the hard

and semi-hard triplets. Easy triplets, i.e., those for which the loss function equals 0, are

not taken into account. The reason is that averaging on them would result in a very

small loss, since they would usually vastly outnumber the set of hard triplets [34]. This

approach produces a total of PK (K − 1) (PK −K) triplets (PK anchors, K−1 positives

per anchors, PK −K negatives) incorporated in the loss function as

Lbatchall (θ) =
P∑
i=1

K∑
a=1

K∑
p=1
p 6=a

P∑
j=1
j 6=i

K∑
n=1

[
α+

D
(
fθ
(
xia
)
, fθ
(
xip
))
−

D
(
fθ
(
xia
)
, fθ
(
xjn
))]

+

.

(3.9)

Online Triplet Mining: Batch Hard

In this strategy, the goal is to find the hardest positive and hardest negative for each

anchor. The total number of triplets is PK. The selected triplets are the hardest among

the given batch and can be considered moderate since they are the hardest within a small

29

subset of the data. Therefore, the mining can be formulated as

Lbatchhard (θ) =
P∑
i=1

K∑
a=1

[
α+

max
p=1,...,K

{
D
(
fθ
(
xia
)
, fθ
(
xip
))}
−

min
j=1,...,P
n=1,...,K
j 6=i

{
D
(
fθ
(
xia
)
, fθ
(
xjn
))}]

+

(3.10)

3.4 Evaluating Information Retrieval

3.4.1 Evaluating Bounding Box Prediction

Intersection Over Union

Intersection over Union (IoU) measures the overlap between two BBOXes. Let bT1 =

[x1, y1, w1, h1] and bT2 = [x2, y2, w2, h2] be two BBOXes described by vectors containing 4

elements. The respective elements are given by x, y coordinates of the top-left corner and

the BBOX width and height. The intersection area between b1 and b2 is defined as

b1 ∩ b2 = max {0,min {x1 + w1, x2 + w2} −max {x1, x2}+ 1}×

max {0,min {y1 + h1, y2 + h2} −max {y1, y2}+ 1} ,
(3.11)

and the area of their union is given by

b1 ∪ b2 = w1h1 + w2h2 − b1 ∩ b2. (3.12)

Then, the final IoU metric between b1 and b2 is computed as (Fig. 3.7)

IoU (b1,b2) =
b1 ∩ b2

b1 ∪ b2

, (3.13)

where 0 ≤ IoU (b1,b2) ≤ 1, such that value of 0 represents no intersection, while value of 1

represents a complete overlap. In terms of object detection or object tracking evaluation,

an IoU threshold, t, such that 0 ≤ t ≤ 1, can be associated with this metric, denoting the

30

Fig. 3.7: Computation of the IoU metric between two BBOXes using of ratio of the area of
overlap and the area of the union.

decision boundary between True Positive (TP) and False Positive (FP).

3.4.2 Mean Average Precision

A commonly used metric for evaluating tracking algorithms, document searching systems,

object detection, and object ReID is mean Average Precision (mAP). It measures the

success rate of an information retrieval algorithm.

Object Re-Identification

A frequent use case in the context of object ReID is to use mAP to assess the search results

for a particular query using Euclidean distance or cosine similarity as a metric. Oftentimes

the model is trained with the intent to use one of these trivial metrics. Furthermore, this

approach is often paired with top-k accuracy, typically top-1, top-2 and top-5.

In a typical ReID evaluation setup, there is a query set and a gallery set. For each

object in the query set the aim is to retrieve a similar identity from the gallery set. The

computation of the Average Precision (AP) for a query image q is thus defined as

AP (q) =
1

Ngt (q)

∑
k

P (k)× δk, (3.14)

where P (k) represents precision at rank k, Ngt (q) is the total number of true retrievals

for the query q. The indicator δk is equal to 1 when the matching of query image q to

a test image is correct at rank r, such that 1 ≤ r ≤ k. The mAP is then calculated as

average over all query images, concretely

mAP =
1

Q

∑
q

AP (q) , (3.15)

31

where Q is the total number of query images, as described in [12]. Equation 3.15 tells us

that, for a given query q, we calculate its corresponding AP (Equation 3.14), and then

take the mean of the all these AP scores.

Object Detection

Object detectors seek to identify the presence of objects in images. The evaluation metric

of such a model has to take the BBOX prediction into account, as there can be just a

partial overlap of the predicted BBOX with the ground truth one.

In a ranked retrieval context, appropriate sets of retrieved documents are naturally

given by the top-k retrieved documents and for each such set, the Precision-Recall (PR)

curve can be plotted. With this in mind, recall is defined as the proportion of all positive

examples ranked above a given rank. Precision is the proportion of all examples above

that rank which are from the positive class. In [39], the AP is computed for 11 equally

spaced discrete recall levels, specifically [0.0, 0.1, 0.2, . . . , 1.0], using

AP =
1

11

∑
r∈{0.0,0.1,...,1.0}

pinterp (r) , (3.16)

where the precision at each recall level r is interpolated by taking the maximum pre-

cision measured for a method for which the corresponding recall exceeds r. Precision

interpolation is used to remove the zig-zag pattern by evaluating

pinterp (r) = max
r̃:r̃≥r

p (r̃) , (3.17)

with p (r̃) representing the measures precision at a specific recall level r̃ [40].

3.5 Evaluating Visual Multiple Object Tracking

When it comes to evaluating MOT, there is still no consensus on how to approach the

evaluation and subsequent comparison of multi-object trackers. There is one established

metric called Classification of Events, Activities and Relationships (CLEAR) metric [41],

that we will employ to assess the performance of a MOT system. The reasons are:

• This metric is still considered a reasonably effective and intuitive metric to use,

despite multiple proposals for improvements [42].

32

• Numerous works in object tracking, especially tracking of people, report statistics

from the MOT challenges that historically have utilized this metric.

• There exist libraries allowing an evaluation of a MOT tracker inference.

Bernardin et al. [41], the authors of the CLEAR metric, designed few criteria that

performance metrics should meet. Therefore, a useful metric:

1. allows assessing the tracker’s precision regarding how well it is capable of determin-

ing the exact object location,

2. reflects the tracker’s ability to track objects consistently, i.e., to correctly trace

object trajectories such that one and only one trajectory is established per object,

3. has as few free parameters as possible,

4. is clear and easy to interpret,

5. is general enough so that comparison of different types of trackers is possible,

6. contains expressive values rich in information yet not abundant in quantity.

Let t denote a time for a specific frame. For each frame t, the multi-object tracker

produces a set of hypotheses {h1, h2, . . . , hm} for a set of visible objects {o1, o2, . . . , on}.

The evaluation procedure can be briefly described in the following pseudocode. For each

time frame t:

1. Establish the best possible correspondence between hypotheses hi and objects oj,

where i = 1, 2, . . .m and j = 1, 2, . . . , n.

2. For each determined correspondence between object and hypothesis:

(a) quantify the error in estimation of the object’s position.

3. Perform accumulation of all errors (Fig. 3.8) in the found correspondences:

(a) count false negatives (misses), i.e., objects without assigned hypothesis,

(b) count all false positives, i.e., hypotheses for which there was no object,

(c) count mismatch errors (swaps of object IDs), i.e., situations in which the hy-

pothesis for a given object changed compared to the previous frame.

33

o1

h1

h2

h5

o2

o8 Misses

t

t

t

t

False
positives

Fig. 3.8: With a demonstration of a correct tracker inference at the top, the CLEAR metric
distinguishes between three fundamental types of errors, misses (false negatives), false positives
and ID switches, shown in this order respectively. (source: [41])

3.5.1 Establishing Correspondences

The correspondence between a hypothesis hi and an object oj should not be made un-

less their distance (denoted as di,j) is within a specific threshold T . The measure of

distance has to be defined for each task, but the IoU distance or Euclidean distance of

BBOX centroids are most commonly used. From now on, we define object-hypothesis

correspondence to be valid as long as di,j < T .

The value of T is critical and greatly influences the outcome. Evaluating tracking

performance bears the burden of having parameters that are difficult to generalize and

the process of setting their values is often accompanied by experimentation. For example,

conceptually speaking, there is, by all means, a boundary (the threshold T) beyond which

we can no longer speak of an error in position estimation, but we should rather claim that

the tracker has drifted away and is tracking a completely different object.

3.5.2 Tracking Consistency

To properly examine the tracker in terms of how consistent it is at tracking objects, one

has to detect conflicting predictions for the given object over time. Bernardin et al. [41]

remarked that such procedures need to decide what the “best” mapping is. For instance,

assuming an object oj and a hypothesis hi, the “optimal” matching may be based on the

initial correspondence made for oj or the most frequent correspondence made throughout

34

o1

h1

h2

Case 1:

o1

h1 h2

Case 2:

t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8

t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8

Fig. 3.9: Illustration of the inherent “unfairness” when relying on sequence-level “best” object-
hypothesis mapping induced by the most frequent correspondence. As shown in the case 1, the
correct hypothesis is the h2, and thus only 2 errors are incurred for the first mismatch. The case
2 is practically identical, the h2 also represents the most common assignment. However, 4 errors
are accumulated for the alleged mismatch for h1. (source: [41])

the whole sequence. If any violation is encountered, it is then treated as a discrepancy.

However, there are several issues. Consider scenarios depicted in Fig. 3.9. The authors

raised their concerns regarding the objectivity of such evaluation and proposed a slightly

different method. They only count mismatch errors once at the time frame where the

change occurs and consider the remaining intermediate correspondences as correct.

Let Mt = {(hi, oj)} be the set of mappings made up to time t, such that M0 = {·}.

Once a new correspondence is made at the next step at time t+ 1 between the hypothesis

hk and the object oj that conflicts the already established identity by the pair (hi, oj)

in Mt, this contradition is then counted as a mismatch error and (hi, oj) is replaced by

(hk, oj) in Mt+1. Consequently, mapping that is constructed this way enhances decision-

making when facing multiple competing hypotheses for the same object. The implicit

assumption is that the previously assigned hypothesis is more likely to be correct that the

new one, even if the distance metric alone would indicate otherwise (Fig. 3.10).

3.5.3 Mapping Procedure

Let M0 = {·}. For each time frame t:

1. Verify if mappings (hi, oj) inMt−1 are still valid. A pair is deemed valid as long as the

hypothesis hi exists at time t, the object oj is still visible, and the distance between

the two does not exceed T . If these conditions hold, establish a correspondence.

35

o1

h1
h1

h2

Miss

o1 o1

t t + 1 t + 2

False
positive Dist.< T

Fig. 3.10: Track reinitialization. At time t, the identity of the object o1 is accounted for by
the hypothesis h1. At time t + 1, the object disappears and the track is temporarily lost. At
time t + 2, the tracker is responsible for reinstantiating the object identity. During evaluation,
the underlying assumption is that the previous hypothesis should be the correct one, even if the
new hypothesis is closer according to the used distance function. (source: [41])

2. If there are objects for which no correspondence has been made so far, then a suitable

matching hypothesis is searched for. This step involves one-to-one matching for pairs

the distance of which does not exceed the threshold T . The matching procedure is

formulated as a minimum cost assignment problem. In case there is a correspondence

that contradicts a mapping [hi, oj] as part of Mt−1, then replace the previous pair

[hi, oj] with [hk, oj] and treat such an occurrence as a mismatch error. For simplicity,

let mmet be the number of the mismatch errors for the frame t.

3. The two previous steps guarantee that a complete set of matching pairs has been

generated for the current time t. At this point, we may start calculating values that

will be utilized later for computing the final metrics. So, let ct be the number of

matches found for time t. For each such match, compute the distance between the

object oj and the corresponding hypothesis, denoted by dti.

4. Every hypothesis that is not part of any pair up to this point is reckoned as false

positive. Likewise, all the remaining objects are marked as misses. Thus, let fpt and

mt be the number of false positives and misses, respectively. For future reference,

let us define gt as the number of ground-truth objects visible at time t.

36

3.5.4 Performance Metrics

Here we present the two most relevant performance metrics by which the tracking perfor-

mance can be expressed, namely the “tracking precision” and “tracking accuracy”.

The Multiple Object Tracking Precision (MOTP) measures an alignment between the

predicted object position and the ground-truth position for positive samples only. It is

not influenced by the (in)ability of the tracker to detect objects. So, it can be defined as

MOTP =

∑
∀t
∑
∀i dti∑

∀t ct
, (3.18)

representing the total error in the estimated position for the pairs where the object-

hypothesis relationship was correct averaged over the total number of such matches made.

Conversely, the Multiple Object Tracking Accuracy (MOTA) metric attempts to re-

flect the number of mistakes the tracker made in terms of misses, false positives, object

mismatches, in which case this metric can be expressed as

MOTA = 1−
∑
∀t (mt + fpt +mmet)∑

∀t gt
, (3.19)

the possible values of which lie within the interval [−∞, 1].

We would like to emphasize that the errors have to be first summed up across all the

frames before computing the ratios rather than evaluating the ratio locally. Independent

computation of the given ratios would lead to non-intuitive outcome (Fig. 3.11).

Besides the two primary performance metrics discussed in the previous section, there

are also partial metrics that are worth evaluating to get a better grasp of the tracker’s

performance. For our purposes, we computed metrics outlined in Table 3.2.

3.6 Single Object Tracking

3.6.1 Initial Deep Learning-Based Solutions

At the time of publishing the work of Held et al. [43], most generic object trackers re-

quired online training from scratch, without taking advantage of available datasets to at

least provide a starting point by initial offline training. This was the incentive behind

the development of the famous Generic Object Tracking Using Regression Networks (GO-

37

o1

h1

o2

o3

o4

Misses

t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7

Fig. 3.11: Computing of error ratios needs to be performed on a global level, rather than on
a local, frame level. Assume a sequence consisting of 8 frames. Moreover, assume that objects
o1, . . . , o4 are visible on the frames from t1 to t4, but none of them is being tracked. The situation
changes at frame t4 where only the object o4 is being tracked properly by the hypothesis h1. As a
result, in frames t1, . . . , t4, the resulting miss rate is 100%, whereas in frames t5, . . . , t8 it is exactly
0%. Applying arithmetic average to these values yields a global miss rate of 1

8 (4 · 100 + 4 · 0) = 1
2 ,

or, 50%. Conversely, performing summation prior to quantifying the final global ratio produces
far more intuitive result of 16 out of 20 misses, or the miss rate of 80%. (source: [41])

TURN) [43]. This approach used to be SOTA in single-object tracking, but nowadays it

is considered obsolete. A major issue is that the object has to be located initially, and

occlusion handling is not performed as well as management of abrupt changes in position.

So it is common for the object to drift away. Nevertheless, it stands to reason that the

notion of leveraging data for offline training has pervaded the VOT community ever since.

Given an initial state in a form of a BBOX belonging to the first frame (a search region),

the network then crops a new region in the next frame and tries to find the location of

the target object within this region. It practically performs a comparison of the current

search region given the predicted target location from the previous frame. A key concept

to highlight is that GOTURN addresses the tracking as a box regression problem.

3.6.2 Fully Convolutional Tracking

Transfer learning, e.g., exploiting an already pre-trained CNN model to extract visual

features, often comes with one drawback: the model accepts only a fixed input size.

Demand for variable input size is more prevalent in object detection and segmentation

than in the basic task of image classification. A common approach is to resize the image

to the required shape, but this may significantly distort important features. Using fully

connected layers demands known dimensions in advance, which is complicated to preserve

38

Metric Name Description

no. of frames Total no. of frames.

no. of matches Total no. matches.

no. of switches Total no. of track ID switches.

no. of FP Total no. of false alarms.

no. of False Negative (FN) Total no. of misses.

no of detections Total no. of detected objects (matches and switches).

no. of objects Total no. of unique object appearances over all frames.

no. of predictions Total no. of unique prediction appearances over all frames.

no. of fragmentations Total no. of switches from tracked to not tracked.

no. of mostly tracked No. of objects tracked for at least 80% of lifespan.

no. of partially tracked No. of objects tracked with lifespan from 20% to 80%.

precision No. of detected objects over sum of detected and FP.

recall No. of detections over no. of objects.

IDF1 ID measures: global min-cost F1 score.

MOTP Multiple object tracker’s precision.

MOTA Multiple object tracker’s accuracy.

Table 3.2: Other important CLEAR metrics that we adopted for evaluation of our experiments
with various MOT approaches.

when dealing with the input of diverse shapes. Convolutional layers are invariant to input

size, therefore an avoidance of fully connected layers may provide an answer. An efficient

solution is to replace fully connected by 1× 1 convolutions [44].

The CNNs provide valuable spatial clues about the image content. Thus, interclass

variations are thoroughly captured in the top layers, and intraclass variations conversely in

the bottom layers (Fig. 3.12). This led the authors of [45] to propose a fully convolutional

visual object tracker that exploits different layers of the pre-trained network [46]. As

a result, the model responsible for extracting visual features is no longer treated as a

black box. An in-depth study was conducted on the properties of CNN features of the

offline pre-trained model. It was found that characterization from different perspectives

is provided by convolutional layers at different levels.

Authors of [45] put together a list of three observations that summarize properties of

39

(a) (b) (c)

Fig. 3.12: (a) Input image with an associated ground truth mask. (b) Visualization of feature
maps from convolutional layers from the bottom of the model, capturing foreground-background
differences. (c) As opposed to the previous group of images, a more holistic, abstract view on the
object category itself is provided by feature maps from top convolutional layers. The top row in
the (b) and (c) represents feature maps, whereas the bottom row represents the corresponding
saliency map with spatial information of the category. (source: [45])

the fully convolutional nature of a tracker proposed by them.

• Despite a large receptive field of CNN feature maps, few of them are activated and

they are sparsely distributed and localized.

• The majority of the feature maps can be considered noisy or irrelevant when dis-

criminating a specific target object (foreground) from the background.

• Different layers encode different types of features (related to the intraclass or inter-

class variations discussed at the beginning).

3.6.3 Tracking Using Siamese Networks

Although CNNs condense valuable visual information into low dimensional space, it is still

not sufficient in many situations during tracking. The object representation from convo-

lutional layers trained on classification is not robust enough for dramatic visual changes

and occlusion. As discussed in Section 3.3 dedicated to latent spaces and embeddings,

an object representation supporting ReID requires different types of models, i.e., Siamese

neural networks. We have already mentioned our intention to utilize custom metric space

for tracking, and [47] were among the first ones to successfully demonstrate it.

Authors of [47] approved of the idea that visual feature extraction using CNNs is

pertinent to the robustness of the tracking algorithm, yet they advocated to train the

visual model to a more general task of similarity learning rather than just classification.

40

This observation and its further implementation was the main contribution of their work,

achieving SOTA performance back then. They trained a fully convolutional Siamese

network to locate an exemplar (also referred to as a template or target in the literature, but

for clarity, we will stick to exemplar only) image within a larger search image (Fig. 3.13).

The model got the name Siamese Fully Convolutional Network (SiamFC). We mentioned

this to make the comparison easier because a lot of follow-up works have been done,

such as Semantic-Appearance Siamese Network (SA-Siam) [48], Siamese Region Proposal

Network (SiamRPN) [18], Siamese Network with Segmentation Mask (SiamMask) [15],

Siamese Network with Segmentation Mask and Ellipse Fitting (SiamMask-E) [14], etc.

Let γ be a transformation that extracts visual features from the input, and g be the

function that combines two representations produced by the function γ. Siamese networks

apply an identical transformation γ to both inputs, search image x and exemplar image

z, and combine the result as

f (x, z) = g (γ (x) , γ (z)) . (3.20)

When Euclidean distance or cosine similarity measure is computed by the function g, then

γ can be deemed as embedding. The output of computing the cross-correlation operation

is a response map. During training, the ground-truth response map is centered at the

target object and a cosine function is used to create a 2D penalty map. The goal is to

focus the response to the center under the assumption that the object is always focused

in the center of the current search region. In practice, this assumption holds most of the

time, that’s why adoption of the so-called cosine window is prevalent (Fig. 3.14).

A team of authors in [48] made the following observation: features learned in an image

classification task (denoted as semantic features) complement features learned in a sim-

ilarity matching task (denoted as appearance features). They also suitably commented

that the key to designing a high-performance tracker is to utilize expressive features that

are simultaneously discriminative and generalized. In light of this, they developed a model

consisting of a semantic and an appearance branch, with each branch being represented

by a standard similarity-learning Siamese network (as in SiamFC [47]). An important

distinction is that these two branches were trained separately, making them effectively

heterogeneous to avoid any sharing of information. They reported that both branches

were less powerful when trained jointly. The reasoning was that each branch provides

41

CNN

CNN

Exemplar

Search region *
Response map

Input Feature
extraction

Similarity
computation

Locating
maximum score

Target
localization

Fig. 3.13: The fully convolutional Siamese architecture produces a scalar-valued score map.
The similarity function is computed for all sub-windows within the search image and stored in a
2D score map, rather than just a pure 1D embedding vector. This computation requires only one
evaluation. In this image, the red, green, and yellow pixels in the output score map represent
similarity values for the three sub-windows on the input.

Fig. 3.14: A visualization of 1D (left) and 2D (right) cosine window under the assumption that
the response map is of size 17× 17. Such a mask conveys the idea of putting the highest weight
to the center with nonlinear, even reduction when moving away from the center.

different features produced at different levels of abstraction, yet they complement each

other. The merge of their respective outputs happens only during the testing time. Nowa-

days, joint training is prevalent, especially due to its effectiveness. Given the advantage

of hindsight, there are more important aspects of Siamese trackers to address to reap even

greater benefits in terms of accuracy, e.g., feature fusion.

The SA-Siam receives an input as a pair of image patches cropped from the initial

(exemplar) frame and the current (search) frame. Let z, zs and X be the image of

exemplar, exemplar including the surrounding context and the search region, respectively.

Dimensions of xs andX are identical,Ws×Hs×3. Dimensions of the exemplar z located in

the exact center of the region of zs areWt×Ht×3, such thatWt < Ws and Ht < Hs. The

appearance branch (Appearance Network (A-Net)) takes (z,X) as input and essentially

42

Channel i

ξi
max

pooling
MLP

Fig. 3.15: The attention module of the S-Net network. (source: [48])

clones the entire SiamFC network. Let fa (·) denote the visual features extracted by the

A-Net. Then, the response map of this branch is given by

ha (z,X) = corr (fa (z) , fa (X)) , (3.21)

where corr (·) is the correlation operation. Analogically, the semantic branch (Semantic

Network (S-Net)) assumes as input a pair (zs, X). Unlike the A-Net, this model is pre-

trained for the image classification task and its weights are frozen during the training. The

features of the last two convolutional layers of this model provide abstraction at distinct

levels. However, spatial resolutions are not alike. Let fs (·) be the concatenated multilevel

features. For the correlation operation (corr (·)) to be usable, a special fusion module is

introduced, implemented by a simple 1 × 1 convolution layer. The fusion operation is

applied to features within the same layer.

Semantic features of a higher level are robust to appearance variation. This contributes

to the generalization ability of the tracker but exacerbates its discriminative abilities. To

circumvent this, the attention module is presented. The reasoning is that individual

feature channels have varying importance for object tracking as far as different exemplars

are concerned. The goal is to assign a degree of importance (weight) to each channel for

each exemplar. Still, the exemplar information is not sufficient, so the context must be

supplied, too. The proposed attention module thus processes the feature map of zs instead

of just z. The attention module operates channel-wise and incurs negligible computational

overhead as it’s only active during the target processing on the first frame. Later on, the

weight coefficient is used to scale each feature map according to its importance.

When training the S-Net branch, only the fusion and the attention modules are up-

dated. No fine-tuning techniques are taken advantage of, regardless of the potential

improvement of the semantic branch alone. Authors informed about such experiments,

and they resulted in diminished overall performance thanks to A-Net and S-Net becoming

43

less heterogeneous. The inference phase involves computation of the overall heat map for

which a weighted average of the two produced heat maps.

The series of Siamese-based architectures for tracking continued with the idea of using

the RPN [18] (see Section 3.2.3 for the same concept applied in object detection). Under

the flag of end-to-end training, the SiamRPN model consists of a Siamese subnetwork

for feature extraction (again, a duplicate of the SiamFC [47]) and RPN as another sub-

network encompassing both classification and regression branch (Fig. 3.16). The notable

contribution is that the proposed framework is formulated as a local one-shot detection

task in the inference phase (the first work to make such a step). The template branch

encodes the object appearance information for further foreground/background discrimi-

nation. Analogically, the BBOX from the first frame is the only exemplar for one-shot

detection in the inference phase.

The region proposal subnetwork contains a pair-wise correlation as well as a supervision

section. Let k denote the number of anchors. The model output 2k channels for the

classification and 4k channels for the regression. Following the established notation, the

Siamese subnetwork produces feature maps γ (z) and γ (x). The pair-wise correlation

splits γ (z) into [γ (z)]cls and [γ (z)]reg while increasing the no. of channels (Fig. 3.16).

Conversely, γ (x) is also split into [γ (x)]cls and [γ (x)]reg, but the no. of channels remains

unchanged. The correlation, when computed on both branches, is given by

Aclsw×h×2k = [γ (x)]cls ? [γ (z)]cls ,

Aregw×h×4k = [γ (x)]reg ? [γ (z)]reg ,
(3.22)

where the template feature maps [γ (z)]cls and [γ (z)]reg stand in place of kernels in the

convolution operation signified by the ? character.

The noteworthy formulation of tracking as one-shot detection was proposed as follows.

In general terms, the goal is to minimize the average loss L of a predictor function ψ (x;W)

by finding its parameters W . When computed over a dataset of N samples xi with

corresponding labels yi, ∀i = 1, . . . , N , it is given by

arg min
W

{
1

N

N∑
i=1

L (ψ (xi;W) , yi)

}
. (3.23)

One-shot learning aims to learn W when only a single exemplar z is available, tackling

44

Fig. 3.16: The pipeline starts with the original SiamFC network followed by the RPN which
has two branches: classification and regression. The output of the two branches is obtained using
a pair-wise correlation. Foreground/background classification and the box regression are given
by the 17× 17× 2k and 17× 17× 4k feature maps, respectively. (source: [18])

a major challenge of learning to learn [49]. If we consider a meta-learning feed-forward

function ω that maps (zi;W
′) to W , then the problem can be stated as

arg min
W ′

{
1

N

N∑
i=1

L (ψ (xi;ω (zi,W
′)) , yi)

}
. (3.24)

In this setting, this objective function can be re-written in terms of the Siamese subnet-

work feature extraction γ and region proposal subnetwork Ψ as

arg min
W

{
1

N

N∑
i=1

L (Ψ (γ (xi;W) ; γ (zi;W)) , yi)

}
. (3.25)

The template branch provides training parameters to predict the kernel for the detection

task. The template branch embeds necessary category information into the kernel that is

subsequently utilized for detection.

Later on, a fork of publications emerged with an endeavor to improve the tracking

performance by estimating not only a regular axis-aligned BBOX but a rotated box,

too. Put into perspective, the rotated BBOX, as opposed to an ordinary, axis-aligned,

contains the minimal amount of background pixels [14]. Thus, datasets with rotated

BBOXes provide tighter enclosed rectangles.

Inspiration from object segmentation yielded another approach where the tracking pro-

cess was assisted with additional semi-supervised object segmentation [15]. The relevant

contribution is the augmentation of the training loss with a binary segmentation task.

Once trained, the model (dubbed SiamMask) relies exclusively upon a single BBOX ini-

45

tialization and operates online while producing rotated BBOXes instead of axis-aligned

ones together with class-agnostic object segmentation masks. Again, the SiamFC [47]

served as the fundamental building block. However, a notable modification consisted of

the use of a depth-wise cross-correlation layer instead of a simple cross-correlation layer.

The latter compresses all the information into a single channel, impeding the potential

to encode richer information about the object. The original model used 6× 6× 128 and

22×22×128 tensors to produce a 17×17×1 response map (Fig. 3.13). Here, multi-channel

response maps are utilized.

An incremental improvement of SiamMask model came when [14] proposed an efficient

algorithm for the estimation of the BBOX rotation when the object segmentation mask is

given. In particular, a mask produced by the SiamMask model, as this work builds on top

of [15], under the derived name SiamMask-E. Additionally, their approach can be used to

generate a rotated box ground truth from any segmentation datasets to train a rotation

angle regression model. To estimate the rotation angle, they adopted the least-squared

scheme as part of the ellipse fitting algorithm.

The idea to employ fully convolutional networks seems to pertain to the modern com-

puter vision community. Besides a simpler model, the fully convolutional design often

leads to a reduced number of hyperparameters. One such an architecture (a descendant

of the famous SiamFC [47] model) has been recently proposed, named Siamese Classifi-

cation and Regression Network (SiamCAR) [17] (Fig. 3.17). This approach relies on the

decomposition of the task of VOT into a classification for pixel category and regression

for object BBOX at the given pixel. The leading concept of the article is that this tracker

operates in an end-to-end, per-pixel manner. The authors avoided the use of anchors as

well as region proposals, thereby reducing the need for human intervention. The use of

the two aforementioned traits commonly leads to sensitivity to dimensions and aspect

ratios of the anchor boxes, which requires expertise in hyperparameter tuning.

An indispensable part of localization is low-level features like edges, corners, and so

on, whereas high-level features strengthen the representational power from the semantic

point of view, which is crucial for discrimination. Authors fused low-level and high-

level features from the last 3 residual blocks of the Residual Neural Network (ResNet)-50

backbone, forming a unity after concatenation.

An important observation was made that locations further away from the object center

46

CNN

CNN

CNN

CNN

Center-ness

Regression

25 × 25 × 𝑚 L T R B

7 × 7 × 𝑛

31 × 31 × 𝑛

25 × 25 × 𝑚

25 × 25 × 𝑚
Siamese Subnetwork

Classification

Template patch

Search region

backbone

25 × 25 × 2
25 × 25 × 1
25 × 25 × 4

Classification-Regression Subnetwork

Conv

Conv

Conv

Conv

foreground background

Fig. 3.17: SiamCAR architecture. The left side consists of the original SiamFC [47] model,
with a simple amendment of using depth-wise correlation for multi-channel response map ex-
traction. The right side depicts the subnetworks for foreground/background classification and
BBOX regression. (source: [17])

may aggravate the predicted box as they can be considered low-quality. To diminish the

effect of such locations, another branch alongside the classification branch to suppress

the outliers is introduced, based on the concept of centerness, borrowed from the [26].

This branch outputs a feature map where each point indicates the centerness score for

the corresponding location. We can say that centerness is a very general concept, and

practically it represents a weighting mechanism to penalize areas within the Region of

Inteset (ROI) that most likely do not contain the target object.

Conclusions Made In the Survey Paper

We would like to remark that this branch of trackers formed the basis of our research. Its

importance reached such a high level that we even composed an up-to-date comprehensive

survey paper [50] solely focused on Siamese trackers and their fundamentals. We will now

summarize the most important conclusions and observations from the out paper.

In the referred survey, we aimed to identify and elaborate on the most significant

challenges the Siamese trackers face. The objective was to answer what design decisions

the authors had made and what problems they had attempted to address. It could be

thought of as an in-depth analysis of the core principles on which Siamese trackers operate

together with a discussion of the underlying motivation. In addition, we also provided

an up-to-date qualitative and quantitative comparison of the prominent Siamese trackers

on established benchmarks, since the last survey that involved a thorough discussion of

Siamese trackers was published in 2018 [51]. Last but not least, we discussed the current

trends in developing Siamese trackers at the time of writing the article as well.

47

We have to emphasize that Siamese trackers are a research direction in VOT with great

potential. In practical terms, they belong to the fastest trackers with the “accuracy-to-

speed” ratio being their primary strength. Contrary to the initial expectation, we realized

that fast trackers were also among the most accurate ones (with some existing exceptions).

Simply put, high processing speed is an inherent property of Siamese trackers.

Nevertheless, there are existing drawbacks that require research attention. The pres-

ence of distractors (similar interference) is in our paper often mentioned as one of the

leading causes of problems for this type of tracker. Our quantitative evaluations indi-

cate that trackers where the presence of semantic background is explicitly treated often

yield the top performance. Siamese metric learning is powerful enough to encompass

numerous visual variations, but in case there are distractors present, then additional

steps conditionally executed seem to contribute positively. To name a few, there are

the explicit distractor-awareness [52], sampling strategies for foreground/background dis-

crimination [53], or conditional object re-detection [54]. Besides, there are many exam-

ples where RPN was used for object proposals even for Single-Object Tracking (SOT)

in Siamese trackers. We venture to claim that the top-performing trackers exploited the

above-mentioned RPN head, e.g., [18, 52, 55]. A comprehensive survey concerning deep

visual object tracking by Marvasti-Zadeh et al. [56] also reached a similar conclusion.

The utilization of cross-correlation has a great share of the leading performance in

terms of its effectiveness. But the original single-channel formulation from [47] has been

improved into a multi-channel, depthwise cross-correlation that has been in use up to

date. It was argued that a single channel did not capture sufficient information [17],

thus multi-channel cross-correlation layers were used instead [55]. On top of that, since

multiple channels are present, we observed an emerging trend in using various attention

mechanisms to aid the feature selection [57].

Speaking of cross-correlation in terms of its core principle of performing a “learned

template matching” using the exemplar and the search region, it raises the question of

whether and how the exemplar template should change during the training. Several

works have remarked that incorporating memory or template updating strategies could

potentially enhance the tracker performance, e.g, [47, 58]. It seems that relying solely

upon the exemplar image from the initial frame may have detrimental effects as the

object undergoes severe visual deformations, so the tracker may eventually lose track.

48

Even though our discussed survey focused on SOT, there are emerging works where

Siamese architectures were integrated into a MOT pipeline.

3.7 Multiple Object Tracking

Our research originally targeted SOT, especially Siamese trackers. The plan to incorporate

multiple objects remained only as a hypothesis to explore later. However, thanks to our

comprehensive survey on Siamese tracking [50], we gained enough background knowledge

to quickly absorb the newly emerging body of literature on a specific branch of multi-

object trackers that exploit Siamese architectures. Our research is focused on Siamese

neural networks, whereas the MOT is dominated by approaches that utilize “detection &

linking” while exploiting a wide range of methods, from simple Munkre’s algorithm [59]

through complicated graph formulations [60] to even graph-based convolutional neural

networks [61]. Even though there are works that claim the use of Siamese neural networks

in MOT, e.g. [62], their utilization serves for the ReID within the tracking-by-detection

philosophy, for which Siamese networks are widely adopted. However, by Siamese track-

ing, we explicitly mean the type of trackers described in Section 3.6. We identified that

Siamese-based MOT is a freshly rising subfield of trackers.

3.7.1 Siamese-based Multiple Object Tracking

Shuai et al. [63] proposed a Siamese-based framework that can simultaneously handle

object tracking, detection, and ReID (Fig. 3.18). The unification of all these aspects into

a single pipeline is a significant advantage. Fruthermore, the formulation allows the use of

any Siamese tracker. Although this tracking system follows an inference pipeline similar

to other tracking-by-detection systems, the distinction is that it does so based on features

generated by a single network.

A very effective extension aptly dubbed as Siamese Multi Tracker (SiamMT) of the

often-mentioned came in [64] where the SiamFC tracker was utilized n exemplars to

produce n response maps and, therefore, to perform tracking of n objects simultaneously

(Fig. 3.19). The incentive to develop this tracker was to address the problem with running

a costly detector for every frame to produce detections upon which another performance-

demanding linking stage is usually executed. This framework was the first to demonstrate

49

Fig. 3.18: Demonstration of how unification of the detection, tracking and ReID within a single
architecture can be achieved. (source: [63])

(a)

(b)

Fig. 3.19: The inference phase of the (a) SiamFC to see the difference between the (b) SiamMT
successor. The SiamMT framework first extracts features of the entire frame via the backbone ϕ
that are then cropped and resized using the K̃ operator, utilizing ROI-align operations. Finally,
all these features are combined in the traditional cross-correlation way (slightly adjusted to
handle more objects) to produce a multi-object response map. (source: [64])

the qualities of a purely deep learning-based, end-to-end tracking pipeline capable of

tracking multiple arbitrary objects at once.

The endeavor to exploit Siamese neural networks to assess the degree of similarity be-

tween two objects has spurred a plethora of proposals combining various mechanisms.

Lee et al. [65] combined Siamese similarity learning with Feature Pyramid Networks

50

(FPNs) (Section 3.8.2). This tracker still follows the path of the tracking-by-detection

paradigm, in which the similarity metric between the current detections and existing

tracks plays an essential role. In this work, criticism was raised concerning the plain

Siamese architectures for not being sufficient for tracking owing to their structural sim-

plicity and lack of motion information. To address the structural simplicity, a Siamese

network incorporating FPNs was proposed. Then, to overcome the lack of motion infor-

mation, additional spatiotemporal motion features were added to the this module.

As a matter of fact, in our research, we ended up working with Siamese Multi-Object

Tracker (SiamMOT) [66] (Section 6.1) architecture, which we will introduce in great detail

later on. It is a multi-object tracker that encompasses some of the best approaches we

have discussed so far into an end-to-end framework, such as Siamese tracker (multi-channel

cross-correlation), RPN head, centerness, feature fusion, and much more.

3.8 Feature Extraction and Feature Fusion

As we have observed in our survey of Siamese trackers [50], incremental improvements

in feature extraction were often the major contribution of numerous works. With this in

mind, we consider feature extraction a necessary part of any deep learning model design.

3.8.1 Residual Neural Networks

He et al. [67] remarked that deeper neural networks are more difficult to train. In this

work, a residual learning framework to facilitate easier training of neural networks that

were significantly deeper than their previously used counterparts was proposed. The

explicit reformulation of the layers as learning residual functions with reference to the

layer inputs, instead of learning unreferenced functions, led to a breakthrough in the

utilization of deep neural networks.

The foundation of ResNets is the adoption of skip connections that represent shortcuts

to jump over certain layers. Typically, such models are implemented using double or

even triple layer skips containing nonlinearities (e.g., Rectified Linear Unit (ReLU)) and

batch normalization [68] in between. The primary reason for adding skip connections

was to avoid vanishing gradient problems. As demonstrated in Fig. 3.20, the degradation

problem manifests itself in deeper networks when their accuracy shows signs of saturation

51

0 1 2 3 4 5 6
0

10

20

iter. (1e4)

tr
ai

ni
ng

 e
rr

or
 (

%
)

0 1 2 3 4 5 6
0

10

20

iter. (1e4)

te
st

 e
rr

or
 (

%
)

56-layer

20-layer

56-layer

20-layer

Fig. 3.20: A motivation behind the ResNets. The training error and the test error are greater
for the deeper model than for the shallower model. Therefore, the inevitable conclusion is that
in order to learn better networks, it takes more than just stacking more layers. (source: [67])

followed by a rapid decline, but not as a result of overfitting.

Let H (x) denote the desired underlying mapping. The stacked nonlinear layers are

then expected to fit a mapping F (x) = H (x)− x. The original mapping is reformulated

as H (x) = F (x) + x. The initial hypothesis, which turned out to be correct, was that it

is easier to optimize the residual mapping instead of the original, unreferenced mapping.

3.8.2 Feature Pyramid Networks

Feature Pyramid Network (FPN) [69] is an extension to existing backbones used for fea-

ture extraction serving various tasks ranging from image classification, object detection,

object tracking or even image segmentation. Its greatest strength is the combination of

low-resolution, semantically strong features with high-resolution, semantically weak but

discriminative features via a top-down pathway and lateral connections.

Fig. 3.21 compares competing methods of feature aggregation by their core principles.

Regarding the FPN itself, observe the two pathways in Fig. 3.21 (d). The bottom-up

pathway represents a feed-forward computation of the backbone, where one pyramid level

corresponds to one stage. The output of the last layer of each stage will enrich the feature

maps when processing the top-down pathway by the use of lateral connections. The top-

down pathway consists of upsampling operations followed by 1× 1 convolutions to align

tensor channels dimensions and then element-wise addition of features.

3.8.3 Deep Layer Aggregation

A successor of the FPN is the Deep Layer Aggregation (DLA) [70], which emphasizes the

importance of feature aggregation across multiple levels to merge information from differ-

52

predict

predict

predict

predict

(a)

predict

(b)
predict

predict

predict

(c)

predict

predict

predict

(d)

Fig. 3.21: Four traditional approaches to feature aggregation. (a) Computing features on
distinct image scales (computationally expensive); (b) the use of single scale features only (fast,
but not robust); (c) Reusing pyramidal feature hierarchy (fast and robust); (d) the proposed
FPN - pyramidal feature aggregation in both directions. (source: [69])

ent stages of input processing (Fig. 3.22). This technique shows significant improvements

in both memory usage and performance. Unlike the skip connections, the DLA intro-

duces more depth and sharing. There are two main different approaches to DLA, namely

Iterative Deep Aggregation (IDA) and Hierarchical Deep Aggregation (HDA). These two

approaches above are independent as well as compatible enough to facilitate combining

the two for even richer feature aggregation. A great advantage is that these structures

are independent of the choice of backbone, thus preserving the compatibility with current

and future networks.

Iterative Deep Aggregation

IDA aims at resolution and scale fusion. The process starts at the smallest scale and then

iteratively merges larger (deeper) scales, which can be described as

I (x1,x2,x3, . . . ,xn) =

 x1 if n = 1

I (A (x1,x2) ,x3, . . . ,xn) otherwise
, (3.26)

where A is the aggregation node.

53

+

Dense Connections Feature Pyramids

Deep Layer Aggregation

Fig. 3.22: A demonstration of unification of semantic and spatial information. The DLA ar-
chitecture extends densely connected networks, i.e., Densely Connected Convolutional Networks
(DenseNets), and FPNs. This extension builds on the idea of skip connections for enhanced
feature fusion. (source: [70])

Hierarchical Deep Aggregation

This process of aggregation exploits a tree-like structure that combines layers spanning

multiple levels of a feature hierarchy. The HDA with aggregation function Tn with n

representing the depth can be formulated as

Tn (x) = A
(
Rn
n−1 (x) , Rn

n−2 (x) , . . . , Rn
1 (x) , Ln1 (x) , Ln2 (x)

)
, (3.27)

where A is the aggregation node. The functions R and L are defined as

Ln1 (x) = B (Rn
1 (x)) , Ln2 (x) = B (Ln1 (x)) (3.28)

and

Rn
m (x) =

 Tm (x) if m = n - 1

Tm
(
Rn
m+1 (x)

)
otherwise

, (3.29)

where B represents some convolutional block.

54

Chapter 4

Overview of Relevant Datasets

4.1 Object Detection Datasets

4.1.1 MS-COCO

The MS-COCO dataset [71] was created for object segmentation purposes. However, if a

model solves a more complicated problem of object segmentation, pure object detection is

considerably easier. To this end, this dataset is often adopted for training object detectors.

It is considered a benchmark dataset in different academic and industrial research areas.

The images in the dataset are everyday objects. In total, there are over 200 000 labeled

images, 1.5 million of object instances encompassing 80 object categories (“person”, “car”,

“chair”, etc.). There are additional annotations unrelated to our purposes.

4.2 Object Re-identification Datasets

4.2.1 VeRI-776

A large-scale benchmark dataset named VeRI-776 for vehicle ReID in the real-world urban

surveillance scenario [72] (Fig. 4.1). This dataset is one of the best, and it already has

been explored and served the purpose of training ReID models. The featured properties

of this include the following important properties for training robust ReID models:

• It contains over 50 000 images of 776 vehicles captured by 20 cameras covering an

1 km2 area in 24 hours.

55

Fig. 4.1: The properties of the VeRI-776 dataset. Individual vehicles offer rich within-class
differences in distinct viewpoints. At the same time, different but similar vehicles may have
trivial inter-class differences. (source: [72])

• The images were captured in a real-world unconstrained surveillance scene and la-

beled with varied attributes, e.g., BBOXes, types, colors, and brands.

• Each vehicle is captured by at least 2 up to 18 cameras in different viewpoints,

illuminations, resolutions, and occlusions.

• Data samples are also labeled with license plates and other spatio-temporal infor-

mation, such as the BBOXes of plates with corresponding strings, the timestamps

of vehicles, and the distances between neighboring cameras.

4.3 Visual Object Tracking Datasets

4.3.1 KITTI Object Tracking

This object tracking benchmark [73] consists of 21 training sequences and 29 test se-

quences. Even though there have been labeled 8 different classes, only the classes “car”

and “Pedestrian” are evaluated in this benchmark, as only for those classes enough in-

stances for a comprehensive evaluation have been labeled. Considering our potential

traffic application, this fact does not represent a disadvantage. The goal of the object

tracking task in this benchmark is to estimate object tracklets for the classes “car” and

“pedestrian”. Only 2D, axis-aligned BBOXes in each image are evaluated.

4.3.2 MOT17

MOT17 [74] is probably the most commonly utilized benchmark for evaluating MOT

trackers. This challenge contains seven different indoor and outdoor scenes of public

places with pedestrians as objects of interest. Each video corresponding to one scene is

56

Fig. 4.2: A sample from the UA-DETRAC dataset. The whole dataset consists of diverse traffic
situations captured using a static camera viewed from various angles. (source: [42])

divided into two clips, one for training and the other for testing. However, there are three

different versions of detections available produced by three different object detectors,

thereby tripling the number of available videos in terms of distinct annotations. This

benchmark challenge accepts both online and offline tracking approaches.

4.3.3 UA-DETRAC

The most important benchmark dataset for our work is UA-DETRAC [42]. To the best of

our knowledge, this dataset most favorably suits the needs of all surveyed datasets avail-

able. The primary reason is that it provides a plethora of traffic situations recorded using

a static camera (Fig. 4.2). This work provides high-quality human-generated annotations

with a lot of additional information about the captured vehicles, such as the intensity of

their occlusion.

UA-DETRAC is considered a challenging real-world multi-object detection and multi-

object tracking benchmark. The dataset consists of 10 hours of videos captured at 24

different locations in China. The videos are recorded at 25 FPS, with resolution of 960×

540 pixels. There are more than 140 000 frames and 8 250 vehicles that are manually

annotated, leading to a total of 1.21 million labeled BBOXes of objects.

Since this dataset is of paramount importance to our research, here we provide more de-

tails about the structure and properties of the contained data compared to other datasets

described in our work. The dataset consists of 100 videos, where 60 of them are dedicated

to training, while the remaining 40 are used for testing. Ground-truth annotations are

57

(a) (b)

(c) (d)

Fig. 4.3: Summary statistics of the UA-DETRAC dataset. (a) shows the distribution of vehicle
categories, one of car, bus, van or other ; (b) shows the varying weather conditions belonging to
either night, sunny, rainy or cloudy ; (c) depicts the change in scale given by the square root of
the BBOX pixel area; and (d) reflects the occlusion ratio throughout the dataset computed as
the fraction of the vehicle BBOX being occluded . (source: [42])

provided in both variations. This is not always the case, as several benchmarks do not

disclose annotations for the test dataset, e.g., KITTI [73].

The authors provide extensive information about the vehicle, including its speed in

FPS, color, orientation, and occlusion. The dataset contains numerous scenes where

the number of cars is very high. More specifically, some basic statistical properties of

the distribution of the number of cars throughout the dataset are: mean 9.21, standard

deviation 6.60, median 21, and maximum 49. The data were obtained by collecting the

number of annotated cars for each frame.

58

Chapter 5

Developed Homography Ranking

Method

This chapter is dedicated to one of our experiments that were not completely related to

the VOT itself, yet we achieved an original scientific contribution that could potentially be

applied to object tracking. Even though we did not continue with the homography-based

object tracking due to limitations of available datasets, still we would like to elaborate

on our developed approach. The proposed method was fully described as well as scrupu-

lously tested under difficult conditions. The write-up of the whole research process was

eventually published in a journal [75], building on top of a conference article [76].

5.1 Introduction

Computer vision often deals with diverse image transformations to improve the outcome

of the subsequent post-processing phase. The perspective transformation was deemed

of particular interest to our goal of traffic analysis. Specifically, removal of perspective

distortion. To this end, the so-called homography mapping is often exploited.

Broadly speaking, homography is a perspective projection of a plane from one cam-

era view into a different camera view. The perspective projection maps points from a

3D world onto a 2D image plane along lines that emanate from a single point [77, 78].

Such a projection is contained within a 3× 3 invertible transformation matrix called the

homography matrix (or just homography) with 8 Degrees of Freedom (DoF). A general

59

homography matrix can be defined as follows

H =


h11 h12 h13

h21 h22 h23

h31 h32 h33


(5.1)

This transformation may facilitate mapping between two views of the same plane. Con-

cretely, a single vector uT = [ux, uy, 1], which represents a warped keypoint in homoge-

neous coordinates, is mapped onto the rectified keypoint ũT = [ũx, ũy, 1], by the homo-

graphy H using the transformation sũ ≈ Hu, where s represents the scale factor. In

our case, the goal was to rectify the image so that it looks as if the camera was in an

orthogonal position with respect to the desired plane in the world.

Homography is frequently adopted for text document rectification to generate a fronto-

parallel view [79, 80], image stitching [81, 82], extracting metric information from 2D

images [83], pose estimation [84], and for various traffic-related applications, e.g., ground-

plane detection [85], and bird’s-eye view projection [86].

We aimed at exploring the possibility of employing homography for VOT. The primary

incentive was the fact that as long as a static camera is used and a few assumptions

that we will discuss later hold, the scene may be easily stripped off the effect of the

perspective distortion. Consequently, the use case of tracking vehicles visually using a

static camera while exploiting a fronto-parallel view over the road seemed like a plausible

extension with possible advantages for traffic analysis. Furthermore, the combination of

homography and object tracking is present in the literature, e.g. [87, 88, 89]. Bose et

al. [87] presented a fully automated technique for both affine and metric rectification of

a given ground plane by simply tracking moving objects. The derivation of the necessary

constraints for projective transformation between the image and the ground plane was

obtained by observing objects that moved at constant velocity in the world for some part

of their trajectory. We conjectured that the extra information about the scene geometry

that we may achieve using rectification could aid in making the tracking more accurate.

Visual trackers are often supported by motion models such as Kalman filter [90], so the

rationale was to estimate the motion model in an orthogonal projection, rather than a

perspectively distorted one.

60

Fig. 5.1: An example of a virtual square marker present on a road that may be used to establish
a point correspondence, and thus the homography transformation, too. The obtained view allows
for many applications such as speed and size measurements that would otherwise be a lot more
problematic in a perspectively deformed view. (source: [87])

A common approach to estimate the homography is to use a set of at least four 2D

point correspondences [91]. The points that are used for establishing the 2D point cor-

respondences will be referred to as keypoints. These keypoints may belong to a marker

which is an object with a known shape that is either naturally occurring or artificially

positioned in the scene. A regular, easy-to-detect pattern (e.g., a chessboard) is com-

monly utilized [92]. A single marker is identified in the image by multiple independent

keypoints that have a direct correspondence to its real shape, thus making a group of

point correspondences. For the sake of traffic analysis, the marker may be represented by

virtually any points on the image as long as certain conditions are met (Fig. 5.1). How-

ever, the point correspondences established this way are often subjected to noise, thus

errors may be introduced in the homography estimation. Although 4 keypoints are satis-

factory, often a greater number of keypoints is used, allowing to use optimization [93, 94].

Subsequently, an outlier removal becomes an important step in the processing pipeline,

for which effective and robust algorithms such as RANSAC [95] are usually employed.

A real-world application of generating a bird’s-eye view over a road from a video record-

ing when we could not use a large marker to cover a sufficient portion of the road (Fig. 5.3)

motivated this entire project. We observed that, under our conditions, the homography

estimation based on a single small marker was inaccurate. Therefore, there was an at-

tempt to utilize multiple small markers and measure their relative positions. However,

as is often the case in practice, their position measurements were highly noisy at best.

Thus, we had to bypass the position measurements altogether, which led us to adopt the

proposed method, instead. It is crucial to emphasize that our method can also be adopted

61

?
Random
marker
selection

?

Homography
estimation

Image rectification
based on one-to-one
point correspondence

Existing homography estimation methods

Proposed homography ranking method

Select each marker
as a reference marker

Homography
estimation

Homography
estimation

Homography
estimation

Proposed
homography ranking

method

Image rectification based on
many-to-one point correspondence

Fig. 5.2: A fundamental difference between existing homography estimation methods and our
proposed method for homography ranking. If there are multiple markers while the information
about their relative positions in the world is absent, the existing approaches can only estimate
isolated homographies without the ability to select the best one. To address this issue, our
method easily serves as an extension to existing approaches by exploiting multiple markers to
rank the isolated homographies from the “best” to the “worst”.

in a situation when the marker placed at various positions on the same planar surface can

be seen at different frames using a static camera. Stacking the captured frames onto each

other would effectively yield an artificially generated view of multiple markers.

Assume a presence of a sole marker in the scene (Fig. 5.1). Moreover, assume the view

of the marker is perspectively distorted. If we know its real shape, then it is possible

to compute the homography. However, when multiple copies of the same marker are

visible, but their positions in the world are unknown, the detailed information about the

shape is not enough to incorporate all the keypoints in the estimation. In the absence

of position information, existing approaches for homography estimation based on point

correspondences do not work because the projection has to preserve the proportional

positions. As a result, estimating the homography while not knowing the ground-truth

layout of the keypoints up to an arbitrary scale does not guarantee, and often does not

even lead, to the correct result.

Under the constraints discussed above, the existing methods can only generate an iso-

lated homography for each marker based on the one-to-one point correspondence (Fig. 5.2).

Each homography may be affected by different sources of noise, e.g., low resolution, blur,

or keypoint detection. Thus, the outcome of rectification may vary up to a great extent.

In addition, many practical applications often use a marker that just covers a small por-

62

Fig. 5.3: A motivating real-world example. We can see different frames captured during a video
recording that show various positions of the same marker. The picture after the “equality” sign
is a merge of the previous frames for better illustration. Due to the use of a static camera,
we may treat the positions of the given marker on individual frames as if they were captured
simultaneously. However, the question remains unanswered. Given multiple markers in the
absence of their position information, which one is the best to choose for rectification?

tion of the image, increasing susceptibility to noise as a result. The trivial solution would

be to use a bigger marker that covers the majority of the estimated plane’s area. But

such a solution is often cumbersome. It is simply not possible to “merge” multiple isolated

homographies together.

5.2 Preliminaries

We define a marker as an object with a known, easy-to-detect shape. Such an object can be

either naturally occurring or artificially placed on the planar surface of the scene we want

to remove perspective distortion from. The marker contains keypoints, which is a set of

distinct, independent, visual feature points (for instance, corners). The chosen keypoints

visible in the perspectively deformed image are called the warped keypoints. The set of

the rectified keypoints is represented in the desired image (not subjected to perspective

distortion) and is produced from the warped keypoints using the homography projection.

Last but not least, the point correspondence is a relationship between the warped and

the target keypoints and it is necessary for homography estimation. In an ideal case, the

rectified keypoints match the target keypoints in terms of their pixel positions (Fig. 5.4).

Unless stated otherwise, a similarity transformation denotes a limited affine trans-

formation with 4 DoF which encompasses translation, rotation and uniform scaling (Equa-

tion 5.5). Specifically, let K1 and K2 be sets of feature keypoints belonging to objects

O1 and O2. We refer to the objects O1 and O2 as similar if there exists a similarity

transformation ψ, such that K1 = ψ (K2) and K2 = ψ−1 (K1). For instance, O1 and O2

may represent rectangles of different sizes whilst having a equal aspect ratio.

63

Warped image

Warped keypoints

Warped marker

Point correspondence

Homography
projection

Homography
estimation

Reprojection evaluation

Rectified image

Rectified keypoints

Rectified marker

Target keypoints

Target marker

Fig. 5.4: Visualization of relationships within our established terminology. This diagram also
depicts the hierarchical dependence between individual terms. In addition, the dotted elements
represent processes with arrows denoting their input and output.

Letm denote the number of markers and k represent the number of keypoints belonging

to each marker in consideration. We describe each i-th marker using a 3× k matrix W(i)

that stores the warped keypoints as

W(i) =


x
(i)
1 x

(i)
2 . . . x

(i)
k

y
(i)
1 y

(i)
2 . . . y

(i)
k

1 1 . . . 1


, i = 1, . . . ,m. (5.2)

Analogivally, we describe the target keypoints using a 3 × k matrix T. Owing to the

many-to-one point correspondence, only one specification is sufficient. Just beware that

the ordering of keypoints had to match the warped keypoints defined above, so

T =


x̃1 x̃2 . . . x̃k

ỹ1 ỹ2 . . . ỹk

1 1 . . . 1


, (5.3)

with the point correspondence relationship formulated as

x
(i)
j ' x̃j, y

(i)
j ' ỹj, i = 1, . . . ,m, j = 1, . . . , k. (5.4)

64

5.3 Developed Method

Our work aimed to devise a systematic approach to select the “best” homography according

to the proposed score function. The assumption was that there was no prior knowledge

about the quality of individual markers.

Here is the description of the proposed method. Each homography is induced by a

single independent marker. The input to our method is multiple sets (i.e., groups) of point

correspondences between the warped and the ground-truth (ideal) markers. Therefore,

each marker is represented by a unique set of keypoints. The use case of our method is to

rank multiple homographies and select the best performing one with respect to the tailor-

made score function. Consequently, we require a homography matrix for each marker (a

set of point correspondences) on the input. The great advantage comes from the fact

that to compute these matrices, any state-of-the-art method can be utilized as a black

box. The benefit is that it is capable of ranking the referred homographies without the

knowledge of absolute or relative positions of markers in the world (Fig. 5.5). However,

we have to emphasize that we did not propose any method to simultaneously estimate

multiple homographies. We only build upon the existing homography matrices.

Due to our assumption of not knowing the arrangement of markers in the scene, there

is no way to create one virtual, compound marker that contains all the keypoints. If

we could, then we would employ RANSAC [95] or any other sophisticated algorithm

to select the best subset of keypoints to estimate the homography. In that scenario,

our approach would be useless. We only have information about the relative position

of the marker’s keypoints at our disposal, not the markers themselves. As a result,

the point correspondence is globally indeterminate. We can only establish a local point

correspondence between a single marker and its corresponding ground-truth shape. For

the best performance, to obtain the isolated homographies, we suggest the user chooses

the most robust method available.

The homography estimation between existing point correspondences is a standard prob-

lem we heavily rely on. As already highlighted, we did not contribute to this problem in

terms of improving the homography estimation itself. We only provided a way to rank the

resulting homographies. We developed a way to, under certain circumstances, choose the

“best” homography from multiple existing ones. Therefore, our method could not even be

65

Existing homography estimation methods based on point correspondences

Proposed homography ranking method??

Homography
estimation

Image
rectification

Homography
estimation

Homography
estimation

Homography
estimation

Score evaluation and ranking

Homography
ranking

60% relative improvement
in reprojection accuracy when
using the homography selected by
our method.
Our method can extend all
existing methods that utilize point
correspondences.

Motivation: No position
information in the world plane about
the markers means that point
correspondence is indeterminate.
The proposed method allows to find
a single marker (homography) with
the lowest reprojection error.

Our proposed
score function
value quantifies
the “quality” of
homography
matrix.

Image
rectification

Producing a bird’s-eye view over a planar surface.

Fig. 5.5: The graphical abstract from our paper. The basic idea is that existing approaches may
only estimate an isolated homography for each marker and cannot determine which homography
achieves the best reprojection over the entire image. Therefore, we proposed a method to rank
isolated homographies obtained from multiple distinct markers to select the best homography.
This method extends existing approaches, provided that the point correspondences are available
and the markers differ only by similarity transformation after rectification.

compared to RANSAC, because we tackle a different problem. There are three following

assumptions the proposed method is based upon:

1. The markers are geometrically similar, which means that they are allowed to differ

only in translation, rotation, and uniform scale in the real world.

2. The shape of at least one of the used markers is known beforehand.

3. These markers are positioned on the same planar surface visible in the scene.

One important caveat is that our method handles only transformation from a distorted

to the undistorted view of the target plane.

We exploited the properties of homography and similarity transformations and ex-

pressed them in a single score function, which stands at the core of our contribution.

The score function value is exploited as a proxy for homography ranking according to

their reprojection error over the entire image using only markers’ keypoints. It is only an

estimate. The usual use case would be to select the homography with the lowest score,

i.e., the highest-ranked matrix, to perform the image rectification with the expectation

of obtaining the most accurate reprojection.

Our method utilizes multiple similar markers (Fig. 5.6). The input is point correspon-

dences and homographies estimated for each marker. Each marker becomes the reference

marker only once during the course of the algorithm. All the remaining markers serve as

66

Many-to-one keypoint correspondence

1st – lowest score
(best homography)

Warped keypoints
Target keypoints

(target marker shape)

A B

DC

Sort markers according to
their score function value

3rd – highest score

2nd – middle score
A

1 2

3

Estimated homographies

Select reference marker
and apply its homography

Find optimal
similarity matrices

Compute score

B

C

D

A B

CD

D C

BA

(a)

(b) (c)

Fig. 5.6: A system diagram of our method. (a) The input consists of a many-to-one point
correspondence specified by multiple similar markers together with the information about the
ground-truth shape (up to an arbitrary positive scale) of the target marker. (b) The assump-
tion is that the isolated homographies related to each marker are ready on the input as well.
(c) The algorithm processes each marker by applying its corresponding homography matrix to
the image to produce a rectified image. Subsequently, it computes optimal similarity matrices
using auxiliary markers. These transformations are required for the computation of the score
function. The obtained score values then serve for comparison when ranking the homographies.
The homography that ends up ranked first is considered (predicted) to the “best” candidate for
achieving the minimal reprojection error over the whole image.

auxiliary markers. The reference marker’s homography is used to perform the perspective

transformation to rectify all the visible markers. To rank which reference markers’ ho-

mography yields the best reprojection, we exploit auxiliary markers. Auxiliary markers

are subsequently mapped onto the target marker using similarity transformations (Equa-

tion 5.5). The transformed keypoints are converted to homogeneous coordinates and the

reprojection error is measured as the mean Euclidean distance between the rectified and

the target keypoints (Equation 5.7). The objective is to minimize the computed quantity.

Let r be the index of the reference marker. The 3 × 3 matrices describing similarity

transformations are contained in a set S =
{
S(i) | i = 1, . . . ,m

}
, such that

S(i) =




1 0 0

0 1 0

0 0 1

 if i = r

R
(i)
2×2 T

(i)
2×1

01×2 1

 if i 6= r

, (5.5)

67

for i = 1, . . . ,m, where

R
(i)
2×2 =

s
(i) · cos

(
θ(i)
)
−s(i) · sin

(
θ(i)
)

s(i) · sin
(
θ(i)
)

s(i) · cos
(
θ(i)
)
 , T

(i)
2×1 =

t
(i)
x

t
(i)
y

 . (5.6)

This transformation (besides the identity) involves 4 DoF: a single rotation angle θ(i), two

x and y translation coefficients t(i)x , t(i)y , and a scale coefficient s(i). A full affine transfor-

mation (6 DoF) would incorporate horizontal and vertical scales, shear and rotation, and

x, y offsets [96]. The application of homography that rectifies an image generates a frontal

plane that is related to the ground-truth plane by a similarity transformation [97, 98].

Thus, we do not include the shear and we only support uniform scaling. The mathematical

justification can be found in the appendix section of our paper [75].

As all the markers share the same planar surface, a valid homography corresponding

to any of them by definition to provide a valid perspective projection. However, all

perspective projections are subjected to different noise. The endeavor then is to quantify

which homography estimation could provide the best perspective projection for the whole

plane in the image. To do so, we propose a score function based on the aforementioned

constraints. The score function computes a score for individual homographies in along

with the estimated similarity matrices corresponding to auxiliary markers as

F (H,S) =
1

m

m∑
i=1

∥∥h (S(i)HW(i)
)
−T

∥∥
F
, (5.7)

where ‖·‖F denotes the Frobenius norm. The function h (·) converts points to homoge-

neous coordinates as

h




x1 x2 . . . xk

y1 y2 . . . yk

z1 z2 . . . zk




=


x1/z1 x2/z2 . . . xk/zk

y1/z1 y2/z2 . . . yk/zk

1 1 . . . 1


. (5.8)

In what follows, we describe the proposed Algorithm 2 for homography ranking. As-

sume a set of warped markers described by the warped keypoints and a single target

68

Algorithm 2 Homography ranking algorithm.

1: H̄ ← array [m] . empty array for the homography matrices
2: s← array [m] . array of scores computed before the ranking (sorting)
3: for i← 1, . . . ,m do . for each reference marker
4: H̄ [i]← homography(W(i), T) . retrieve or estimate perspective transform.
5: S̄(i) ← I3×3 . identity matrix to stand for a similarity transformation
6: S̄ ←

{
S̄(i)
}

. set of similarity matrices
7: for all j : {1, . . . ,m} − {i} do . for each auxiliary marker
8: S̄(j) ← similarity(H̄ [i] ·W(j), T) . estimate similarity transformation
9: S̄ ← S̄ ∪ S̄(j) . store the similarity matrix
10: end for
11: s [i]← F

(
H̄ [i] , S̄

)
. evaluate score function (Equation 5.7)

12: end for
13: ω ← argsort(s) . indirect sort, only obtain indices of “would-be” sorted elements
14: return H̄ ,ω . return homographies and their respective ranking positions

marker represented by the target keypoints. There is a many-to-one point correspon-

dence linking these objects. Besides, assume that homographies have been estimated

for each marker in isolation. Our algorithm ranks the input set of all pairs
(
W(i),T

)
,

i = 1, . . . ,m in ascending order by how well each i-th marker preserves the target shape of

all the markers in the image after removing the perspective distortion. The score function

defined in Equation 5.7 is used to measure this objective. The algorithm evaluates all

markers as candidates for the reference marker. In each iteration, it computes optimal

similarity matrices belonging to the auxiliary markers in the rectified plane, i.e., after

applying the perspective projection induced by the current homography. The aim is to

find a homography with a minimal score. The algorithmic complexity is quadratic in the

number of markers, thus Θ (m (m− 1) +mlog2 (m)) ' Θ (m2). It is important to remark

that the two functions used to compute the homography and similarity matrices in the

pseudocode may stand for arbitrary methods that produce the required transformations.

5.4 Experiments and Discussion

The evaluation of the proposed homography ranking algorithm involved various condi-

tions. We tested cases that included diverse similarity transformations applied to original

markers as well as noisy point correspondence, e.g., errors in marker detection since these

are the expected problems in real-world scenarios.

Fig. 5.7 demonstrates how the reprojection error varies with respect to the marker

69

0 200 400 600 800 1000
Image width

(a)

0

100

200

300

400

500

600

700

Im
ag

e
he

ig
ht

pixels no. = 786432
min = 0.004
max = 67.974

= 15.714
= 12.504

median = 12.369

25

50

75

100

125

150

175

200

R
ep

ro
je

ct
io

n
er

ro
r (

pi
xe

l-w
is

e
L 2

 n
or

m
)

0 200 400 600 800 1000
Image width

(b)

0

100

200

300

400

500

600

700

Im
ag

e
he

ig
ht

pixels no. = 786432
min = 0.129
max = 214.235

= 55.798
= 48.014

median = 44.091

25

50

75

100

125

150

175

200

R
ep

ro
je

ct
io

n
er

ro
r (

pi
xe

l-w
is

e
L 2

 n
or

m
)

Fig. 5.7: Distribution of pixel-wise reprojection error. The heat map along with the corre-
sponding contours demonstrate the varying distance between the ground truth and rectified
pixel position after removing the perspective distortion. The bold square represents the refer-
ence marker. We show the result of (a) the “best” marker and (b) the “worst” marker. This test
scenario includes all similarity transformations as well as noise in point correspondence.

position. It can be observed that the marker position can be approximately estimated by

looking at the heatmap which represents the pixel-wise reprojection error over the image.

However, the important property is that not all markers are subjected to the same pattern

of error variation. This is the core observation that motivated our solution in the first

place. The objective is to select the marker that minimizes the pixel-wise reprojection

error within the region of the image that is as broad as possible. That is why we evaluate

our method by computing the reprojection error over each pixel, not just the keypoints.

The rationale is that subsequent image postprocessing would greatly benefit from having

the area of the image as large as possible that is reprojected properly.

All the test scenarios indicated the following trend. On average, the homography

with the highest score improved the relative performance to the baseline performance the

most (both median and mean above 60%). The lowest-ranked homography often led to

significantly worse performance (median and mean around −90%). These values varied

moderately across different setups.

Implementation Details

Our proposed algorithm can be utilized to extend any homography estimation method

that exploits point correspondences. To demonstrate, we adopted time-tested imple-

mentations from the OpenCV 4.4.0 library [99]. Each homography was estimated by the

findHomography() function which internally employs DLT [100] algorithm for k = 4 and

RANSAC [95] algorithm for k > 4, where k is the size of the point correspondences set. At

70

the same time, each optimal similarity transformation between two 2D point sets was esti-

mated by the estimateAffinePartial2D(), which also utilizes RANSAC for robustness.

We used the default parameters whenever possible.

5.4.1 Dataset Creation

Our synthetic dataset was created to simulate the presence of markers in the scene sub-

jected to perspective distortion to facilitate a pixel-wise comparison of the reprojection

error. This dataset covered multiple setups named as test scenarios. For each test sce-

nario, we generated t different samples which we call test instances. We set t = 1 000.

Table 5.1 contains description of the generated test scenarios. To create test instances

(within test scenarios), we employed the procedures described below (Fig. 5.8). Our

dataset easily allows complete reproducibility of the reported results thanks to the syn-

thetic nature of our data. The source code for running the experiments is freely available

on our GitHub repository [101].

Image Initialization

Each test instance was initialized as a blank 1024 × 768 image. This image served for

m randomly generated copies of the same shape (marker) placed in a 3 × 3 grid, where

0 < m ≤ 9. We used a uniform border with 20% size of the corresponding side to

prevent the generated shapes from reaching outside of the image. We experimented with

a different number of markers. From the set of 3 × 3 possible anchors, we chose m

randomly onto which we placed the generated markers. We also studied the effect of 3,

5, 7, and 9 out of 9 possible markers, given that all the similarity transformations and

noise were applied. Regarding marker shapes, we tested squares or convex, equilateral

polygons, with a tight BBOX of size 100×100 pixels (covering approximately 1.3% of the

image). However, other similar shapes could be used as well. Their centroids were evenly

distributed over the image whereas the grid cells served as anchors. We adopted pseudo-

random generators based on a uniform probability distribution. The described settings

represented the default configuration. Later on, we applied further transformations to the

generated markers and the image.

71

Similarity Transformation

To justify our use case, we demonstrated the effect of similarity transformations before

perspectively distorting the image. The translation and rotation would demonstrate that

markers could be positioned arbitrarily in a real environment provided they shared the

same planar surface. The change in scale showed that markers could be of different

sizes. The similarity transformation was simulated by applying random rotation from the

interval [0, 360) degrees with origin in the marker center. Then, we generated a random

coordinate shift from interval [−20, 20] pixels for translation in x and y direction. However,

an identical translation had to be applied to the entire marker to prevent distortion.

Subsequently, uniform scaling was performed with the origin in the marker center with a

scale factor randomly generated from interval [0.8, 1.5]. Due to this range, a ratio of the

marker to image area ranged from 1.0% to 1.9%.

Perspective Distortion

The most important transformation was the change in perspective. To this end, we

simulated a 3D rotation of an image around its center to represent a change in perspective

on the plane that contained several markers. We rotated the image around its center in

x, y, and z axis by a random angle from interval [−20, 20] degrees to accomplish a change

in perspective. The original keypoints were transformed along with the entire image,

producing the warped keypoints.

Noisy Point Correspondence

To simulate a noisy point correspondence, we applied a random noise (translation) to

each x and y coordinate of the warped keypoints from the interval [−2, 2] pixels. At this

stage, each keypoint was modified in isolation to achieve the distortive effect. Thanks

to the perspective deformation, the generated random shift represented different levels of

noise depending on how much the image had been warped. This step imitated errors in

the marker detection, leading to noisy point correspondence.

72

Image initialization

Marker shape definition Blank image

Markers generating

Target keypoints

Similarity transformation

Translation

Rotation

Uniform scaling

Perspective distortion

3D image rotation

Noisy point correspondence

Random keypoint translation

Original image (keypoints)

Warped image (keypoints)

Noisy keypoint positions

Fig. 5.8: Description of how each one of t test instances in a specific test scenario is created.
The input is a blank w× h image over which m markers are initialized in a uniform grid, which
produces the original marker keypoints. Depending on the test scenario, a particular subset of
similarity transformations is applied to the entire image. Subsequently, warped keypoints are
modified by random noise to simulate noisy point correspondence.

5.4.2 Evaluation Methodology

Error Computation

The accuracy of the developed method was evaluated by measuring the reprojection error

using the Euclidean distance between the original and the rectified pixel positions. To

obtain an error over the entire image, we computed the error for each pixel. Specifically,

let w and h be the width and height of the image, respectively. The 3D rotation of a point

in the image around the image center that produces perspective distortion is represented

by ϕ (·). Let gTi,j = [j, i, 1] be the original (ground-truth) pixel position at the i-th row

and j-th column, and let wi,j = ϕ (gi,j) be the analogically defined warped pixel position,

for i = 1, . . . , h, j = 1, . . . , w. We then compute the 2D reprojection error grid (a h × w

73

matrix) for the given homography H as

ξwh =


e (w1,1,g1,1) . . . e (w1,w,g1,w)

.

e (wh,1,gh,1) . . . e (wh,w,gh,w)


, (5.9)

where

e (w,g) = ‖Hw − g‖2. (5.10)

To simply express the reprojection error as a single number for the whole image, we

adopted an arithmetic mean of all the values in the error grid above, so

ξreproj =
1

wh

h∑
i=1

w∑
j=1

e (wi,j,gi,j) . (5.11)

Evaluation Algorithm

On the input, there are m markers (Section 5.4.1) and thus an m-to-1 point correspon-

dence. Each marker, by definition, provides a unique homography. Therefore, the aim

is to quantify the relative improvement in the reprojection error over the baseline when

the k-th ranked homography is used for rectification. Even though we are primarily con-

cerned only with the single, top-performing homography, we evaluate the entire ranking

to demonstrate its stable behavior.

We evaluated our homography ranking in terms of reprojection error improvements

against the existing approaches based on the isolated homography estimation represented

by implementation from the OpenCV [99] library. Since our method provides a ranking, we

compare our performance against a random marker selection based on uniform probability

distribution. We refer to this performance as the “baseline”; an unbiased marker selection.

In practice, the user would rely on “educated guess” when predicting which marker could

potentially be the best one to use. To obtain the aforementioned baseline, we evaluated

the reprojection error 5.11 for each marker in isolation and computed the arithmetic mean

of these values. When we executed our proposed algorithm, we got the full ordering of

markers by their score value computed using the proposed criterion 5.7. We expected

74

Algorithm 3 Homography ranking evaluation algorithm.

1: H̄ ,ω ← rankhomographies() . apply homography ranking (Algorithm 2)
2: eb ← 0 . baseline error, initially zero due to summation
3: e← array [m] . empty array to store reprojection errors
4: p← array [m] . empty array to store relative improvements
5: for i← 1, . . . ,m do . for each marker
6: e [i]← ξreproj . compute reprojection error (Equation 5.11)
7: eb ← eb + e [i] . update baseline error
8: end for
9: eb ← eb/m . compute the mean reprojection error
10: for i← 1, . . . ,m do . for each marker
11: k ← ω [i] . position of i-th best homography
12: p [i]← (eb − e [k]) /eb . compute the relative improvement
13: end for
14: return p . return the array of relative improvements

that if the first marker were used to rectify the image, then the reprojection error would

be minimal (and lower than the baseline error). If any subsequent marker in the given

order were used instead, the reprojection error would increase.

We computed the relative improvement in % for each k-th homography according to

the baseline performance. Each test scenario was evaluated one by one. For each test

instance, we obtained a k-dimensional vector where its elements represented a percentual

improvement at each k-th position. We represented our data as a t × k matrix, where

t was the number of test instances. We treated each column independently to compute

the statistics. The details of our evaluation algorithm are described in Algorithm 3. For

simplicity, we show an evaluation of just a single instance.

5.4.3 Experimental Results

All tested scenarios depict similar trends as shown on the plots in Fig. 5.9, Fig. 5.10,

Fig. 5.11 and in Fig. 5.12. The box plots extend from the lower to upper quartile values,

with the thin and thick lines representing the median and mean, respectively. The plots

discussed further show relative improvements over the baseline OpenCV [99] method. We

evaluated relative improvements for the sake of interpretability. For better comprehension,

we suggest to see Table 5.1. It contains individual test scenarios and their corresponding

top performances in percents. Conversely, the reprojection error in absolute terms is

difficult to interpret without additional context. Nevertheless, to highlight the differences

in reprojection errors we also provide absolute values in Table 5.1. The presence of noise

75

1 2 3 4 5 6
Used k-th best homography

-200%

-150%

-100%

-50%

0%

50%

100%

R
el

at
iv

e
im

pr
ov

em
en

t
no affine | square
translation | square
rotation | square
scale | square
baseline

Fig. 5.9: Influence of similarity transformation on the reprojection error.

shifted the errors by multiple magnitudes, but still preserved the pattern of distribution.

Influence of Similarity Transformations

In this test scenario, we tested in isolation each allowed similarity transformation, i.e.,

translation, rotation, and uniform scaling. Fig. 5.9 demonstrates that the relative im-

provement was circa equal in all situations. Besides, we show that the proposed method

is practically invariant to similarity transformations allowing the markers to be in arbi-

trary positions in a plane. When all similarity transformations were utilized, our method

performed even better, showing its stability and robustness.

Influence of Noise

In Fig. 5.10, we can see the effect of noisy point correspondence that simulated inaccurate

keypoint detection. The ranking method preserved the trend of the relative improvement

in presence of noise. Absolute reprojection error demonstrated that unless noise was

present, the errors varied on sub-pixel levels, so they were practically zero.

Influence of Variable Shapes

We expected that the relative improvement of our method should be invariant to variable

shapes as long as they were similar. Fig. 5.11 demonstrates that with an increasing

number of keypoints our method consistently preserved its capabilities. Introducing more

complicated shapes than just rectangles did not exacerbate the outcome of the algorithm.

76

1 2 3 4 5 6
Used k-th best homography

-200%

-150%

-100%

-50%

0%

50%

100%

R
el

at
iv

e
im

pr
ov

em
en

t

rotation, translation, scale | square
rotation, translation, scale + noise | square
baseline

Fig. 5.10: Influence of noise applied to the warped keypoints representing a noisy point corre-
spondence.

1 2 3 4 5 6
Used k-th best homography

-300%

-200%

-100%

0%

100%

R
el

at
iv

e
im

pr
ov

em
en

t

rotation, translation, scale + noise | square
rotation, translation, scale + noise | 5-polygon
rotation, translation, scale + noise | 7-polygon
rotation, translation, scale + noise | 9-polygon
baseline

Fig. 5.11: Results for different marker shapes.

Influence of Number of Markers

We tested a variable number of markers to demonstrate that our method preserved its

improvement. Fig. 5.12 shows that the greater the set of markers, the better the relative

improvement. Even when we used just three markers, the proposed method achieved a

46.91% median relative improvement. While it is beneficial to use a larger number of

markers, we believe that the improvement we can obtain from an increasing number of

markers has a logarithmic trend. On the extreme side, if we used only one marker, there

would be no improvement since there would be only one homography to choose from.

77

1 2 3
Used k-th best homography

(a)

-200%

-150%

-100%

-50%

0%

50%

100%

R
el

at
iv

e
im

pr
ov

em
en

t

rotation, translation, scale + noise | square
baseline

1 2 3 4 5
Used k-th best homography

(b)

-200%

-150%

-100%

-50%

0%

50%

100%

R
el

at
iv

e
im

pr
ov

em
en

t

rotation, translation, scale + noise | square
baseline

1 2 3 4 5 6 7
Used k-th best homography

(c)

-200%

-150%

-100%

-50%

0%

50%

100%

R
el

at
iv

e
im

pr
ov

em
en

t

rotation, translation, scale + noise | square
baseline

1 2 3 4 5 6 7 8 9
Used k-th best homography

(d)

-200%

-150%

-100%

-50%

0%

50%

100%

R
el

at
iv

e
im

pr
ov

em
en

t

rotation, translation, scale + noise | square
baseline

Fig. 5.12: Influence of different number of markers on reprojection error. We experimented
with (a) three, (b) five, (c) seven, and (d) nine markers.

5.5 Conclusion

We proposed a method that builds on top of existing approaches for homography estima-

tion that utilize existing point correspondences. The method is a systematic ranking of a

set of homography matrices while exploiting the proposed score function to establish the

order. Each homography in such a set belongs to a specific marker.

We consistently demonstrated that the proposed solution is robust in presence of noise

in the point correspondences. These correspondences can be either algorithmically found

using feature-matching algorithms or annotated manually, but one has to keep in mind

that even human annotations are often inaccurate. We also showed the robustness of our

method to a varying number of markers and a change in shape.

Generally speaking, all the improvements at individual ranking positions steadily de-

creased, reaching 0% improvement at around 2/3 m, where m is the number of markers.

A practically applicable statement would be the following: “the first half of ranked homo-

graphies yields a better reprojection compared to the baseline on average.”. The baseline

performance was given by an average OpenCV [99] reprojection error under the assumption

of no prior preference of specific markers, hence the random marker selection.

An advantage of our algorithm is that it is invariant to the underlying homography

78

Table 5.1: Description of test scenarios in our synthetic dataset with corresponding settings
and results for the top-ranked homography. One row represents one test scenario. Four visually
separated groups (from top to bottom) are related to experiments shown in Fig. 5.9 - 5.12.

shape # trans. rot. scale noise
relative improvement absolute improvement

median mean stdev median mean stdev

square 6 no no no no 62.80% 59.63% 19.64% 0.0003 0.0003 0.0001

square 6 yes no no no 62.65% 59.00% 19.72% 0.0003 0.0003 0.0001

square 6 no yes no no 66.42% 63.17% 19.11% 0.0004 0.0004 0.0002

square 6 no no yes no 63.38% 58.51% 23.97% 0.0002 0.0003 0.0002

square 6 yes yes yes no 67.82% 63.66% 20.30% 0.0004 0.0004 0.0002

square 6 yes yes yes yes 64.11% 59.26% 22.12% 22.0781 24.3177 15.0085

5-poly 6 yes yes yes yes 74.67% 71.19% 21.98% 69.5553 336.2653 685.7427

7-poly 6 yes yes yes yes 71.02% 65.63% 22.99% 46.7939 135.6574 395.7526

9-poly 6 yes yes yes yes 68.97% 65.57% 21.98% 44.9763 115.1219 309.2720

square 3 yes yes yes yes 46.91% 41.36% 31.58% 14.7750 18.1155 20.6746

square 5 yes yes yes yes 59.03% 53.91% 24.56% 19.7629 22.5333 16.0080

square 7 yes yes yes yes 66.19% 62.41% 19.98% 23.8768 27.1364 32.2853

square 9 yes yes yes yes 69.86% 66.09% 18.18% 25.6645 26.6838 11.6975

estimation method. It can serve as an extension to all existing or future approaches

that handle point correspondences, either as part of run time or a post-processing stage.

Moreover, it is computationally efficient, as it scales well with a quadratic complexity

Θ (m2) in the number of markers, which is usually a single-digit number.

The proposed homography ranking found a real-world application within our solution

for the university-related Interreg SK-CZ project where we tackled the problem of tracking

vehicles for the purpose of speed and dimension estimation. However, we did not continue

with this branch of research due to the lack of available datasets that we would require

for a deep learning-based object tracking solution involving perspective projections.

79

Chapter 6

Developed Approaches to Visual

Object Tracking

In this chapter, we dive into our contributions to the field of Siamese-based VOT. Each

section in this chapter follows more-or-less the same pattern. It begins with motivation,

elaborates on some particular solution, and then provides an experimental evaluation

with a discussion. We start by commenting on why we think the most important tracker,

SiamMOT, was chosen as a base for our experimentation, and then proceed to a general

description of this approach (Section 6.1). Subsequently, we propose our first enhancement

to this tracker based on top of external neural network used for object ReID (Section 6.2).

In the next section, we describe our experiments aimed at combining learning metric

embeddings with the SiamMOT tracker (Section 6.3). We continue by examining the

inclusion of the attention mechanism and a deformable convolution operation into the

end-to-end SiamMOT model (Section 6.4). We finish off with an overall discussion of our

Siamese-related experiments (Section 6.5).

6.1 Siamese Multi-Object Tracking Framework

6.1.1 Motivation For Model and Dataset Selection

Our initial motivation to adopt the SiamMOT [66] tracker as the base for our custom

implementation was that it exploited the best practices honed within the SOT community

and that it had been published very recently, reaping a SOTA performance back then.

80

(a) (b)

Fig. 6.1: A road scenes we encountered when working on the Interreg SK-CZ project.

Besides, we saw several potential parts for improvement, namely its ability to inherently

handle trivial cases of short-term occlusion during the identity association stage.

Training, as well as evaluation of the developed tracker, requires a lot of annotated

data. Admittedly, we devoted a great deal of time to finding datasets for tracking single

vehicles, but to no avail. Nevertheless, the Interreg SK-CZ project provided a lot of data

that involved traffic scenes. We mentioned this project as part of our discussion related

to homography ranking (Chapter 5, p. 59). The major drawback is that the dataset

encompasses only a limited view of the road (Fig. 6.1).

Consequently, we set out to search for different datasets, preferably with a target use

of benchmarking tracking algorithms. And we found the UA-DETRAC dataset (Sec-

tion 4.3.3, p. 57), which we consider one of the best available datasets. The data fit the

task of traffic analysis using a static camera under various conditions very well. However,

one needs to officially ask for the data annotations. We were unfortunate enough that

the public web dedicated to this benchmark was broken for a long time and we had to

personally negotiate with the authors to provide unofficial access to the data.

6.1.2 General description

The authors of [66] tracker focused on improving online MOT. as far as their method-

ology was concerned, they employed a region-based approach [32] in conjunction with

a siamese multi-object tracking network, hence the name SiamMOT. broadly speaking,

this architecture employs a siamese tracker for motion estimation between two frames.

we would like to note that all the principles so far discussed regarding siamese trackers

apply here. however, as already suggested, the adoption of RPN enables this framework

to have more information available. not only does the siamese tracker provide motion

81

prediction, but it also produces detections using the Faster R-CNN object detector [32]

that is integrated within the whole architecture. subsequently, an online solver is utilized

to merge the predictions obtained from the tracker and detector heads.

we will dissect this framework in great detail since we have studied it scrupulously.

we performed multiple experiments, many of which did not yield expected improvements.

nevertheless, the practical part of our work was focused on contributing to the open-source

repository dedicated to this project developed by several amazon researchers [102]. we

followed a standard path of how contributing to open source projects should be done in a

transparent and, more importantly, compatible fashion. we initialized a fresh fork of this

project on our personal GitHub account [103] to preserve as much compatibility with the

original software as possible and not to strip ourselves of the opportunity to easily receive

potential updates from the original repository.

during our development, we often engaged in discussions related to this project incen-

tivized by other researchers who were also working on the very same codebase and trying

to either only apply this work to their specific use case or even extend the model. our

detailed knowledge of this model acquired through deliberate work on this project often

helped several other programmers who dealt with various issues. from the programming

standpoint, our work involved a considerable amount of programming, although the base

architecture was provided and was fully functional from the start. we would like to em-

phasize that the project consisted of several thousand lines of source code programmed

purely in the Python programming language. concerning the deep learning aspect, the

PyTorch library [104] was primarily used. it is a widely known library aimed at building

deep neural network models while exploiting automatic differentiation.

6.1.3 Model architecture

The two key aspects of the the SiamMOT architecture are Faster R-CNN [32] object

detector and siamese tracker. the salient element of the Faster R-CNN is the RPN.

simply put, SiamMOT adds a region-based siamese tracker along the standard 2-stage

object detection pipeline in order to model instance-level motion.

As depicted in Fig. 6.2, the input consists of two frames, namely it and it+δ, accom-

panied by a set of detected object instances rt = {rt1, rt2, . . . , rti , . . .} at time t. during

inference, the detection head produces a set of detected object instances rt+δ whilst the

82

tracker’s task is to propage the detections rt to time t+δ, and yielding the tracker output

denoted as r̃t+δ. please note that it is not the output of the entire tracker, only of the

siamese tracker itself. these instances have to be further processed.

This framework relies on a motion model that tracks each detected object instance from

time t to t+ δ. A specific BBOX Rt
i at time t is propagated to its future counterpart R̃t+δ

i

at time t + δ. This process is then completed by a spatial matching phase the objective

of which is the associaton of the tracker output R̃t+δ
i with detections Rt+δ

i at time t + δ

such that detected instances are linked from t to t+ δ.

Assume there is a specific object instance i detected at time t. Then, the Siamese

tracker searches for this particular instance at frame I t+δ while exploiting a contextual

window spanning a fixed neighborhood of the object’s location (i.e., Rt
i) at frame I t. In

order to define this step more formally, consider a dependency

(
vt+δi , R̃t+δ

i

)
= T

(
f tRi

,f t+δSi
; Θ
)
, (6.1)

where T is a module (head) represented by the Siamese tracker with learnable parameters

Θ. In light of the already stated efficiency of this framework in terms reusing information

as much as possible, the module T is trained on shared feature maps extracted from the

backbone using ROI-align operations. As a short reminder, a basic Siamese tracker uses

an exemplar image encoded as a kernel to search for the occurrence of the corresponding

object in a future frames over a specific search region that should be, by definition,

greater than the exemplar region. Thus, the feature map f tRi
is extracted over the region

Rt
i contained in the frame I t. Analogically, the feature map f t+δSi

is extracted over the

search region St+δi delineated in the frame I t+δ. The region St+δi is computed by simple

expansion of the region Rt
i by a factor r, such that r > 1, while preserving the location of

the geometric center, as illustrated in Fig. 6.2 by the dashed BBOX. Last but not least,

vt+δi represents the visibility confidence for the detected instance i at time t + δ. This

visibility score reflects the tracker’s prediction confidence, and so the value vt+δi should be

high if the instance is visible in St+δi , otherwise the value should be low. On top of this

formulation that is reminiscent of single object tracking, in the MOT context Equation 6.1

is applied multiple times, i.e., for each object detected in frame t, signified by Rt
i ∈ Rt.

However, from implementation’s perspective, all these operations can run in parallel and

thus the backbone features are computed only once.

83

Fig. 6.2: The SiamMOT tracker that detects and associates object instances simultaneously.
The Siamese tracker in the top branch serves the purpose of predicting the motion of objects, thus
facilitating the temporal linking of objects in an online fashion. Simply put, the Siamese tracker
module can be thought of as a single object tracker with all the pros and cons we have discussed
so far. On the other hand, a 2-stage object detection is performed as part of the bottom branch.
These two branches are then merged using a solver that spatially and temporally attempts to
match tracker and detector predictions to produce the tracker output. Note that the feature
map corresponding to the frame It is shrunk to 1/2 of its actual size to fit the figure. Backbone
features are identical in terms of tensor shapes for both inputs. (source: [66])

The motion modeling is responsible for association between Rt and Rt+δ. Despite its

efficacy, there are still several issues. The association fails due to the following reasons:

1. if R̃t+δ does not match to the correct object instance in Rt+δ,

2. or if vt+δi is low (below a specific threshold) for a visible object at time t+ δ.

Regarding the Siamese part of the SiamMOT, the authors dubbed their technique “explicit

motion modeling”. They also worked with “implicit motion modeling”, but that branch of

experiments was neither sufficiently expanded in the paper nor it is of particular impor-

tance to our research due to its inferior performance.

Explicit Motion Modeling

The most fundamental aspect of Siamese trackers is the cross-correlation operation (Sec-

tion 3.21, p. 43) to generate a 2D response map. In SiamMOT, this operation correlates

each location of a search feature map (belonging to a search region) f t+δSi
with an exemplar

84

feature map f tRi
to produce a response map

ri = f tRi
? f t+δSi

. (6.2)

Therefore, each map ri captures a different aspect of similarity at every pixel.

Inspired by the Fully Convolutional One-stage Object Detector (FCOS) [26], this tracker

adopts fully convolutional network ψ to facilitate instance detection using a response map

ri. The network ψ enables a prediction of a dense visibility confidence map vi. Every

pixel of vi is used as an indicator of the likelihood that this pixel falls within the location

of the target object. Besides, a dense location map pi is also predicted with the goal

of encoding offsets from that particular location to the top-left and bottom right BBOX

corners. Consequently, the instance region at (x, y) can be derived by the transformation

R (p (x, y)) = [x− l, y − t, x+ r, y + b] , (6.3)

where p (x, y) = [l, t, r, b], i.e., individual corner offsets. This map is then decoded as

R̃t+δ
i = R (pi (x

∗, y∗)) vt+δi = vi (x
∗, y∗)

s. t. (x∗, y∗) = arg max
x,y

(vi � ηi) ,
(6.4)

in which � symbolizes an element-wise multiplication, ηi incurs a non-negative penalty

score throughout an entire candidate region computed as

ηi (x, y) = λC + (1− λ)S
(
R (p (x, y)) , Rt

i

)
. (6.5)

Here, the letter λ, such that 0 ≤ λ ≤ 1, is a weighting coefficient, C is the cosine-window

function with respect to the geometric center of the previous target location given by

Rt
i, and S is a Gaussian function that is supposed to penalize the height-to-width ratio

changes between candidate region p (x, y) and Rt
i. The penalty map aims to discourage

abrupt changes in target location between individual frames during the course of tracking.

This technique is widely adopted in Siamese trackers (Fig. 3.14, p. 42).

85

t*

r*l*

b*

Fig. 6.3: Centerness is calculated using Equation 6.9. It decays from 1 to 0 as the location
deviates from the center of the object. Best viewed in color. (source: [26])

Loss Function

The loss function requires a triplet
(
Rt
i, S

t+δ
i , Rt+δ

i

)
and is defined as

L =
∑
∀(x,y)

lfocal (vi (x, y) ,v∗i (x, y)) +

∑
∀(x,y)

1 [v∗i (x, y) = 1] (w (x, y) · lreg (pi (x, y) ,p∗i (x, y)))
. (6.6)

The pairs (x, y) enumerate all valid positions within the St+δi region. The loss function

dedicated to regression task (lreg) is formulated as the IoU loss [105, 106]. To address

the class-imbalance problem, the focal loss for classification [107] (lfocal is employed. All

ground-truth values are marked by the ∗ character. So,

v∗i (x, y) =

1 if (x, y) is within R∗,t+δi

0 otherwise
, (6.7)

p∗i (x, y) = [x− x∗0, y − y∗0, x∗1 − x, y∗1 − y] , (6.8)

where (x∗0, y
∗
0) and (x∗1, y

∗
1) correspond to the top-left and bottom-right coordinates of the

ground-truth BBOX Rt+δ
i , respectively. The regression loss lreg is additionally modulated

by computing the centerness for every location (Fig. 6.3). The reason for adding this score

was to suppress locations that are further away from the object’s center, because they

produced low-quality BBOX predictions. The centerness coefficient w (x, y) is calculated

for each pixel with respect to the target instance Rt+δ
i as

w (x, y) =

√
min (x− x0, x1 − x)

max (x− x0, x1 − x)
· min (y − y0, y1 − y)

max (y − y0, y1 − y)
. (6.9)

86

6.1.4 Training and Inference Phases

Backbone

Region Proposal Network (RPN)

Online Track Solver

Siamese Tracker Head

1) Extract features using DLA network.
2) Process features using FPN.

1) Generate anchors.
2) Generate BBOX proposals.
3) Apply NMS to filter BBOX proposals.

1) Extract features for search regions BBOXes.
• ROI align upon FPN features.

2) Apply depthwise cross-correlation.
• Produce response maps.
• Use exemplar and search region features.

3) Predict classification, regression and “centerness” scores.
4) Upscale predictions.
5) Apply scale and cosine window penalty.

Track Pool
● Manages track lifetime:

✔ Initiates new tracks.
✔ Suspends active tracks.
✔ Kills tracks suspended for too long.

1) Associate detector BBOXes with tracker BBOXes.
2) Spawn new tracks with sufficient confidence.
3) Suspend active tracks with low confidence.
4) Update track pool state.

Track Cache
● Each active and dormant track contains:

✔ Exemplar features pooled from FPN features.
✔ Exemplar BBOX.
✔ Search region BBOX.

Tracker prediction refining
1) Extract features for tracker BBOXes.

• ROI align upon FPN features.
2) Perform classification and BBOX regression.
3) Apply NMS to filter BBOXes.
4) Average the tracker and detector confidence scores.

raw images

FPN features

BBOX proposals

detector BBOX predictions

tracker BBOX predictions

refined tracker BBOX predictions

final inference BBOXes

1) Extract features for BBOX proposals.
• ROI align upon FPN features.

2) Perform classification and BBOX regression.
3) Apply NMS to filter BBOX predictions.

Proposal selection

Bounding Box Regression Head

Fig. 6.4: The inference pipeline in the SiamMOT tracker. Backbone features that are a result
of intricate DLA and FPN processing are fed into the detector and the tracker. The predictions
from the tracker are further refined using the detector head. The two heads function on top of
backbone features through the ROI align operations. During the inference, the “online solver”
works only with the final BBOXes. It utilizes a simple caching mechanism to store the features
belonging to active or dormant objects. The “’track pool” module manages the track lifetime.

87

The SiamMOT model can be trained in an end-to-end fashion, which is one of its great

advantages in terms of usability. The general loss function can be formulated as

L = lrpn + ldetect + lmotion, (6.10)

where the lrpn as well as the ldetect are standard RPN [32] and detection-subnetwork [108]

losses, respectively. The lmotion loss is used to train the Siamese tracker.

For better understanding, we suggest the reader follows the diagram in Fig. 6.4. During

inference, the well-established IoU-based NMS operation (Section 3.2.1, p. 22) processes

the outputs of the detection and tracker subnetwork independently. The subsequent phase

aimed at spatial matching is used to merge detections with the tracker output. This stage

also involves the already mentioned IoU-based NMS operation.

The spatial matching and the identity association happen within the non-trainable

online solver that is active only as part of the inference. Its purpose is to propagate

existing object identities to the future frames given the predictions made by the object

detector and object tracker independently. In Fig. 6.5, we provide a graphical illustration

of the original algorithm. The solver algorithm is governed by the following rules listed

below. Let vti be the visibility confidence, then

1. the object’s trajectory is continued as long as its visibility confidence is above a

specific threshold α, otherwise, this trajectory becomes dormant,

2. a new trajectory is spawned in case there is a non-matched detection (during the

spatial-matching process) and its visibility confidence is above a threshold β,

3. a dormant trajectory is terminated, i.e., the object ID will never be used again if

its visibility confidence is below α for τ consecutive frames.

This model tackles short-term occlusion. It is one of the key incentives that led us to

consider this architecture for experiments, which is the model’s ability to handle occlusion.

In the beginning, we guessed that this phase could be improved upon due to its inherent

simplicity. However, regardless of how rudimentary their approach may seem, it compe-

tently addresses plenty of cases that frequently appear in object tracking. Our endeavors

later described often involved a minor improvement in rare situations with simultaneous

minor detriments to common situations. Therefore, the outcome of performing worse than

the baseline on average was usually inescapable.

88

Active tracks Dormant tracks New detections

Tracker input Detector input

Non-Maximum Suppression

Priority order:
1) Active tracks
2) Dormant tracks
3) New detections

Resume dormant
tracks

Suspend active
tracks

Activate new
tracks

Kill dormant
tracks

Solver output

Fig. 6.5: Here we present the process that the tracker, as well as the detector predictions for
the current frame, undergo to derive the final tracker output. At first, all the BBOXes are
merged upon which a NMS algorithm is performed. The NMS algorithm preserves the priority
that active tracks are processed primarily, then followed by the dormant tracks. The remaining
detections are filtered as last. The NMS algorithm does not have to be modified at all, since
the priority can be induced by altering the associated score values. After the NMS stage, the
dormant tracks with sufficient confidence are reactivated. Conversely, active tracks with low
confidence are suspended. Then, if there are detections with high confidence, new tracks are
established. The process finishes off by permanently killing dormant tracks that have lasted for
more than some specific number of frames without instantiation. Note that even though the
solver outputs instances of all three categories, only the active tracks are part of the inference.

89

A short-term occlusion can be defined as having the visibility confidence for the cur-

rently tracked object below the threshold α. In SiamMOT, instead of ceasing the track’s

existence, the relevant information is kept in memory and thus the search for the ex-

emplar continues until τ > 1 frames have been processed. The most recently predicted

location and its corresponding feature frames extracted from the backbone are utilized

as the exemplar. As a side note, a very similar solver approach has also been adopted in

numerous works, such as [109, 110, 111, 112]. In essence, it is trivial yet very effective. As

our experiments have demonstrated, it is exceedingly difficult to surpass its performance.

6.1.5 Training and Testing Details

Gradient Accumulation

Since our experiments involved expanding the model, we often struggled with the amount

of available Graphics Processing Unit (GPU) Video Random Access Memory (VRAM)

to preserve a reasonable size of minibatches. To this end, we experimented with Gradi-

ent Accumulation (GA), which allows postponing the model weight updating after more

minibatches have been processed. Therefore, the programmer may simulate using larger

minibatches than are utilized. We emphasize the importance of not updating the model

variables must during the accumulation phase to ensure that all the minibatches are

processed by the same model to calculate their gradients. Only after accumulating the

gradients of the values of the model weights can be adjusted accordingly.

For a brief illustration, let w be a single weight we want to update with respect to the

computed gradient using the loss function f . Our goal is to adjust the weight at time t

and thus produce the weight at time t + 1. The learning rate is denoted by α. So, the

gradient update is usually performed as

wt+1 = wt − α∇f
(
wt
)
. (6.11)

When using GA, the update step is modified as

wt+1 = wt − α
n∑
i=1

∇f
(
wt
)
i
, (6.12)

where n is the number of accumulated minibatches.

90

Despite the advantages, there are potential drawbacks. For example, if batch nor-

malization [68] layers are used within the model, then the GA may have a detrimental

effect. The reason is that batch normalization layers compute the statistics with respect

to a single minibatch. These layers, in their standard formulation and commonly adopted

implementation, are incapable of accomodating their inner workings to adequately admin-

ister multiple sequential minibatches. However, there is ongoing research in the direction

of group normalization as well, namely the works [113] and [114].

Training

Unless stated otherwise, the training dataset was the UA-DETRAC (Section 4.3.3, p. 57).

The SiamMOT model is relatively stable and not overly sensitive to hyperparameters.

However, the training itself requires a great deal of GPU VRAM to use sufficiently large

minibatches. As for our development experience with this model, we used two identi-

cal NVIDIA RTX 2080Ti GPUs that provide 4352 Compute Unified Device Architecture

(CUDA) cores together with 11GB of memory each. Further, the underlying Central Pro-

cessing Unit (CPU) was the AMD Ryzen Threadripper 2920X 12-Core. For training, we

exploited an existing backbone model pre-trained on ImageNet [24] dataset. Even though

there is an entire model available pre-trained on MS-COCO [71] dataset, we decided to

avoid it due to the conflicting nature of object classes. We observed better performance

when training vehicle detection from scratch rather than trying to “re-wire” the model to

dismiss detecting objects we wanted to avoid, e.g., pedestrians. Last but not least, bear

in mind that if we claim that the model was trained from scratch, the backbone weights

were still initialized from the ImageNet pre-training.

Testing

Considering our extensions to the original model, we have to stress the difficulty of com-

paring the baseline model with the proposed enhancements since they progress differently

during the training. The notion of “model equivalency” is therefore vague. We had to re-

sort to answering the question of whether it is possible to surpass the baseline performance

at some point, provided that both models reach the state of being properly trained.

We saved the training state after K training iterations and then evaluated the model

using the UA-DETRAC validation dataset. The same process was repeated for the base-

91

line architecture, which we trained from scratch while preserving as many of the former

hyperparameter settings as possible for objective comparison. Nonetheless, we always

tried to utilize the available hardware to its limits. We collected performance results ob-

tained from various stages of the model during the training. The SiamMOT training is

based on iterations rather than epochs, where each iteration is practically a single mini-

batch. We evaluated models on the officially selected validation part of the dataset every

5000 iterations and every 15 000 iterations when using GA.

6.2 Siamese Multi-Object Tracking and ReID

6.2.1 Motivation

The use of ReID has been emphasized numerous times during our preliminary research.

We conjectured that once complete occlusion ensues, the ReID mechanism could be

adopted to recover the lost track. The presence of occlusion percolates traffic scenes,

especially if the camera does not view the road from a higher position. At the beginning

of our research, we worked on the Interreg SK-CZ project as part of which we tackled

vehicle tracking when the camera was positioned next to the road (Fig. 6.1). Such a setup

inexorably led to situations in which a vehicle appeared for a second on the left side of the

frame, then ended up fully covered by a truck, and re-appeared for a minuscule amount

of time at the other side of the frame, making the complete occlusion inevitable. The

task of maintaining the same object identifier was often impossible with a high degree of

precision.

6.2.2 Proposed ReID-Enhanced Architecture

We adopted the object ReID approach published in [115], a simple yet very robust frame-

work for person ReID. We employed this architecture (Fig. 6.6) for vehicle ReID due to

its simplicity accompanied with SOTA performance at the time of publishing.

6.2.3 Training Phase

Since this experiment was the first one we embarked upon, we tried to avoid modifica-

tions to the underlying model. Only upon obtaining prospective improvements would we

92

P×K images
(Random Erasing)

ResNet50
(last stride=1)

GAP

features 𝑓"

Triplet loss + Center loss

ID loss
+

label smooth

BN layers

features 𝑓#

Inference stage

FC layers
(No bias)

BNNeck

Fig. 6.6: A object ReID baseline which we used for our experiments. (source: [115])

consider incorporating the object ReID into the whole pipeline. We employed an external

object ReID network to perform embedding computation during the inference. As for the

training of the ReID network, we adopted a standard approach of using the triplet loss

(Equation 3.8, p. 26) in conjunction with the categorical cross-entropy loss. We trained

the model using the VeRI-776 dataset (Section 4.2.1, p. 55) on which the evaluation was

performed, too. The model was trained to produce l2-normalized embedding vectors that

were then used to measure the degree of similarity between vehicles.

6.2.4 Inference Phase

The online solver algorithm was the primary suspect for potential improvements due to

its inherent simplicity compared to the rest of the architecture. The aim was to adopt

the already trained ReID model to help re-instantiate lost tracks due to occlusion. This

external module would be invoked on-demand as part of the online solver phase. At this

stage of research, we did strive for simplicity rather than efficiency. Consequently, the

model inference was substantially impaired by a four-fold speed reduction.

We isolated the modifications to the inference phase only to the online solver itself.

Thus, we developed a whole new algorithm that handled the newly trained external model,

too. The original processing steps of the online solver are outlined in Fig. 6.5. Our custom

inference algorithm is described Algorithm 4.

The algorithm works as follows. The input to the online solver is the set of active

tracks, dormant tracks, and newly detected (still unassigned) objects. As in the original

implementation, the greatest emphasis during the NMS processing is put on the active

tracks, then dormant tracks, and the last ones are the new detections. This ranking

93

establishes the priority with which the NMS algorithm processes the inputs. Our approach

was based on altering the first NMS phase by incorporating only the active tracks and

unassigned detections (hence the name “non-dormant” in the pseudocode). Thus, if the

overlap between an active track BBOX and detection was too high (above the value of

tnms), we considered them to be the same object, and thus the active track was preserved.

Having suspended the removed active tracks, we adopted Munkres’ algorithm [59] to

solve a linear sum assignment optimization problem. It is reasonable to assume that a

new detection can be assigned to only one dormant track and vice versa, if necessary. The

cost matrix was computed based on the cosine similarity (Equation 3.5, p. 25) between the

embedding vectors belonging to the regions of the unassigned detections and the dormant

tracks. However, only the visual features where the dormant object was last visible (its

visibility confidence was above the threshold ttrack) were used, as we assumed the object

might have been fully occluded. The task was to find an optimal assignment between

the new detections with sufficiently high confidence (above the threshold tresume) and the

dormant tracks. Upon obtaining the assignment matrix, we processed all possible pairs

and if the similarity between the embedding vectors surpassed the value of tsim, we then

resumed the dormant track and re-used the new detection for the object BBOX.

Subsequently, we collected all the remaining unassigned detections the confidence of

which was above tstart, and initiated new tracks based on them. At last, we searched for

active tracks with low visibility confidence (below the threshold ttrack) to suspend them,

to make them dormant.

6.2.5 Experimental Evaluation and Discussion

We expected that the adoption of ReID enhancements within the SiamMOT framework

would bring improvements in certain areas and for the most part maintain the performance

in others. However, our experiments showed detrimental effects on the tracker’s accuracy.

Despite our negative outcome, we still consider the performed research to be a contribution

to the MOT area. We will elaborate further on why it is so to learn from such an experience

as much as possible. Our surprise stems primarily from the fact that the goals of this

thesis revolved around the application of ReID to object tracking. Therefore, finding that

such an approach does not yield the desired outcome raises multiple questions, specifically

the following ones:

94

Algorithm 4 ReID-enhanced online solver inference. This algorithm receives active (A)
and dormant (D) tracks together with unassigned (U) detections on the input. Besides,
there are four threshold parameters, the NMS overlap (tnms), and three confidence-related
inputs, namely the minimum value for the track to stay active (ttrack), the minimum value
for the track to become resumed (tresume), and the minimum value for the track to start
from an unassigned detection (tstart). Usually, ttrack < tresume < tstart. In practice, these
values may be 0.3, 0.4, and 0.5, respectively.
1: function OnlineSolverReID(A, D, U , tnms, ttrack, tresume, tstart, tsim)
2: D̄ ← merge(A, U) . non-dormant items (active tracks, unassigned dets.)
3: D̄nms ← NMS(D̄) . non-maximum suppression (Algorithm 1, p. 23)
4: Anms, Unms ← split(D̄nms) . “after-NMS” active tracks and unassigned dets.
5: R ← get_removed(A, Anms) . obtain NMS-removed active tracks
6: suspend_tracks(R) . suspend NMS-removed active tracks
7: Uresume ← get_resume_dets(Unms, tresume) . dets. with conf. ≥ tresume
8: Eu ← calc_embeddings(Uresume) . embeddings for the unassigned dets.
9: Ed ← calc_embeddings(D) . embeddings for the dormant tracks
10: M ← build_cost_matrix(Eu, Ed) . initialize a cost assignment matrix
11: P ← min_cost_assignment(Unms, D) . Munkres’ algorithm [59]
12: Ureid_used ← init_empty_set . unassigned detections used by ReID
13: for all uidx, didx : P do . for each pair of unassigned det. and dormant track
14: eu ← Eu [uidx] . embedding vector of the unassigned region
15: ed ← Ed [didx] . embedding vector of the dormant region
16: if cos_sim(eu, ed) ≥ tsim then . similarity check (Equation 3.5, p. 25)
17: resume_track(didx) . resume dormant track using unassigned det.
18: add(Ureid_used, uidx) . unassigned det. was assigned to a dormant track
19: end if
20: end for
21: Ufree ← get_free_unassigned(Unms, Ureid_used) . still free unassigned dets.
22: start_new_tracks(Ufree, tstart) . unassigned dets. with confidence ≥ tstart
23: suspend_tracks(Anms, ttrack) . active tracks with confidence < ttrack
24: end function

1. Does the inclusion of ReID into MOT frameworks have a potential to resolve cases

of full occlusion without exacerbating other areas?

2. Is the ReID extension suitable to the chosen MOT model, namely, the SiamMOT?

3. Is the target use case in terms of datasets adequate to showcase the potential of

ReID applied in the SiamMOT tracker?

Due to an already excessive length of this document and inferior results this experiment

brought in terms of tracking accuracy and inference speed, we decided to omit detailed

documentation, especially tables with quantitative comparison.

We encountered several situations that indicated improvements. Occasionally, the

95

Fig. 6.7: Partial occlusion in the UA-DETRAC dataset where the object BBOX covers a great
part of the region belonging to another object.

model was capable of properly identifying the lost object based on the embedding vector

similarity. However, such situations were rare. The detrimental effect of the ReID module

on the modified NMS phase decreased the tracker’s accuracy. The original online solver

uses the NMS algorithm to assign detections to either active or dormant tracks. This

phase is very effective and covers a lot of common situations.

Besides the expected slow performance, we noticed approximately 3% reduction in

MOTA. The number of misses (FN) also significantly increased as the model failed to

properly assign the detection to the dormant track. Overall, no metric would be im-

proved. We either managed to match the original baseline online solver performance or

we performed substantially worse.

Our observations brought the following question. Is it more likely for the occluded

object to appear at a completely different position within the frame or somewhere near

the position of disappearance? If we constraint ourselves to the Interreg SK-CZ project

with the road viewed from the side (Fig. 6.1), then it might hold most of the time.

But in general traffic analysis, especially in the scenes from the UA-DETRAC dataset

(Fig. 4.2, p. 57), it is scarcely true. Vehicles often re-appear near the position where

they last disappeared. As a result, the original online solver dealt with such situations

competently. It outperformed the entire ReID model due to the inherent ability of the

Siamese tracker head to implicitly assess the object similarity when producing the response

map. Remember that the search region encompasses a square area with sides twice as

long as the exemplar region.

Another problem appears during partial occlusion. A vehicle is often severely occluded

by another vehicle, so the two BBOXes enclose both objects (Fig. 6.7). Thus, the embed-

ding distances for the two objects are very close since they become “polluted”. In terms

of the ReID mechanism, the two delineated regions given by the two BBOXes of closely

96

Time

Fig. 6.8: A demonstration of almost complete occlusion in the UA-DETRAC dataset where the
object passes behind a pillar. As we can see, the tracker correctly infers the object’s position
based on minor visible cues on the sides of the pillar. However, even if the full occlusion had
taken place, thanks to the search region being four times as large as the exemplar region in terms
of the area, this object’s identity would have been flawlessly recovered, too.

Time

Fig. 6.9: Progressing partial occlusion in the UA-DETRAC dataset where a large part of the
object BBOX is covered by a background. In this case, the occlusion comes in a form of a
synthetically generated region for demonstration.

positioned objects with severe occlusion are sometimes considered to be the same object.

Consequently, the two tracks are merged into one.

Besides all this, we did notice that the tracker works well for handling partial occlusion.

When the tracked object is only partially occluded, the Siamese tracker properly predicts

the possible span of the object (Fig. 6.8). This, despite the obvious benefits, posed another

challenge to our ReID extension. We had to store the last visible frame crop for the target

object in memory along with its corresponding features for subsequent ReID in the future.

However, the situation depicted in Fig. 6.9 shows one of the situations in which the “last

visible exemplar” was polluted by the occlusion. We would need another mechanism to

check for partial occlusion and store only the “last visible non-occluded exemplar”, or a

sequence of multiple exemplars before the visibility confidence dropped below a specific

threshold value. The tracker itself maintains a relatively high confidence score anyway,

making the whole approach much more complicated.

Thus, to employ ReID that would utilize the object’s most-recent history to re-establish

its identity later, there is a need to systematically detect the degree of occlusion. With

this in mind, the related methods of template updating are worth exploring, too. For

instance, Zhang et al. [116] proposed a replacement for deterministic template updating

strategies. They developed a neural network model to learn the optimal template for the

97

next frame while exploiting the current and historical observations of the target object.

The template updating based on Gaussian Mixture Model (GMM) utilized in the Siamese

Network with Re-detection Mechanism (SiamRM) tracker together with conditional re-

detection could handle long-term object tracking in presence of severe occlusion [54]. The

GMM served for dynamically updating the template instead of using a fixed template from

the initial frame. But, the template was not updated in every frame or a fixed interval.

Instead, only templates with sufficiently high confidence were considered. Even though

template updating provides benefits to model adaptation, online tracking may become

very inefficient. In addition, it still does not solve the tracking drift problem caused by

similar interference completely [17]. Moreover, in case of severe occlusion, there is a high

risk of the template becoming polluted, which is something we frequently stumbled upon.

We dedicated an entire section to various template updating strategies in our survey [50],

and we venture to claim that no consensus has been reached so far.

We conjecture that the ReID is useful for multi-camera scenarios where the task is to

re-identify the object from a different angle, often without severe occlusion. In common

crossroad situations that are abundant in the UA-DETRAC dataset, the first formulation

of the online solver approach handles partial occlusion with a lot higher precision than

our ReID extension.

This experiment showed that the inclusion of ReID mechanism into the inference al-

gorithm brings a lot more disadvantages than benefits and we did not continue with this

path. It was not possible to justify the additional complexity we introduced to the model

by being able to improve very few cases according to our expectations and by simulta-

neously exacerbating the performance in other, more frequent situations. Additionally,

incorporating this proposal into the tracking pipeline was cumbersome as the underly-

ing design principles had conflicting requirements. For instance, the Siamese tracker head

generates predictions even for the dormant tracks. Conversely, we demanded the dormant

tracks to become frozen to the last frame where the visibility confidence was satisfactory.

This modification was more difficult than we initially had expected. There were many

other tweaks to the model, making the whole experiment difficult to conduct.

We think that the architecture in its original formulation is not suited for this type of

extension. We have only observed the integration of ReID mechanism into the multi-object

tracker when the pure tracking-by-detection approach is adopted. After our failure, we

98

are starting to see why. The predictions from the Siamese tracker head have conflicting

interests with the ReID extension. Nonetheless, to address the question of whether a

joint training of the tracker and embeddings would bring an improvement, we provide the

upcoming experiment, discussed next.

6.3 Siamese Multi-Object Tracking and Embedding

6.3.1 Motivation

One of our experiments involved an end-to-end training of the SiamMOT together with

a custom head aimed at embeddings based on ROI-pooled features for the object BBOX.

The goal was to force the training process into extracting features that are not only

satisfactory for detection and tracking but also do contain the necessary information to

create embeddings for ReID purposes during the inference. We strived for simplicity by

extending the processing pipeline without altering the existing infrastructure.

During research related to our Siamese tracking survey [50], we noticed one work where

the exemplar features were projected using Global Average Pooling (GAP) into an em-

bedding space consisting of fewer dimensions [53]. The embedding vector was produced

using the feature tensor representing the kernel for the cross-correlation operation. More

concretely, let the extracted features be represented by an 8 × 8 × 256 tensor. Then,

the GAP along the channel dimension would produce a 1 × 1 × 256 tensor, which could

then be further flattened into a single 256D vector. In the end, the obtained vector was

l2-normalized and thus projected onto a unit hypersphere. In the work of Li et al. [53],

these embedding vectors were exploited for template updating and for combining multiple

templates within a pool of size n in an exponential fashion.

This observation led us to the following hypothesis. Given the fact the Siamese ex-

emplar features do contain some, although probably not sufficient information for pure

object ReID, would it be possible to map them further using a non-linear function to

produce embedding vectors that could serve for ReID? Such features are just a learned

template, therefore, some notion of similarity needs to be already built into it.

99

First
frame

Second
frame

Backbone
features

Backbone
features

ROI-align

ROI-align

RPN head

ROI-align

Embedding head

Tracker head

Detector head

Exemplar features

Search features

Tracker loss

Detector loss

RPN loss Embedding loss

Detector features

Fig. 6.10: Our extension (shown in red) to the underlying SiamMOT architecture that incor-
porates vector embeddings to the end-to-end training. This diagram shows the pipeline that is
used during the training, not inference.

6.3.2 Feature Embedding Head Architecture

As for the vector embedding computation, we attached an Feature Embedding (FEMB)

head (Table 6.1) after the ROI-pooling phase of the backbone features (Fig. 6.10). This

ensured fixed tensor shapes and allowed us to process the very same features that the

object detector and Siamese tracker utilized, too. Simply put, for every proposal made

for a particular frame, we looked at the delineated BBOX through the lens of ROI-pooling

to extract its features. We simply reused the extracted exemplar features. Later on, we

processed these features using our newly devised FEMB head to produce FEMB. The

resulting embeddings were subjected to the triplet loss computation with all the necessary

operations such as various types of hard negative mining.

6.3.3 Training Phase

The training phase was altered by adding another loss function to the sum of already

existing three losses from the original model. In particular, the general SiamMOT loss

function defined in Equation 6.10 was reformulated as

L = lrpn + ldetect + lmotion + lemb. (6.13)

The lemb loss incorporated a triplet loss (Equation 3.8, p. 26). We also experimented with

a contrastive loss (Equation 3.6, p. 26), but the effect was detrimental in every aspect as

expected, so we will not discuss it any further.

As we remarked in Section 3.3, p. 24, aimed at latent spaces and embeddings, it is

crucial to adopt appropriate sample mining strategies when using the triplet loss. The

100

layer tensor shape parameters no.

input [B, 128, 15, 15] 0

conv 3× 3 [B, 128, 13, 13] 147 456

ReLU [B, 128, 13, 13] 0

conv 3× 3 [B, 256, 11, 11] 294 912

ReLU [B, 256, 11, 11] 0

flatten [B, 30976] 0

linear [B, 1024] 31 720 448

l2-normalize [B, 1024] 0

total 32 162 816

Table 6.1: Our custom FEMB head that we used to process backbone-extracted features to
produce embedding vectors. It is built from two convolutional layers separated by a ReLU nonlin-
earity followed by a fully connected layer that produces a 1024 dimensional feature embedding.
The batch size dimension is given by B in the tensor shape. Since each embedding vector is
normalized to unit length, we avoided learning biases throughout the whole network.

rationale is that for the training to keep progressing, the model needs to encounter harder

and harder triplets to generate sufficient learning signals. To this end, we went for the

semi-hard triplet mining strategy (Equation 3.10, p. 30). However, we struggled with

collapsing embeddings [117]. This phenomenon happens when the embedding training

forces the model to project all the features onto a single point in the embedding space, thus

incurring the loss equal to the used margin. We claim that the use of semi-hard negative

mining produced triplets that were too difficult. Since we used all the RPN proposals to

generate triplets, one may imagine that there would always be proposals covering only

some small part of the object, making it problematic for the network to learn the concept

of “similarity” and “difference” if it only processes very hard images. Nevertheless, these

situations are very common in margin-based losses [117]. The computed loss is so high

that it is more suitable for the model to map all the features onto a single point. To

remedy this, we implemented a batch-all online mining strategy (Equation 3.9, p. 29),

which stabilized the training.

We recommend first utilizing the batch-all mining strategy during the training, and

then proceeding to a batch-hard strategy after a certain point. However, this approach

101

would be time-consuming to find the right hyperparameters. There are many open ques-

tions, such as how to mine the RPN proposals in a better way or how to set the margin

value. Loss functions aimed at object ReID are notoriously cumbersome to train. We im-

plemented the entire mining algorithm followed by the loss computation in a GPU-only

fashion for fast execution and easy integration into the pipeline.

6.3.4 Inference Phase

Feature-based Non-Maximum Suppression

Salscheider [118] proposed an extended NMS algorithm that incorporates a distance be-

tween feature embeddings dubbed as Feature-NMS (Algorithm 5). Considering our idea

introduced above, we had to encompass the vector embeddings into the solver reasoning.

In the beginning, we came up with a solution that exactly copied the one the mentioned

author proposed. That provided further justification for attempting to implement the

algorithm and test it in practice. The advantage is that this approach is restricted to the

inference phase, thus experimenting with it does not require model re-training.

We assume the reader is acquainted with the NMS algorithm (Section 3.2.1, p. 22).

Here we repeat the same definitions for clarity. Let B = {b1,b2, . . . ,bn} be a set of n

region proposals described by n BBOXes. Scores for each detection are contained in a set

S = {s1, s2, . . . , sn}, where si denotes a detection score for the i-th box, bi. This time,

we are also going to need the associated feature embedding vectors with each BBOX,

represented by a set E = {e1, e2, . . . , en}. Let Bfnms be the set of filtered proposal

instances from the set B produced by the Feature-NMS algorithm. The distinction in

parameters is the following. The original algorithm requires only one threshold for the

maximum allowed portion of the overlap between regions. The Feature-NMS requires

three parameters discussed below.

• A minimum threshold τlower denoting a boundary below which the two objects are

deemed as different. This value should be low, for example, 0.2, which means that

if the IoU between the two objects is less than 0.2, then the two instances should

be treated as different objects.

• A maximum threshold τupper denoting a boundary above which the two objects are

considered identical. Unlike the τlower, this value should be high, e.g., 0.8, indicating

102

Algorithm 5 Feature-NMS algorithm.
1: function Feature-NMS(B, S, E , τlower, τupper, δ)
2: Bfnms ← ∅ . initialize the output (filtered) set of region proposals
3: while B 6= ∅ do . loop until all the proposals are processed
4: m← arg max

i∈{1,2,...,|S|}
S . find an index of a proposal with the highest score

5: B ← B − bm, S ← S − sm, E ← E − em . remove the proposal
6: Bfnms ← Bfnms ∪ bm . save the proposal with the highest score
7: for i← 1 to |B| do . iterate through remaining proposals
8: if iou(bm, bi) ≥ τlower then . above the lower-bound threshold
9: if iou(bm, bi) ≥ τupper then . above the upper-bound threshold
10: B ← B − bi, S ← S − si, E ← E − ei . remove the proposal
11: else
12: if similarity(em, ei) ≥ δ then . similarity above threshold
13: B ← B − bi, S ← S − si, E ← E − ei . remove the proposal
14: end if
15: end if
16: end if
17: end for
18: end while
19: return Bfnms
20: end function

that if the IoU of the two object instances surpasses this threshold, then it should

be the same object. The BBOX with the lower confidence is discarded.

• A threshold δ is used as a decision boundary between the embedding vectors. This

threshold should reflect a measure of similarity. If the adopted measure of similarity

falls below δ, then the two objects are different, otherwise, they are considered the

same. This value of δ is used only if the two conditions above do not hold.

6.3.5 Experimental Evaluation and Discussion

The proposed embedding-based enhancement was evaluated against the baseline model

without the FEMB head. For a fair comparison, we made sure that the hyperparameters

were identical to the greatest possible extent. We only had to alter the batch size and

the learning rate. Since the triplet loss requires the computation of a large number of

triplets, especially the batch-all strategy, we had to decrease the batch size and employ

GA to avoid crashes due to not having enough GPU VRAM available.

We can tell that this experiment was also detrimental to the tracker’s performance.

We conjecture that it was solely caused by the introduction of the FEMB head itself.

103

FEMB head solver MOTA MOTP precision recall

original 0.7416 0.1478 0.9454 0.7896

X Feature-NMS 0.6861 0.1568 0.9166 0.7574

X original 0.6882 0.1568 0.9184 0.7574

Table 6.2: Demonstration that introduction of the FEMB head causes a feature conflict on
the level of backbone before the ROI-pooling operation. The effect is clearly visible since the
Feature-NMS algorithm is only part of the inference phase. Both the object detection and the
tracking head are “parallel” to the FEMB head, however, training with the FEMB head and then
avoiding it during the inference considerably reduces the tracker’s accuracy. The last two rows
are practically identical in terms of CLEAR evaluation.

Our ablation study also demonstrated that joint training with the FEMB head harmed

the tracker, even if the original solver was adopted during the evaluation. This raises

the question of potential task/feature conflict between the heads. We venture to claim

there is an inherent incompatibility between the detection, tracking, and ReID tasks,

despite the existence of a recently published work Lu et al. [119], who developed their

RetinaTrack tracker. Their framework exploited the base visual object detector called a

RetinaNet [107] and then added, in principle, a very similar head as we did to produce

embeddings. However, there are obvious architectural differences between the two trackers

in terms of how the inference phase is executed.

To see the aforementioned feature conflict, one of the key takeaways from this trial,

Table 6.2 shows that training the model with the FEMB head and then evaluating it

without the Feature-NMS algorithm, i.e., using the original solver algorithm (Fig. 6.5),

resulted in a drastically reduced tracker’s accuracy. The reason is that the ROI-pooled

features were trained in a conflicting way, therefore no task was served satisfactorily.

Having trained the model and then omitting the FEMB head completely during the testing

should not dramatically affect “parallel heads”. However, once the entire end-to-end model

tries to accommodate for the triplet, object detection, and tracking loss functions, the

conflicting nature of these tasks manifests itself in a negative fashion. This table shows

the best models given by the combination of MOTA and MOTP metrics. All models were

trained with GA using batch size of 32 = 16×2 with 256 object proposals. The relatively

big batch size was dictated by the unstable nature of the triplet loss training.

Although this extension is not appropriate for practical usage unless further modifica-

tions are devised, we still wanted to evaluate the impact on inference speed in terms of

104

FPS for comparison with the next experiment. It can be seen that the reduction in the

tracker’s speed is noticable. Specifically, the original model inference runs on average at

26.49 FPS, whilst the FEMB-extended version achieves 18.57 FPS, resulting in reduction

speed of about 30% (more in Table 6.4, p. 124).

“Unfairness” between the detection and re-identification

There is a recent publication [120] by Zhang et al. that discusses the notion of “fairness”

between detection and ReID. According to their empirical evidence, there are multiple

levels of “unfairness”. This term was used to describe a situation in which the importance

of either ReID or the detection task is lessened. We would like to emphasize the recency

of this work (the end of 2021) since several of their remarks and conclusions coincide

with ours. Had this paper been published before conducting our experiments, we would

have taken a different path, or at least we would have striven to find another way to

incorporate the embeddings into an end-to-end pipeline. The aforementioned work, among

other things, introduces a joint tracker that effectively circumvents the obstacles related

to conflicting tasks. This framework avoids the use of anchor proposals and is based on

Center Point-based Network (CenterNet) [121] object detector.

They argue that the ReID task may become overlooked if the embedding vectors are

produced solely from the ROI-pooled regions, as in our case. Consequently, the detection

task becomes central in terms of influence upon the loss function since generating em-

bedding vectors on incorrect BBOXes is meaningless. Thus, the bias to produce accurate

object proposals is inescapable.

Next, a problem arises when one anchor corresponds to multiple identities, which is an

obstacle we have already mentioned (Section 6.2.5). As a result, the extracted features

are not optimal in terms of their accuracy as well as discriminative representativeness. To

remedy this, features should be extracted at a single point, i.e., at the estimated object

centers (hence the use of CenterNet), instead of region proposals.

An analogical problem is when multiple anchors correspond to one identity. A high

overlap in terms of IoU directs the model to estimate the same identity for nearby an-

chors. But, even a small perturbation may result in falling below a specific threshold

and the anchors become marked as belonging to different objects. This situation is very

common as proposals are generated on the feature level (a coarse representation due to

105

downsampling), and not on the pixel level.

Another inherent problem when merging object detection and ReID is feature con-

flict. We have highlighted numerous times the significance of multi-layer feature fusion.

However, not all tasks benefit from this approach equally. In particular, object detection

utilizes high-level features to estimate object classes and locations, whereas the ReID is

more prone to utilizing low-level features owing to their discriminative power. For that

reason, it is important to balance the loss optimization.

Last but not least, the feature dimension poses another source of imbalance. The

authors remarked that learning lower-dimensional features for the ReID is better than

higher-dimensional. In our research, we thought the opposite is true. High-dimensional

embedding vectors notably harm the object detection accuracy due to the competition

between the two tasks. The number of feature dimensions for detection is usually very low

(compared to 1024D or 2048D embedding vectors). We adopted high-dimensional vec-

tor embeddings in conjunction with the usual low-dimensional detector features, thereby

further exacerbating the rivalry. The rationale behind proposing to use, e.g., 64D embed-

ding vectors, is that the MOT task executes just a few one-to-one matchings between two

consecutive frames. However, there is a tacit assumption of having all objects sufficiently

visible, as this work did not cover occlusion handling and their benchmark evaluations

were not specifically targeted at full object occlusion, which is a path worth explor-

ing. Nonetheless, the proposed framework achieved SOTA performance among MOT

approaches, surpassing the competitive frameworks by a large margin.

6.4 Siamese Multi-Object Tracking and Attention

6.4.1 Motivation

During several evaluation runs and our manual inspection of the tracker performance, we

noticed a ubiquitous pattern. We remind that the scenes on which we trained as well as

tested our tracker were captured by a static camera. Consequently, several video sequences

contained multiple vehicles standing still due to a traffic jam or an ongoing red light but

viewed under an angle somewhere in the range of 30− 60 degrees (Fig. 6.11). Therefore,

it resulted in partial occlusion. However, what we considered even more problematic was

the inability of the axis-aligned BBOX to properly define the vehicle. The angle under

106

Fig. 6.11: An example of a situation where multiple vehicles are standing still on a cross-road.
In this scenario, even though just a slight degree of occlusion is present, the biggest issues are
caused by the need to delineate ROIs using axis-aligned BBOXes. This inevitably captures the
neighboring vehicles, increasing the likelihood of drifting to the semantic background due to the
presence of similar interference (distractors).

which the car was visible caused the BBOX to capture a great portion of the neighboring

vehicles even without severe occlusion happening.

The situations described above reminded us of the SiamMask [15] single object tracker

targeted at predicting segmentation mask along with the usual single-object Siamese

tracking routine. Such prediction was subsequently exploited to produce a rotated BBOX

instead of an axis-aligned one. Even though the evaluation benchmarks only consider axis-

aligned predictions, the rotated region served the purpose of enhancing the discriminative

power of the tracker, primarily when dealing with partial occlusion. In Fig. 6.11, a

rotated BBOX would inexorably lead to an improved tracking accuracy. This approach

was deemed successful for general object tracking, thus it also spawned another follow-up

work of SiamMask-E [14] that altered the original formulation of predicting the rotated

BBOX by use of ellipse fitting for even better accuracy.

However, there is a lack of datasets providing rotated annotations. The UA-DETRAC

dataset is no exception. As a result, we sidestepped this approach and searched for an

alternative solution that would enhance the discriminative power of the tracker when

faced with partial occlusion. One such approach was the use of attention [21], especially

spatial attention, which we found effective during our survey research [50]. Apart from the

attention mechanism, we also remembered the more general formulation of the convolution

operation that has been shown to significantly better object detection tasks due to the

semi-dense prediction requirements, dubbed as deformable convolution [122]. In what

follows, we will discuss these two methods (Section 6.4.2 and Section 6.4.3) as a foundation

for our subsequent experiments that yielded a positive outcome.

107

6.4.2 Attention Mechanism

An attention mechanism was first introduced by Vaswani et al. [21]. The use of encoder-

decoder architectures to capture a complete sequence of information by a single vector

spurred the development of the attention module. This use case poses problems in holding

on to information at the beginning of the sequence and encoding long-range dependencies.

To address this, the attention module computes the degree of relevance between “queries”

and “keys”, to retrieve “values” in adequate proportions.

The concept of “queries, keys, and values” comes from information retrieval systems.

Let us provide a demonstrative example based on a YouTube video search. Assume a

specific query signaling the demand to retrieve a particular YouTube video. The system

then maps this query against a set of keys represented by various features, e.g., video

title, description, upload time, etc. These keys are directly associated with the stored

candidate videos within the database. The output of this operation is a set of values, i.e.,

found videos, that best match the given query.

The attention aims to exploit deep learning to learn a transformation of the input

(not necessarily the same) into three separate vector spaces, each of them dedicated to a

different purpose. The first space is to capture the query, therefore, it should represent

features that best describe the query to facilitate information retrieval. The obvious

compatriot is the key vector space which is trained to represent the value in the most

accurate way to initiate the search accurately. Last but not least, the value vector space

extracts features that are most useful for the task at hand. They do not need to capture

features pertinent to the search. For that, there are two other mappings.

For a more concrete demonstration, we will use scaled dot-product attention. The

input consists of queries and keys of dimension dk, and values of dimension dv. The query

is used to compute a dot product with all the keys. These computations are scaled by
√
dk to provide a temperature scaling for the following softmax transformation to obtain

the weights that will be used to retrieve values (Fig. 6.12). For optimal performance, it

is reasonable to compute the attention function for the set of queries simultaneously as

they can be easily stored in a matrix, denoted by Q. Analogically, keys and values can be

also packed together into matrices given by K and V, respectively. Thus, the attention

108

Fig. 6.12: An example of the input transformation by the scaled dot-product attention module.
The pair of queries and keys is used to produce the probability distribution over the individual
values for the final weighted sum. (source: [21])

can be formulated as a function of queries, keys, and values:

attention (Q,K,V) = softmax

(
QKT

√
dk

)
V. (6.14)

The two most prominent variants of attention are the additive attention [123] and the

multiplicative (dot-product) attention, with the latter being identical to the one described

above except for the temperature scaling. Just for the record, we experimented with

both approaches and observed differences in performance. On balance, both attentions

are similar in theory, however, dot-product is much faster and more space-efficient in

practice. On the other hand, additive attention outperforms dot-product attention as

long as temperature scaling is not employed for larger values of dk since the dot-products

tend to push the softmax function to regions of extremely small gradients.

In our work, we also exploited the notion of self-attention. Since attention was first

targeted at natural language translation, let us provide an example from this area. Orig-

inally, the attention was computed between the input and output sentences. Regarding

self-attention, attention is computed with respect to the sentence itself. In the case of

computer vision, the spatial self-attention represents a weight map over a 2D feature

map indicating the importance of each feature element. Analogically, the channel self-

attention may be used to attribute importance to individual channels, as they often are

not tantamount. Moreover, it yields more interpretable models as a by-product [21].

109

6.4.3 Deformable Convolutional Neural Networks

Deformable Convolutional Neural Networks (DCNNs) [122] have gained popularity and

are being applied to numerous computer vision tasks, e.g., object segmentation (dense

predictions) and object detection (semi-dense predictions). As VOT revolves around

similar requirements for pixel-wise precision, we contemplated using this advancement.

Although CNNs (Section 3.1.2, p. 20) are an excellent tool for a lot of deep learning

tasks involving image processing, they are still limited in their capabilities to model a wide

range geometric transformations. To address this, practitioners apply a broad range of

data augmentation techniques (e.g., rotation, translation, scaling, shearing, and cropping)

to provide the necessary samples of some particular transformation during the training.

However, such an approach is limited to tailor-made transformations that may not cover

the entire set of possibilities the model may face at test time.

The first work to learn spatial transformation from the training data in a deep learning

fashion is known under the name Spatial Transform Networks (STNs) [124]. It warps the

feature map via a global parametric transformation such as affine transformation. In the

realm of convolutional operations, there is the atrous convolution operation [125] that

enhances the standard convolution by expanding the receptive field while maintaining the

same number of parameters by use of greater offsets. However, these offsets are fixed. An

obvious successor of this approach is the active convolution [126] that treats convolution

offsets as learnable parameters instead of constants. But, in this setting, the learned

offsets are shared across different spatial locations. Thus, the most general approach is

to determine the offsets at each location independently and then proceed as usual. This

is where deformable convolution (Fig. 6.13) comes into place.

In concrete terms, a 2D convolution consists of sampling using a regular offset grid

R defining the receptive field as well as dilation over the input features x followed by

the summation of the samples values weighted by w. For example, a standard 3 × 3

convolution with dilation 1 would employ offsets given by

R = {(−1,−1) , (−1, 0) , . . . , (0, 1) , (1, 1)} . (6.15)

110

Fig. 6.13: Visualization of the difference between the fixed (a) and adaptive (b) receptive
fields. Stacking multiple deformable convolutions results in profound amplification of deforma-
tion, making the transformation capture diverse shapes that would otherwise be very coarsely
approximated by a standard convolution. (source: [122])

Then, for each location p0 within the output feature map y is calculated as

y (p0) =
∑
∀pn∈R

w (pn) · x (p0 + pn) , (6.16)

where the locations in R are iterated over by pn. Conversely, the deformable convolution

extends the standard one by augmenting the original sampling grid R with additional

offsets {∆pn | n = 1, . . . , |R|} (Fig. 6.14). Thus, Equation 6.16 is reformulated as

y (p0) =
∑
∀pn∈R

w (pn) · x (p0 + pn + ∆pn) . (6.17)

Nonetheless, the user needs to keep in mind that the sampling offsets now become fractions

and thus have to be handled accordingly. One approach is to employ bilinear interpolation,

where the position in the input feature map x is determined by

x (p) =
∑
∀q

G (q,p) · x (p) , (6.18)

in which q enumerates all integral locations and G (·) represents the interpolation kernel.

The interpolation processing can be efficiently implemented owing to the sparsity. The

performance overhead is negligible compared to the reaped benefits of adaptive sampling

locations capable of covering very complicated transformations (Fig. 6.15).

The original paper [122], in which DCNNs were introduced, showed that learning dense

spatial transformation in using deep learning by use of CNNs or sophisticated vision tasks

111

conv
offset field

input feature map

2N

output feature map

deformable convolution

offsets

Fig. 6.14: Illustration of a 3 × 3 deformable convolution operation. Unlike the standard con-
volution operation used in neural networks, this one employs one additional step of predicting
variable offsets instead of using a fixed rectangular grid. (source: [122])

Fig. 6.15: Deformable convolution is effective at learning appropriate sampling locations reflect-
ing the underlying transformation. (a) shows the regular sampling grid of a standard convolution;
(b) is an example of irregularly deformed sampling region; (c) and (d) represent an expected
pattern corresponding to scaling and rotation operations, respectively. (source: [122])

such as object detection and semantic segmentation is not only feasible but also effective.

6.4.4 Modulated Deformable Convolutional Neural Networks

The original paper by Zhu et al. [127] aptly described their contribution as “more de-

formable, better results”. Because of this, we will describe the Modulated Deformable

Convolutional Neural Networks (MDCNNs), an extension to DCNNs.

Since we are simply adding a slight modifications to an already introduced equation,

we will try to avoid repetition. Thus, let p0, pn and ∆pn have the same meaning as in

Equation 6.17. Then, the modified equation becomes

y (p0) =
∑
∀pn∈R

w (pn) · x (p0 + pn + ∆pn) ·∆mn, (6.19)

where ∆mn is the modulation scalar for the current location, such that ∆mn ∈ (0, 1).

112

Thus, there are two types of learnable parameters. The already described offsets, given

by the ∆pn term, and the new modulation (weighting) coefficients, represented by the

term ∆mn. This trivial extension allows the system to not only learn how to sample

features in a non-regular fashion if needed, but it also allows applying distinct weight

to each sampling location to further adaptively intensify the deforming effect. Although

the weights of the underlying convolutional layer can be tweaked to a large extent in

order to apply different weights to different features, the inclusion of additional weighting

coefficient provides more DoFs, making the transformation more versatile.

From an implementation standpoint, DCNNs as well as MDCNNs have learnable off-

sets (and modulation coefficients, if used) set to zero during initialization. This produces

no deformable effect, so the convolution behaves as usual in terms of location sampling.

However, the modulation aspect is slightly different. Since the sigmoid function is com-

monly adopted to project the modulation weights into the (0, 1) interval, it multiplies

each location by the value of sigmoid (0) = 1/2 at the beginning.

6.4.5 Deformable Siamese Attention

The two independent ideas above led us to experiment with a self-attention mechanism

aimed at enhancing feature selection in both spatial and channel domains. Such experi-

ments resulted in slight improvements for the reasons outlined in the motivation section.

To support that our ideas were based on properly identified causes, there is a recently

published work demonstrating the effectiveness of the very same approach.

Yu et al. [128] formulated their Deformable Siamese Attention (DSA), which covered

both of our suggestions above and additionally introduced the notion of cross-attention as

an enhancement to the self-attention itself. What primarily motivated the introduction of

the cross-attention was that the exemplar and search region features in Siamese trackers

are computed separately, yet they may frequently compensate each other. It is reasonable

to assume that multiple objects appear at the same time even in SOT, let alone MOT.

Consequently, it is of paramount importance for the search branch to have as much

information as possible about the exemplar during the computation of the response map

for better discrimination. By the same token, the exemplar features may be enhanced by

information from the search features. To this end, the cross-attention, at the acceptable

computational cost, serves properly in a predictable fashion.

113

First
frame

Second
frame

Backbone
features

Backbone
features

ROI-align

ROI-align

RPN head

ROI-align

Tracker headDetector head

Exemplar features

Search features

Tracker lossDetector loss

RPN loss

Detector features

Deformable
Siamese
Attention

Attentional
Exemplar features

Attentional
Search features

Fig. 6.16: Our proposal to incorporate attention into the SiamMOT pipeline. This diagram
shows the relationships between individual parts of the framework during the training phase.

Considering their contribution and promising outcomes for the SOT demonstrated on

the SiamRPN framework (Section 3.6.3, p. 40), we decided to implement their proposed

module into the SiamMOT tracker as described in their paper (Fig. 6.16). However,

with the prospect of greater improvement, we adopted modulated DCNNs, instead of

pure DCNNs, because the MDCNNs have all the advantages of the standard deformable

convolution, but they additionally learn a modulation (weighting) for individual elements

of the feature map while taking the underlying features into account. For our purposes,

this seemed to intensify the spatial attention effect, since not only the deformable part

was responsible for choosing features using irregular sampling patterns, the network was

even allowed to weigh them differently. We conjectured that such an extension may either

have no dramatic effect or influence it only positively.

Self-Attention

Self-attention is computed on the exemplar and search branch independently. This oper-

ation can be easily executed since exemplar and search tensors only differ in width and

height. The following description of the self-attention computation conforms to the estab-

lished attention principles regarding “queries, keys and values” introduced in Section 6.4.2.

For better understanding of the computation, see the diagram in Fig. 6.17.

Let X ∈ RC×H×W be the input features. To produce query features Q and key features

K, such that Q,K ∈ RC′×H×W and C ′ = 1
4
C, where C ′ is the reduced number of channels,

114

𝑪 × 𝒉 × 𝒘

𝒉 × 𝒘 × (𝒉 × 𝒘) 𝑪 × 𝑪 𝑪 × 𝑪 𝑪 × 𝑪 𝑪 × 𝑪 𝑯 × 𝑾 × (𝑯 × 𝑾)

𝑪 × 𝑯 × 𝑾

𝑪 × 𝒉 × 𝒘 𝑪 × 𝒉 × 𝒘𝑪 × 𝒉 × 𝒘 𝑪 × 𝑯 × 𝑾 𝑪 × 𝑯 × 𝑾𝑪 × 𝑯 × 𝑾

Template
Features

Search
Features

Self-Attention Module

Cross-Attention Module

𝑪 × 𝒉 × 𝒘 𝑪 × 𝑯 × 𝑾Attentional
Template
Features

Attentional
Search

Features

Reshape

Cross Path

Cross Path

Matrix Multiplication

Element-Wise Sum

Matrix Operation

Matrix Operation

Attention Map

3x3 Deformable
Convolution Layer

3x3 Deformable
Convolution Layer

1x1 Convolution Layer

Fig. 6.17: The DSA extension introduces two sub-modules for both exemplar and search branch.
The self-attention is further divided into two operations, namely spatial and channel attention.
The very same attention network is used to process both features independently. Notice how the
channel attention is computed only once as part of the self-attention process and then directly
fused with the channel self-attention of the other branch, creating the cross-attention effect,
which is the strongest one of all three, according to the authors. (source: [128])

two separate 1×1 convolution layers are applied. The obtained features are then reshaped

into Q̄, K̄ ∈ RC′×N , whereN = H×W . The spatial self-attentionAS
S ∈ RN×N is produced

via matrix multiplication and a column-wise softmax operation as

AS
S = softmaxcol

(
Q̄T K̄

)
. (6.20)

Authors used C ′ = 1
8
C, but in MOT, the number of objects to track is often a lot greater,

thus the computation graph grows dramatically with the higher number of channels.

Furthermore, in our case C = 128 (by SiamMOT design), and we considered using 32

channels for the attention to be the bare minimum.

Meanwhile, an analogous sequence of operations is adopted to produce the value fea-

tures. A 1×1 convolution layer without the subsequent reshape operation transforms the

input features X into the value features V̄ ∈ RC×N . At this point, we have matched the

queries with keys and computed the values. We may proceeed further to the weighted

selection from the values and to incorporate the attention into the features as follows

X̄S
S = αV̄AS

S + X̄, (6.21)

115

where α is a learnable scalar parameter, and X̄S
S ∈ RC×N . The outputs X̄S

S are then

reshaped back to the original size, specifically XS
S ∈ RC×H×W . From our experience, the

parameter α is very useful for training stabilization.

The corresponding channel self-attention AS
C and the channel-wise attentional features

XS
C are obtained similarly. Due to space limitations and the fact that the upcoming for-

mulation of the cross-attention exploits the channel self-attention, we will omit a detailed

description. We will just point out that the “queries, keys and values” for the channel

self-attention are produced directly from the features on the input, with no 1× 1 convo-

lutions whatsoever. The final self-attentional features are generated by an element-wise

sum using the partial spatial and channel self-attentions, XS
S and XS

C , respectively.

Cross-Attention

Let Z ∈ RC×h×w, X ∈ RC×H×W denote the exemplar and search region features, respec-

tively. The following description introduces the computation of the cross-attention from

the perspective of the search branch. First, the exemplar features Z are reshaped into

Z̄ ∈ RC×n, where n = h×w. Then, the cross-attention from the exemplar branch is com-

puted. We emphasize that the channel attention is reused, therefore, the computation

below serves as a recipe for how to compute the channel self-attention. So, we compute

the channel cross-attention AC ∈ RC×C as

AC = softmaxrow
(
Z̄Z̄T

)
. (6.22)

The real benefit comes from the merging stage, where the above-computed attention is

merged with the other, in this case, the search branch as

X̄C = γACX̄ + X̄, (6.23)

where γ is a learnable scalar parameter. The merged features X̄C , once again, have to

be reshaped, so the features XC ∈ RC×H×W are the final output.

At last, the self-attentional features are combined with the cross-attentional features

using an element-wise sum. The cross-attention from the perspective of the exemplar

branch can be obtained using a similar sequence of operations. In total, there are six

steps that involve addition for the purpose of feature merging (Fig. 6.17).

116

Search Image w/ DSA Modulew/o DSA Module

Fig. 6.18: Visualization of response (confidence) maps. The first column represents the search
image, the second column represents the activation levels without the DSA module, whereas
the third column clearly demonstrates the improved target-background discirminability in the
computed attentional features. (source: [128])

Once the attention is applied, the corresponding response map is altered as expected.

The discriminative power of the tracker is enhanced by appropriate suppression of the

semantic background. As Fig. 6.18 shows, activations in the search regions as viewed

through the response map vary if the DSA module is included in the computation, making

the tracker less prone to drifting to the scene or semantic background objects.

Deformable Convolution Phase

The attention is finalized by processing the obtained feature tensors by another layer of

modulated deformable convolution. We modified the deformable convolution operation

to include the modulated version, which is our modification compared to the original

formulation (Fig. 6.17, top yellow boxes). The resulting features with a shape identical to

the input shape are used to compute the response map. As a result, this extension can be

easily integrated into an existing pipeline thanks to its ability to preserve tensor shapes.

6.4.6 Experimental Evaluation and Discussion

The inclusion of the DSA module substantially increased the consumption of GPU VRAM

during the training as each proposal needs its corresponding attentional features. The

117

number of proposals is by default 256, but we decreased it to 160 to allow for bigger

minibatches. We used the lower number of proposals for all the experiments to have

as many common hyperparameter settings between the experiments as possible. On the

contrary, the inference phase is not as affected since the number of “computed attentions”

is given by the number of tracked objects. Unlike the original model that allowed the

batch size of 24, DSA-extended model utilized at most 4.

As Fig. 6.16 shows, this extension is directly incorporated into the architecture, right

before applying the cross-correlation. We trained the entire model in an end-to-end fash-

ion. We also tried to train the architecture in two stages, i.e., to freeze the attention

and train the rest of the model, and then freeze the rest and just fine-tune the attention.

But this training regime was detrimental to the overall performance, thus all the results

discussed below are based on joint training.

The following plots (Fig. 6.19, Fig. 6.20, Fig. 6.21, and Fig. 6.22) share the very same

pattern. The original implementation represented by circles with a minimum number of

modifications is compared against the very same model extended with the DSA module

represented by squares. We chose 2D diagrams to show the change in performance using

two complementary metrics. One pair of metrics is MOTA vs. MOTP (the most important

one) and the second pair is precision vs. recall. Models with a matching number of training

iterations have the same color.

Concerning the interpretation, the higher some particular data point lies in the up-

per right corner, the better. Increasing MOTA while increasing MOTP is desired. The

same applies to the PR plot. However, we have to keep in mind that the MOTP met-

ric is evaluated only with respect to properly matched detections. If a tracker makes

very few predictions its MOTP score may be high. The official CLEAR evaluation (Sec-

tion 3.5, p. 32) prioritizes MOTA and MOTP scores above other scores (Table 3.2, p. 39).

In addition, the MOTA score has the leading priority within the ranking. PR plots are

our subjective choice to peek into the object detection performance deeper.

Fig. 6.19 shows how DSA extension affects the tracking as measured by MOTA and

MOTP. As we can see, at 15 000 training iterations, the best performance is reached

with our extension included. This result is not surpassed by any other model. We believe

that the model starts to overfit the training set after 15 000 iterations. A noteworthy

observation is the existence of clusters. Except for the best performance, the inclusion

118

0.685 0.690 0.695 0.700 0.705 0.710 0.715 0.720 0.725
MOTA

0.150

0.152

0.154

0.156

0.158

0.160

0.162

0.164

M
O

T
P

original, 10000

original, 15000

original, 20000

original, 25000

original, 30000

original, 35000

original, 40000

original, 45000

original, 50000

original, 55000

original, 60000

DSA, 10000

DSA, 15000

DSA, 20000

DSA, 25000

DSA, 30000

DSA, 35000

DSA, 40000

DSA, 45000

DSA, 50000

DSA, 60000

Fig. 6.19: Comparison of the baseline model (circles) against the DSA-extended model (squares)
over the entire training lifetime using a complementary pair of MOTA and MOTP metrics. The
top-performing DSA-extended model (purple square) shows considerable improvement at this
benchmark. The existence of multiple clusters depicts the overall effect of attention mechanism
upon the tracker, which in this case is slightly inferior. However, the batch size for the original
model is 24 whilist for the DSA-extended version it is just 4.

of DSA probably makes the model more conservative, so it captures fewer objects. This

claim is further supported in Fig. 6.20, in which the value of recall is often lower, except

for the best data point. Nevertheless, we can observe that the best performance with

our extension maintained its position on the PR plot compared to the baseline model.

Thus, at 15 000 iterations, the DSA extension achieves the best combination of MOTA

and MOTP while maintaining the precision and recall scores.

To make our analysis more complete, we have to take into account the difference

in batch size. Due to insufficient memory of our two GPUs, we employed the already

introduced GA. Mathematically speaking, applying GA is similar to a multi-GPU setup.

However, we know that batch normalization layers are particularly sensitive to small

minibatches, so in practice, this claim does not hold. To remedy this, we adopted “frozen”

versions of the batch normalization layers. Thus, these layers maintained their weights

from the pre-training phase on the ImageNet dataset. Performance issues aside, we wanted

to compare how our extension would perform with the same batch size, regardless of how

inferior its performance would be. The relative difference was our concern. The number

119

0.76 0.78 0.80 0.82 0.84 0.86
Recall

0.85

0.86

0.87

0.88

0.89

0.90

0.91
P

re
ci

si
o
n

original, 10000

original, 15000

original, 20000

original, 25000

original, 30000

original, 35000

original, 40000

original, 45000

original, 50000

original, 55000

original, 60000

DSA, 10000

DSA, 15000

DSA, 20000

DSA, 25000

DSA, 30000

DSA, 35000

DSA, 40000

DSA, 45000

DSA, 50000

DSA, 60000

Fig. 6.20: Comparison of the baseline model (circles) against the DSA-extended model (squares)
over the entire training lifetime using a well-known PR plot that is often used to evaluate object
detectors. The top-performing DSA-extended model is only capable of maintaining its object
detection abilities compared to the baseline model. We can also observe the existence of clusters
reflecting the effect of attention. However, the batch size for the original model is 24 whilist for
the DSA-extended version it is just 4.

of training iterations was higher due to having minibatches containing just a single pair

of frames for siamese training. These minibatches were then accumulated 12 times.

As Fig. 6.21 demonstrates, using bigger minibatches favors the performance of our

model the most. Even though we were unable to execute identical training as the original

authors who used very powerful eight NVIDIA V100 GPUs, we believe that the DSA

performance would maintain its edge over the baseline model. Not only does the expansion

of minibatches yield better MOTA and MOTP combinations, but it also creates a big

cluster of data points in the upper right corner of the PR plot (Fig. 6.22). We consider

this result significantly better compared to our previous experiment in which we just

managed to maintain the PR performance, not improve it. Additionally, training with

GA is more accessible to ordinary users as they may not have at least 11GB of GPU

VRAM available. For this configuration, 6GB would suffice. The only downside is the

threefold increase in training time.

Table 6.3 summarizes the best scores for exact quantitative comparison, supporting

the observations from the discussed plots. We can see that the DSA extension brings

120

0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76
MOTA

0.145

0.150

0.155

0.160

0.165
M

O
T

P
original, 30000

original, 45000

original, 60000

original, 75000

original, 90000

original, 105000

original, 120000

original, 135000

original, 150000

original, 165000

original, 180000

DSA, 30000

DSA, 45000

DSA, 60000

DSA, 75000

DSA, 90000

DSA, 105000

DSA, 120000

DSA, 135000

DSA, 150000

DSA, 165000

DSA, 180000

Fig. 6.21: Comparison of the baseline model (circles) against the DSA-extended model (squares)
when using GA with batch size of 24 = 12× 2. The adoption of DSA module shows significant
improvement over the original model owing to bigger minibatches. It dominates the upper-right
corner thanks to the best combinations of MOTA and MOTP performance scores.

model batch size grad. accum. MOTA MOTP precision recall

DSA-extended 24 X 0.7625 0.1548 0.9260 0.8315

original 24 X 0.7429 0.1533 0.9137 0.8230

DSA-extended 4 0.7274 0.1639 0.8843 0.8401

original 24 0.7263 0.1556 0.8825 0.8415

Table 6.3: Comparison of the top-performing models that were trained and tested on the UA-
DETRAC dataset. The models were chosen in accordance with their MOTA and MOTP pair
of scores, conforming to the official CLEAR rules. The middle separator divides the table into
with and without the use of GA.

improvement in all aspects. Although the third row shows performance closer to the

baseline model, we believe the cause is the use of six times smaller minibatches. This is

why the setup involving GA supports the claim that had more powerful hardware been

used, the performance gap could have been wider.

Overall, we can say that this type of experiment eventually led to the improvement

of the underlying SiamMOT model. We consider this extension applicable since it con-

sistently improves the tracking performance. However, there are increased GPU VRAM

121

0.79 0.80 0.81 0.82 0.83
Recall

0.895

0.900

0.905

0.910

0.915

0.920

0.925

0.930

P
re

ci
si

o
n

original, 30000

original, 45000

original, 60000

original, 75000

original, 90000

original, 105000

original, 120000

original, 135000

original, 150000

original, 165000

original, 180000

DSA, 30000

DSA, 45000

DSA, 60000

DSA, 75000

DSA, 90000

DSA, 105000

DSA, 120000

DSA, 135000

DSA, 150000

DSA, 165000

DSA, 180000

Fig. 6.22: Comparison of the baseline model (circles) against the DSA-extended model (squares)
when using GA with batch size of 24 = 12×2. Although these results are not what typical object
detection PR plots show, we can still observe that the DSA yields a group of points in the upper-
right corner, showing a consistent gain in performance.

demands, especially during the training. The inference is not substantially affected unless

the tracker is required to track hundreds of objects. For every additional object, the DSA

extension introduces a constant computational overhead. This model can run in inference

mode on a laptop GPU with 4GB of memory. As for the change in FPS, the impact

on performance is negligible as the real-time speed is preserved. Specifically, the original

model inference runs on average at 26.49 FPS, whereas the DSA-extended version achieves

24.16 FPS, incurring an approximately 9% reduction in speed (more in Table 6.4).

6.5 Overall Discussion of Siamese-based Experiments

Considering what we have presented so far, we have to acknowledge that the utilization of

ReID in object tracking may not be useful for every type of object tracker. The underlying

architecture has to be taken into account as it determines whether such an extension is

suitable or not. Nonetheless, we believe that similarity learning, on which the modern

Siamese tracking paradigm itself is based, is of paramount importance to VOT. Although

ReID relies on similarity learning, we tried to incorporate these ideas into a demonstrably

inappropriate type of the tracker, which explains some of our failures. On the other hand,

122

we have observed the adoption of an attention mechanism in various forms during our

research, and even in our case, it yields promising results.

The first experiment with the external ReID model failed because of polluted embed-

ding vectors. The objective was to tackle occlusion, but paradoxically, the occlusion in

combination with the high tracker confidence was to blame. We showed that it is difficult

to determine a point in time before the occlusion arises where the exemplar is sufficiently

visible for future ReID, particularly if the tracker makes predictions with high confidence.

As a result, we ended up with object BBOXes that sometimes did not contain the object

of interest at all. But the SiamMOT tracker itself is capable of handling short-term oc-

clusion, especially if the object emerges near the location of its last disappearance. Since

these situations occur frequently, our approach often interfered with the tracking process.

We observed situations where the object re-appeared after a long time far away from the

image location where it disappeared and the ReID assigned a correct ID. On balance, a

direct reasoning based on the ReID has detrimental effects on the SiamMOT model.

Conversely, the second experiment attempted to exploit the fact that the SiamMOT

approach handles the short-term occlusion very well by altering the NMS phase with a

Feature-NMS [118] algorithm. Moreover, the popular approach of end-to-end architec-

tures spurred the development of the FEMB head. The incentive was to introduce joint

training to improve feature formation and make the embedding vectors part of the model

itself. However, we had not known about all the possible traps related to the inclusion of

embeddings with RPN-based architectures. Despite our second failed attempt to improve

the SiamMOT model, we still believe this experiment has a value of its own. It provides

corroborating evidence to the recently published paper aimed at “unfairness” of ReID in

MOT [120]. The process of uncovering the design obstacles was similar to the one de-

scribed in this paper and we fully agree with the authors’ conclusions. To summarize,

the primary causes of problems are the prioritization of generating proposals before la-

tent space formation, having multiple identities corresponding to one proposal or multiple

proposals corresponding to one identity, feature conflict between the detection and the

ReID tasks, and the imbalance of feature dimensions.

Our third experimental approach followed the philosophy of end-to-end training, too.

The goal remained the same, i.e. , to tackle the occlusion, at least its partial form. Having

observed the ramifications of dealing with axis-aligned BBOXes, we tried to adopt the

123

model
inference speed [FPS]

min. max. mean stdev. median

original 22.82 29.84 26.49 1.61 26.67

FEMB-extended 10.28 25.72 18.57 4.70 18.28

DSA-extended 19.06 29.61 24.16 2.67 24.20

Table 6.4: Comparison of the inference speed of the original SiamMOT, FEMB-extended, and
DSA-extended versions. The statistics are based on the per-sequence average FPS values from
56 340 frames spanning across 40 sequences provided by the UA-DETRAC validation dataset,
with an average sequence length of 1408.5 frames. Our hardware specifications were NVIDIA RTX
2080Ti GPU and AMD Ryzen Threadripper 2920X 12-Core CPU.

attention mechanism [21]. The endeavor was to train the model to better delineate the

object boundaries when facing partial occlusion. Our initial, custom implementation

was successful in and of itself. But the recently published DSA [128] module that was

applied to the SOT Siamese tracking provided a grounding for the additional inclusion

of cross-attention, as we only came up with the self-attention part. Thus, we decided

to combine our experience with the already proven approach. Besides, we enhanced the

DSA module with the modulated form of the DCNNs. This modification produced 2.6%

improvement in the MOTA metric (Table 6.3). The major advantage of this extension

is the consistent improvement of tracking performance with negligible impact on the

inference speed (Table 6.4). The cost of adopting this easy-to-implement module is a

six-fold increase in the GPU VRAM consumption during the training. We count the

developed DSA module as our contribution as it can be applied in practice since it is

the inference phase that is the most important. We do acknowledge that the hardware

requirements for the model training are higher, but during the test time, an ordinary

laptop GPU with at least 4GB of memory can be utilized.

Our three documented Siamese-related experiments utilized the UA-DETRAC dataset.

To the best of our knowledge, this dataset is the closest one to the traffic analysis domain

with such a high quality of annotations and quantity of frames while using a static cam-

era. Although our implementations and observations turned out to be useful for general

object tracking, we continued with this dataset because of its size and the availability of

annotations both for training and testing, with the latter being the primary reason.

We contemplated using the MOT17 benchmark dataset (Section 4.3.2, p. 56) on which

124

the original SiamMOT model was trained and tested to directly compare our implemen-

tation with the published scores. However, the experiments we conducted would have

been impossible to accomplish to such an extent had we relied exclusively on the MOT17

evaluation. First, the SOTA methods rarely employ only the MOT17 dataset itself. Most

of the time the model undergoes an extensive pre-training phase on a combination of

multiple datasets. Even the SiamMOT itself employed MS-COCO dataset and two other

large datasets aimed at detecting people for pre-training. In order to create an object

tracking dataset, they adopted various data augmentation techniques to generate pairs at

runtime involving an artificial motion to facilitate the training of a Siamese tracker. We

could not reliably reproduce the published results as the pre-training on object detection

datasets was rather unstable and did not suit our target use case. We decided to omit

this step altogether since the UA-DETRAC is of sufficient quantity and quality.

The MOT17 dataset provides seven video sequences aimed at tracking people. Unlike

the UA-DETRAC benchmark, the annotations for the test part of the MOT17 are inac-

cessible. Thus, a validation set has to be produced from the training data. Even though

this is a standard practice in machine learning, we could not successfully adopt it because

the given seven sequences are significantly different from each other. On top of that, the

amount of available data is also unsatisfactory to reliably cross-validate such a complex

model. We tried training on six sequences while the remaining one would be used for

validation (and repeating for all combinations), but to no avail. A 5/2 split did not work

either. The MOTA performance score on the validation set oscillated around 30%, which

reduced our confidence in the obtained results. Furthermore, we have not seen using the

training set of the MOT17 dataset in this fashion. The standard protocol is to train the

model on the full training set, and then submit the inference output on the test data to

the server for evaluation. But, as demonstrated in Section 6.4.6, we would need dozens

of evaluation runs. Such attempts would, according to the official rules, result in being

banned from the server. Therefore, we had to rely on a dataset that provided annotations

for all sequences.

The UA-DETRAC provides a leaderboard on its own. However, the authors of this

dataset proposed new evaluation metrics that are coincidentally inappropriate for our

framework, rendering our endeavor to enter the ranking unattainable. They extended the

MOTA and MOTP metrics into third dimension by evaluating them along a PR curve

125

Fig. 6.23: Visualization of the MOTA metric extended to third dimension along a PR curve
developed as part of the UA-DETRAC benchmark. (source: [42])

and then computing an area under the obtained curve (Fig. 6.23). We do agree with their

justification for introducing another metric as well as the method itself. Nevertheless, the

PR curve is used to evaluate object detection by altering the threshold value indicating

whether a prediction is correct or not. In the case of SiamMOT, this is not possible to

achieve easily, if at all. Even the official UA-DETRAC leaderboard contains tracking

approaches that adopt the “detection & linking” paradigm. In such a setup, the detector

itself is an isolated module the output of which is processed by a “linker”, e.g., some

graph-based optimization algorithm. The generation of the PR curve is easily produced

by altering the threshold over the detector predictions. All it then takes is to run multiple

evaluations of the linking phase over several detector predictions. On the other hand,

the SiamMOT utilizes three threshold values, namely the minimum value for the track to

start, to stay active, or to become resumed from a dormant state. Even if we had found

a way to emulate the evaluation protocol, we would have done so in an intricate way the

credibility of which could have been questioned.

Considering this, the use of CLEAR metrics (Section 3.5, p. 32) on top of the UA-

DETRAC dataset provided the best combination of traffic-related data with established

and widely adopted metrics. After all, the objective was to compare our extensions with

the original model in relative terms, and for that our approach served sufficiently.

126

Chapter 7

Conclusion

The main objective of this dissertation thesis was to contribute to the field of VOT using

the tools of deep machine learning (Chapter 2, p. 18). At the beginning of this write-up,

we introduced several concepts regarding object tracking, primarily when dealing with

visual input in a form of a video. For the most part, we surveyed general object trackers,

yet we intended to apply our developed methods to tracking vehicles, an important area

with a vast practical impact. We identified a plethora of approaches to tracking, but the

most promising seemed to be Siamese fully convolutional trackers (Section 3.6, p. 37).

Siamese neural networks form the basis of the leading branch of trackers exploiting

the properties of similarity learning (Section 3.3.1, p. 24). This approach facilitates the

creation of latent spaces with specific traits. The aim is to create a space where a trivial

distance measurement between feature vectors of the embedded objects reflects their task-

specific degree of similarity. In our case, such a similarity measure should be invariant to

various distortions in lightning and object position as well as occlusion of varying severity.

Among multiple problems hindering the performance of object tracking, we identified the

occlusion as the one we would focus on, making it a specific objective of this thesis.

Examination of the latent spaces, in particular object ReID, offered insight into the

possibilities of embeddings. At the same time, we observed that occlusion is tightly

coupled with a presence of similar interference, i.e., distractors. To prevent the tracker

from drifting to the background (whether semantic or not) in presence of partial occlusion,

mechanisms based on attention [21] have shown promising results. These aspects formed

the basis for our experimentation, which utilized modern computer vision methods based

on deep learning, primarily CNNs [3].

127

This work provides a three-fold contribution, both theoretical and practical:

1. We covered the recent advancements in the field of Siamese VOT in our up-to-

date survey paper published in a journal [50], filling the gap in the existing survey

literature on this topic. This publication discusses the fundamental traits of Siamese

trackers and the current problems they face. Both qualitative and quantitative

comparison of the SOTA approaches is presented, too (Section 3.6, p. 3.6).

2. The vehicle tracking domain spurred the need for the removal of perspective distor-

tion as we also demanded to measure vehicle speed and dimensions as part of our

real-world applications. We exploited a homography to facilitate image rectification.

We planned to incorporate homography mapping into the tracking itself, but due

to the lack of available datasets, it could not be accomplished. Still, we developed

an original approach to solving one specific use case when the homography can be

exploited that earned us another journal publication [75] (Chapter 5, p. 59).

3. Our practical contribution to the Siamese tracking consists of three parts, the last

one being the most important for its improvements. We aimed at enhancing a SOTA

tracker called SiamMOT [66], using the UA-DETRAC [42] dataset.

• In our first experiment we showed the detrimental effects of ReID on the

SiamMOT tracker due to the presence of object occlusion that causes the

pollution of embedding vectors, rendering them useless for measuring object

similarity. Our observations are pertinent to a general discussion regarding the

use of ReID with Siamese trackers (Section 6.2, p. 92).

• Our second experiment involved extending the underlying SiamMOT architec-

ture by another head that produced feature embeddings. The entire model

was end-to-end trainable. Despite the lack of improvements, we explored our-

selves the consequences of introducing embeddings into RPN-based trackers,

providing validation for conclusions from a relevant paper [120] concerning the

“unfairness” of ReID in MOT (Section 6.3, p. 99).

• In the third experiment, we attempted to enhance the discriminative ability

of the tracker to handle scenes with the presence of partial occlusion. We

developed an attention-based approach that produced promising results. Con-

sidering that, we adopted an already published architecture with our custom

128

modifications that were proven to significantly improve Siamese-based SOT,

namely the DSA [128] module. As a result, we achieved a 2.6% improvement

in the MOTA metric (Section 6.4, p. 106).

In conclusion, two of our three major contributions are finished and successfully pub-

lished, namely the Siamese tracking survey and the homography ranking method. As for

our attention-based extension, we see the potential for future work. This approach needs

further validation on different benchmark datasets to compare our model with different

trackers. Nonetheless, traffic analysis was the domain we have focused on, and for that

purpose, our evaluations showed positive results.

Based on the knowledge we have acquired via studying Siamese tracking, our recom-

mendation is the following. The inclusion of ReID to deal with object occlusion in Siamese

trackers is very problematic since it would require sophisticated occlusion detection in the

first place to avoid polluting the exemplar of the tracked object. Then, adding a head

targeted at forming embeddings should be avoided in RPN-based trackers for multiple

reasons we explained in this work. The idea is, by all means, appropriate for tracking and

it has been demonstrated to work [119, 120], however, not every architecture is suitable

for such an extension. Last but not least, we have observed the attention mechanism to

enhance trackers on multiple occasions [48, 57, 128, 129], and our case was no exception.

We think that devising a module that would require less GPU VRAM would broaden the

potential for real-world applications. Attention has been incorporated into SOT, but in

case of MOT, it is not so common. Considering the problems we encountered, we see why.

Nevertheless, we think that Siamese tracking is yet to be fully explored, especially in the

context of MOT, as there is a burgeoning demand for fast and accurate trackers.

129

Bibliography

[1] David A. Forsyth and Jean Ponce. Computer Vision - A Modern Approach, Second Edition. Pitman,

2012. ISBN 978-0-273-76414-4. 1–791 pp.

[2] Anand Jalal and Vrijendra Singh. The State-of-the-Art in Visual Object Tracking. Informatica

(Slovenia), 36:227–248, 01 2012. ISSN 03505596.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convo-

lutional neural networks. Advances in Neural Information Processing Systems, 2:1097–1105, 2012.

ISBN 9781627480031. ISSN 10495258.

[4] Zheng Tang, Milind Naphade, Ming Yu Liu, Xiaodong Yang, Stan Birchfield, et al. Cityflow: A city-

scale benchmark for multi-target multi-camera vehicle tracking and re-identification. Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June:

8789–8798, 2019. ISBN 9781728132938. ISSN 10636919.

[5] Laura Leal-Taixé, Anton Milan, Konrad Schindler, Daniel Cremers, Ian Reid, et al. Tracking the

Trackers: An Analysis of the State of the Art in Multiple Object Tracking, 2017.

[6] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-Shot Visual

Imitation Learning via Meta-Learning. CoRR, abs/1709.04905, 2017. URL http://arxiv.org/

abs/1709.04905.

[7] Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine. SFV: Rein-

forcement Learning of Physical Skills from Videos. ACM Trans. Graph., 37(6), November 2018.

[8] Pan Jiyan and Hu Bo. Robust occlusion handling in object tracking. Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, (June 2007), 2007.

ISBN 1424411807. ISSN 10636919.

[9] Pierre F Gabriel, Jacques G Verly, Justus H Piater, and André Genon. The state of the art in

multiple object tracking under occlusion in video sequences. In Advanced Concepts for Intelligent

Vision Systems, pages 166–173, 2003.

[10] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified embedding for face

recognition and clustering. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 07-12-June:815–823, 2015. ISBN 9781467369640. ISSN 10636919.

130

[11] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. DeepFace: Closing the gap to

human-level performance in face verification. Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pages 1701–1708, 2014. ISBN 9781479951178. ISSN

10636919.

[12] Ratnesh Kuma, Edwin Weill, Farzin Aghdasi, and Parthasarathy Sriram. Vehicle Re-identification:

An Efficient Baseline Using Triplet Embedding. Proceedings of the International Joint Conference

on Neural Networks, 2019-July, 2019. ISBN 9781728119854.

[13] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[14] Bao Xin Chen and John K. Tsotsos. Fast Visual Object Tracking with Rotated Bounding Boxes,

2019.

[15] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip H.S. Torr. Fast online ob-

ject tracking and segmentation: A unifying approach. Proceedings of the IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition, 2019-June:1328–1338, 2019. ISBN

9781728132938. ISSN 10636919.

[16] Jimei Yang, Brian Price, Scott Cohen, Honglak Lee, and Ming Hsuan Yang. Object contour

detection with a fully convolutional encoder-decoder network. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2016-Decem:193–202, 2016. ISBN

9781467388504. ISSN 10636919.

[17] Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and Shengyong Chen. SiamCAR: Siamese

Fully Convolutional Classification and Regression for Visual Tracking, 2019.

[18] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High Performance Visual Tracking

with Siamese Region Proposal Network. Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 8971–8980, 2018. ISBN 9781538664209. ISSN

10636919.

[19] Ran Tao, Efstratios Gavves, and Arnold W.M. Smeulders. Siamese instance search for tracking.

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion, 2016-December:1420–1429, 2016. ISBN 9781467388504. ISSN 10636919.

[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, et al. SSD: Single

shot multibox detector. Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 9905 LNCS:21–37, 2016. ISBN

9783319464473. ISSN 16113349.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

131

[23] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Internal Represen-

tations by Error Propagation. In David E. Rumelhart and James L. Mcclelland, editors, Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations,

pages 318–362. MIT Press, Cambridge, MA, 1986.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, et al. ImageNet: A Large-Scale Hierarchical Image

Database. In CVPR09, 2009.

[25] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,

real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2016-Decem:779–788, 2016. ISBN 9781467388504. ISSN 10636919.

[26] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully convolutional one-stage object

detection. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob:

9626–9635, 2019. ISBN 9781728148038. ISSN 15505499.

[27] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-maximum suppression. Proceed-

ings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-

January:6469–6477, 2017. ISBN 9781538604571.

[28] Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger. Proceedings - 30th IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January:6517–6525,

2017. ISBN 9781538604571.

[29] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement, 2018.

[30] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4: Optimal Speed and

Accuracy of Object Detection, 2020.

[31] Alexander Wong, Mahmoud Famouri, Mohammad Javad Shafiee, Francis Li, Brendan Chwyl, et al.

YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object

Detection. 2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing

- NeurIPS Edition (EMC2-NIPS), pages 22–25, 2019.

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 39(6):1137–1149, 2017. ISSN 01628828.

[33] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, et al.

Speed/accuracy trade-offs for modern convolutional object detectors. Proceedings - 30th IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua:3296–3305,

2017. ISBN 9781538604571.

[34] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In Defense of the Triplet Loss for Person

Re-Identification, 2017.

[35] Gregory R. Koch. Siamese Neural Networks for One-Shot Image Recognition. 2015.

132

[36] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep Face Recognition. (Section 3):

41.1–41.12, 2015.

[37] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant

mapping. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2:1735–1742, 2006. ISBN 0769525970. ISSN 10636919.

[38] R. Manmatha, Chao Yuan Wu, Alexander J. Smola, and Philipp Krahenbuhl. Sampling Matters

in Deep Embedding Learning. Proceedings of the IEEE International Conference on Computer

Vision, 2017-Octob:2859–2867, 2017. ISBN 9781538610329. ISSN 15505499.

[39] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The Pascal Visual

Object Classes (VOC) Challenge. International Journal of Computer Vision, 88(2):303–338, June

2010.

[40] Gerard Salton and Michael McGill. Introduction to modern information retrieval. McGraw-Hill,

New York, NY, 1983.

[41] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking performance: The

clear mot metrics. EURASIP Journal on Image and Video Processing, 2008(1):246309, May 18,

2008. ISSN 1687-5281. URL https://doi.org/10.1155/2008/246309.

[42] Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang, et al. UA-DETRAC: A New

Benchmark and Protocol for Multi-Object Detection and Tracking. Computer Vision and Image

Understanding, 2020.

[43] David Held, Sebastian Thrun, and Silvio Savarese. Learning to Track at 100 FPS with Deep.

Computer Vision – ECCV 2016 Lecture Notes in Computer Science, pages 749–765, 2016. URL

http://davheld.github.io/GOTURN/GOTURN.html.

[44] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. 2nd International Conference on

Learning Representations, ICLR 2014 - Conference Track Proceedings, pages 1–10, 2014.

[45] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. Visual tracking with fully convo-

lutional networks. Proceedings of the IEEE International Conference on Computer Vision, 2015

Inter:3119–3127, 2015. ISBN 9781467383912. ISSN 15505499.

[46] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image

recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference

Track Proceedings, pages 1–14, 2015.

[47] Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H.S. Torr. Fully-

convolutional siamese networks for object tracking. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9914 LNCS:

850–865, 2016. ISBN 9783319488806. ISSN 16113349.

133

[48] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. A Twofold Siamese Network for Real-Time

Object Tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 4834–4843, 2018. ISBN 9781538664209. ISSN 10636919.

[49] Luca Bertinetto, João F. Henriques, Jack Valmadre, Philip H.S. Torr, and Andrea Vedaldi. Learning

feed-forward one-shot learners. Advances in Neural Information Processing Systems, (Nips):523–

531, 2016. ISSN 10495258.

[50] Milan Ondrašovič and Peter Tarábek. Siamese Visual Object Tracking: A Survey. IEEE Access,

9:110149–110172, 2021.

[51] Roman Pflugfelder. An in-depth analysis of visual tracking with siamese neural networks, 2018.

[52] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and Weiming Hu. Distractor-aware siamese

networks for visual object tracking, 2018.

[53] Daqun Li and Yi Yu. Foreground information guidance for siamese visual tracking. IEEE Access,

8:55905–55914, 2020.

[54] Daqun Li, Yi Yu, and Xiaolin Chen. Object tracking framework with siamese network and re-

detection mechanism. EURASIP Journal on Wireless Communications and Networking, 2019(1):

261, Nov 29, 2019. ISSN 1687-1499. URL https://doi.org/10.1186/s13638-019-1579-x.

[55] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan. Siamrpn++: Evolution

of siamese visual tracking with very deep networks, 2018.

[56] Seyed Mojtaba Marvasti-Zadeh, Li Cheng, Hossein Ghanei-Yakhdan, and Shohreh Kasaei. Deep

learning for visual tracking: A comprehensive survey. IEEE Transactions on Intelligent Trans-

portation Systems, pages 1–26, 2021.

[57] Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weiming Hu, and Stephen Maybank. Learning

attentions: Residual attentional siamese network for high performance online visual tracking. In

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4854–4863, 2018.

[58] Z. Liang and J. Shen. Local semantic siamese networks for fast tracking. IEEE Transactions on

Image Processing, 29:3351–3364, 2020.

[59] James R. Munkres. Algorithms for the Assignment and Transportation Problems. Journal of the

Society for Industrial and Applied Mathematics, 5(1):32–38, March 1957.

[60] Hwann-Tzong Chen, Horng-Horng Lin, and Tyng-Luh Liu. Multi-object tracking using dynamical

graph matching. In Proceedings of the 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. CVPR 2001, volume 2, pages II–II, 2001.

[61] Ioannis Papakis, Abhijit Sarkar, and Anuj Karpatne. Gcnnmatch: Graph convolutional neural

networks for multi-object tracking via sinkhorn normalization, 2021.

134

[62] Bonan Cuan, Khalid Idrissi, and Christonhe Garcia. Deep siamese network for multiple object

tracking. In 2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP),

pages 1–6, 2018.

[63] Bing Shuai, Andrew G Berneshawi, Davide Modolo, and Joseph Tighe. Multi-object tracking with

siamese track-rcnn. arXiv preprint arXiv:2004.07786, 2020.

[64] Lorenzo Vaquero, Manuel Mucientes, and Víctor M. Brea. Siammt: Real-time arbitrary multi-

object tracking. In 2020 25th International Conference on Pattern Recognition (ICPR), pages

707–714, 2021.

[65] Sangyun Lee and Euntai Kim. Multiple object tracking via feature pyramid siamese networks.

IEEE Access, 7:8181–8194, 2019.

[66] Bing Shuai, Andrew Berneshawi, Xinyu Li, Davide Modolo, and Joseph Tighe. Siammot: Siamese

multi-object tracking, 2021.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition, 2015.

[68] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by

reducing internal covariate shift, 2015.

[69] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.

Feature pyramid networks for object detection, 2017.

[70] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation, 2019.

[71] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, et al. Microsoft COCO:

Common objects in context. Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART 5):740–755, 2014.

ISSN 16113349.

[72] Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. PROVID: Progressive and Multimodal Vehicle

Reidentification for Large-Scale Urban Surveillance. IEEE Transactions on Multimedia, 20(3):

645–658, 2018. ISSN 15209210.

[73] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Autonomous Driving? The

KITTI Vision Benchmark Suite. In Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.

[74] Patrick Dendorfer, Aljoša Ošep, Anton Milan, Konrad Schindler, Daniel Cremers, Ian Reid, Ste-

fan Roth, and Laura Leal-Taixé. Motchallenge: A benchmark for single-camera multiple target

tracking, 2020. URL https://arxiv.org/abs/2010.07548.

[75] Milan Ondrašovič and Peter Tarábek. Homography ranking based on multiple groups of point cor-

respondences. Sensors, 21(17), 2021. ISSN 1424-8220. URL https://www.mdpi.com/1424-8220/

21/17/5752.

135

[76] Milan Ondrašovič and Peter Tarábek. Foundations for homography estimation in presence of

redundant point correspondencies. In Mathematics in science and technologies - proceedings of the

MIST conference 2020, number 1. vydanie, pages 52–57, 2020.

[77] A Geetha Kiran and S Murali. Automatic rectification of perspective distortion from a single image

using plane homography. J. Comput. Sci. Appl, 3(5):47–58, 2013.

[78] Alexandre Bousaid, Theodoros Theodoridis, Samia Nefti-Meziani, and Steve Davis. Perspective

distortion modeling for image measurements. IEEE Access, 8:15322–15331, 2020.

[79] Shijian Lu, Ben M Chen, and Chi Chung Ko. Perspective rectification of document images using

fuzzy set and morphological operations. Image and Vision Computing, 23(5):541–553, 2005.

[80] Ligang Miao and Silong Peng. Perspective rectification of document images based on morphology.

In 2006 International Conference on Computational Intelligence and Security, volume 2, pages

1805–1808. IEEE, 2006.

[81] Ebtsam Adel, Mohammed Elmogy, and Hazem Elbakry. Image stitching based on feature extraction

techniques: a survey. International Journal of Computer Applications, 99(6):1–8, 2014.

[82] Junhong Gao, Seon Joo Kim, and Michael S Brown. Constructing image panoramas using dual-

homography warping. In CVPR 2011, pages 49–56. IEEE, 2011.

[83] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on pattern

analysis and machine intelligence, 22(11):1330–1334, 2000.

[84] Damien Mariyanayagam, Pierre Gurdjos, Sylvie Chambon, Florent Brunet, and Vincent Charvillat.

Pose estimation of a single circle using default intrinsic calibration. CoRR, abs/1804.04922, 2018.

URL http://arxiv.org/abs/1804.04922.

[85] Jon Arróspide, Luis Salgado, Marcos Nieto, and Raúl Mohedano. Homography-based ground plane

detection using a single on-board camera. IET Intelligent Transport Systems, 4(2):149–160, 2010.

[86] Lin-Bo Luo, In-Sung Koh, Kyeong-Yuk Min, Jun Wang, and Jong-Wha Chong. Low-cost imple-

mentation of bird’s-eye view system for camera-on-vehicle. In 2010 Digest of Technical Papers

International Conference on Consumer Electronics (ICCE), pages 311–312. IEEE, 2010.

[87] Biswajit Bose and Eric Grimson. Ground plane rectification by tracking moving objects. In IEEE

International Workshop on Visual Surveillance and PETS, 2004.

[88] Miaohui Zhang, Yandong Hou, and Zhentao Hu. Accurate object tracking based on homography

matrix. In 2012 International Conference on Computer Science and Service System, pages 2310–

2312, 2012.

[89] Christopher Mei, Selim Benhimane, Ezio Malis, and Patrick Rives. Efficient homography-based

tracking and 3-d reconstruction for single-viewpoint sensors. Robotics, IEEE Transactions on, 24:

1352–1364, 01 2009.

136

[90] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Fluids

Engineering, Transactions of the ASME, 82(1):35–45, 1960. ISSN 1528901X.

[91] Richard I Hartley. In defense of the eight-point algorithm. IEEE Transactions on pattern analysis

and machine intelligence, 19(6):580–593, 1997.

[92] Yueqiang Zhang, Langming Zhou, Haibo Liu, and Yang Shang. A flexible online camera calibration

using line segments. Journal of Sensors, 2016, Jan 06, 2016. ISSN 1687-725X. URL https:

//doi.org/10.1155/2016/2802343.

[93] Valentín Osuna-Enciso, Erik Cuevas, Diego Oliva, Virgilio Zúñiga, Marco Pérez-Cisneros, and

Daniel Zaldívar. A multiobjective approach to homography estimation. Computational Intelligence

and Neuroscience, 2016:3629174, Dec 28, 2015. ISSN 1687-5265. URL https://doi.org/10.1155/

2016/3629174.

[94] Wei Mou, Han Wang, Gerald Seet, and Lubing Zhou. Robust homography estimation based on

non-linear least squares optimization. In 2013 IEEE International Conference on Robotics and

Biomimetics (ROBIO), pages 372–377. IEEE, 2013.

[95] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model fitting

with applications to image analysis and automated cartography. Commun. ACM, 24(6):381–395,

June 1981. ISSN 0001-0782. URL https://doi.org/10.1145/358669.358692.

[96] Daniel Barath and Levente Hajder. Novel ways to estimate homography from local affine transfor-

mations. In Nadia Magnenat-Thalmann, Paul Richard, Lars Linsen, Alexandru C. Telea, Sebastiano

Battiato, Francisco H. Imai, and José Braz, editors, Proceedings of the 11th Joint Conference on

Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016)

- Volume 3, pages 434–445, 2016. URL https://doi.org/10.5220/0005674904320443.

[97] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge

University Press, USA, 2 edition, 2003. ISBN 0521540518.

[98] Graham Beck et al. Planar Homography Estimation from Traffic Streams via Energy Functional

Minimization. PhD thesis, Johns Hopkins University, 2016.

[99] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV library.

" O’Reilly Media, Inc.", 2008.

[100] Y.I Abdel-Aziz, H.M. Karara, and Michael Hauck. Direct linear transformation from com-

parator coordinates into object space coordinates in close-range photogrammetry*. Photogram-

metric Engineering & Remote Sensing, 81(2):103–107, 2015. ISSN 0099-1112. URL https:

//www.sciencedirect.com/science/article/pii/S0099111215303086.

[101] Homography Ranking. https://github.com/mondrasovic/homography_ranking. Accessed:

2020-04-20.

[102] SiamMOT - GitHub (original project). https://github.com/amazon-research/siam-mot. Ac-

cessed: 2020-04-20.

137

https://github.com/mondrasovic/homography_ranking
https://github.com/amazon-research/siam-mot

[103] SiamMOT - GitHub (forked project). https://github.com/mondrasovic/siam-mot. Accessed:

2020-04-20.

[104] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,

Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems

32, pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[105] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Atom: Accurate

tracking by overlap maximization, 2019.

[106] Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and Thomas Huang. UnitBox: An ad-

vanced object detection network. MM 2016 - Proceedings of the 2016 ACM Multimedia Conference,

pages 516–520, 2016. ISBN 9781450336031.

[107] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense

object detection, 2018.

[108] Ross Girshick. Fast r-cnn, 2015.

[109] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online and realtime

tracking. Proceedings - International Conference on Image Processing, ICIP, 2016-Augus:3464–

3468, 2016. ISBN 9781467399616. ISSN 15224880.

[110] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with a deep

association metric, 2017.

[111] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Tracking objects as points, 2020.

[112] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe. Tracking without bells and whistles.

2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct 2019. URL http:

//dx.doi.org/10.1109/ICCV.2019.00103.

[113] Yuxin Wu and Kaiming He. Group normalization, 2018.

[114] Xiao-Yun Zhou, Jiacheng Sun, Nanyang Ye, Xu Lan, Qijun Luo, Bo-Lin Lai, Pedro Esperanca,

Guang-Zhong Yang, and Zhenguo Li. Batch group normalization, 2020.

[115] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei Jiang. Bag of tricks and a strong baseline

for deep person re-identification, 2019.

[116] Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer, Martin Danelljan, and Fahad Shahbaz

Khan. Learning the model update for siamese trackers, 2019.

138

https://github.com/mondrasovic/siam-mot

[117] Elad Levi, Tete Xiao, Xiaolong Wang, and Trevor Darrell. Rethinking preventing class-collapsing

in metric learning with margin-based losses, 2021.

[118] Niels Ole Salscheider. Featurenms: Non-maximum suppression by learning feature embeddings,

2020.

[119] Zhichao Lu, Vivek Rathod, Ronny Votel, and Jonathan Huang. Retinatrack: Online single stage

joint detection and tracking, 2020.

[120] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. Fairmot: On the

fairness of detection and re-identification in multiple object tracking. International Journal of

Computer Vision, 129(11):3069–3087, Sep 2021. ISSN 1573-1405. URL http://dx.doi.org/10.

1007/s11263-021-01513-4.

[121] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points, 2019.

[122] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable

convolutional networks. In 2017 IEEE International Conference on Computer Vision (ICCV), pages

764–773, 2017.

[123] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate, 2016.

[124] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer

networks, 2016.

[125] M. Holschneider, R. Kronland-Martinet, J. Morlet, and Ph. Tchamitchian. A real-time algorithm

for signal analysis with the help of the wavelet transform. In Jean-Michel Combes, Alexander Gross-

mann, and Philippe Tchamitchian, editors, Wavelets, pages 286–297. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1990. ISBN 978-3-642-75988-8.

[126] Yunho Jeon and Junmo Kim. Active convolution: Learning the shape of convolution for image

classification, 2017.

[127] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2: More deformable,

better results, 2018.

[128] Yuechen Yu, Yilei Xiong, Weilin Huang, and Matthew R. Scott. Deformable siamese attention

networks for visual object tracking, 2021.

[129] Xin Li, Qiao Liu, Nana Fan, Zhenyu He, and Hongzhi Wang. Hierarchical spatial-aware siamese

network for thermal infrared object tracking. Knowledge-Based Systems, 166:71–81, 2019. ISSN

0950-7051. URL https://www.sciencedirect.com/science/article/pii/S0950705118305987.

139

List of Author’s Publications

Home Conferences

AFD001 Foundations for homography estimation in presence of redundant
point correspondencies / Milan Ondrašovič, Peter Tarábek.
In: Mathematics in science and technologies: proceedings of the MIST confer-
ence 2020: proceedings of the MIST conference 2020 / Katarína Bachratá, Katarína
Jasenčáková and Monika Smiešková. - 1. vyd. - [S.l.] : [s.n.], 2020. - 70 s. [print]. - ISBN
9798648566026. - s. 52-57. [print]
[Ondrašovič Milan (50%) - Tarábek Peter (50%)]

AFD002 Object position estimation from a single moving camera / Milan On-
drašovič, Peter Tarábek, Ondrej Šuch.
In: Information and digital technologies 2021: proceedings of the international
conference: proceedings of the international conference / [bez zostavovateľa]. - 1. vyd.
- Danvers : Institute of Electrical and Electronics Engineers, 2021. - 370 s. - ISBN
978-1-6654-3692-2. - s. 31-37. Zaradené v: SCOPUS
[Ondrašovič Milan (50%) - Tarábek Peter (40%) - Šuch Ondrej (10%)]

International Impacted Journals

ADC001 Homography ranking based on multiple groups of point correspon-
dences / Milan Ondrašovič and Peter Tarábek.
In: Sensors. - Bazilej: Multidisciplinary Digital Publishing Institute. - [online, print]. -
ISSN 1424-3210. - Roč. 21, č. 17 (2021), s. [1-17] [online, print]. Zaradené v: Current
Content Connect ; SCOPUS ; Web of Science Core Collection
[Ondrašovič Milan (50%) - Tarábek Peter (50%)]

ADC002 Siamese visual object tracking: a survey /Milan Ondrašovič and Peter
Tarábek.
In: IEEE Access : practical innovations, open solutions: practical innovations, open
solutions. - Piscataway: Institute of Electrical and Electronics Engineers. - [online]. -
ISSN 2169-3536 (online). - Roč. 9 (2021), s. 110149-110172 [online]. Zaradené v: Current
Content Connect ; SCOPUS ; Web of Science Core Collection
[Ondrašovič Milan (50%) - Tarábek Peter (50%)]

There are already three existing international citations for this paper:

1. Zhou, Dong, Gunaghui Sun, and Xiaopeng Hong. 3D Visual Tracking Frame-
work with Deep Learning for Asteroid Exploration. arXiv (2021).

2. Sun, Xinglong, Guangliang Han, and Lihong Guo. Siamese Visual Tracking
with Residual Fusion Learning. IEEE Access (2021).

3. Choi, Janghoon, et al. Visual Tracking by Adaptive Continual Meta-Learning.
IEEE Access (2022).

140

	Introduction
	Dissertation Thesis Goals
	Theoretical Foundations
	Neural Networks
	Artificial Neural Networks
	Convolutional Neural Networks

	Object Detection
	Non-Maximum Suppression
	YOLO
	Faster R-CNN

	Latent Spaces and Embeddings
	Learning Metric Embedding
	Embedding Vector Similarity
	Siamese and Triplet Networks
	Triplet Mining Strategies

	Evaluating Information Retrieval
	Evaluating Bounding Box Prediction
	Mean Average Precision

	Evaluating Visual Multiple Object Tracking
	Establishing Correspondences
	Tracking Consistency
	Mapping Procedure
	Performance Metrics

	Single Object Tracking
	Initial Deep Learning-Based Solutions
	Fully Convolutional Tracking
	Tracking Using Siamese Networks

	Multiple Object Tracking
	Siamese-based Multiple Object Tracking

	Feature Extraction and Feature Fusion
	Residual Neural Networks
	Feature Pyramid Networks
	Deep Layer Aggregation

	Overview of Relevant Datasets
	Object Detection Datasets
	MS-COCO

	Object Re-identification Datasets
	VeRI-776

	Visual Object Tracking Datasets
	KITTI Object Tracking
	MOT17
	UA-DETRAC

	Developed Homography Ranking Method
	Introduction
	Preliminaries
	Developed Method
	Experiments and Discussion
	Dataset Creation
	Evaluation Methodology
	Experimental Results

	Conclusion

	Developed Approaches to Visual Object Tracking
	Siamese Multi-Object Tracking Framework
	Motivation For Model and Dataset Selection
	General description
	Model architecture
	Training and Inference Phases
	Training and Testing Details

	Siamese Multi-Object Tracking and ReID
	Motivation
	Proposed ReID-Enhanced Architecture
	Training Phase
	Inference Phase
	Experimental Evaluation and Discussion

	Siamese Multi-Object Tracking and Embedding
	Motivation
	Feature Embedding Head Architecture
	Training Phase
	Inference Phase
	Experimental Evaluation and Discussion

	Siamese Multi-Object Tracking and Attention
	Motivation
	Attention Mechanism
	Deformable Convolutional Neural Networks
	Modulated Deformable Convolutional Neural Networks
	Deformable Siamese Attention
	Experimental Evaluation and Discussion

	Overall Discussion of Siamese-based Experiments

	Conclusion

