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Abstract

This dissertation thesis assesses different design options for a model of the European

electricity market to investigate nodal pricing. Concretely, technical aspects such as

the choice of power flow model, network representation, intertemporal constraints and

economic aspects such as demand elasticity were investigated. In a preliminary analysis,

two formulations of the power flow model AC-OPF and DC-OPF were compared against

each other in terms of obtaining nodal prices. While AC-OPF leads to a higher accuracy,

which can be significant for operational purposes. For a model with a stronger focus on

electricity markets and pricing mechanisms, DC-OPF is preferred, especially considering

the computational benefits. A study that implements demand elasticity into the making of

prices in a European context was conducted. It showed consumers’ price elasticity impact

on dispatching and the costs to generate power. The presented case study investigated

these effects in the context of switching from a lower to a higher resolution of networks,

which emphasizes the role demand elasticity could play in a system with a higher number

of zones and ultimately under a nodal pricing regime. The main contribution of this Ph.D.

thesis represents the development of a heuristic algorithm to model hydro storages in large-

scale nodal pricing models. It allows overcoming the lack of data on hydro state of charge

time series and issues with intertemporal constraints, when simulating large-scale models

in sequences and displays the seasonality of hydro reservoir filling. Thereby, a nodal

model of the European electricity market was developed that is capable of assessing nodal

against the existing zonal pricing scheme through the incorporation of redispatching in the

zonal modeling approach. A study of the costs of redispatching proves the applicability of

the model and indicates the potential cost savings for congestion management that nodal

pricing can signify.

Keywords: nodal pricing, electricity market model, internal European market, optimal

power flow, optimization, heuristic
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Abstrakt

Dizertačná práca analyzuje rôzne možnosti návrhu modelu európskeho trhu s elektrinou

pre preskúmanie uzlových cien. Konkrétneǰsie boli skúmané technické aspekty, ako

vǒlba modelu pre tok výkonu, sieťová reprezentácia a podmienky zabezpečujúce časovú

nadväznosť, ako aj ekonomické aspekty ako elasticita dopytu. V prvotnej analýze

boli navzájom porovnané dve formulácie pre model toku výkonu, konkrétne AC-OPF

a DC-OPF poďla uzlových cien. AC-OPF vedie k vyššej presnosti, ktorá môže byť

signifikantná pre operačné dôvody. Pre model so väčš́ım zamerańım na elektrické trhy a

cenové mechanizmy, sa preferuje DC-OPF, berúc do úvahy najmä menšiu výpočtovú

náročnosť. Takisto bola vykonaná štúdia, ktorá implementuje elasticitu dopytu do

tvorby cien v európskom kontexte. Výpočtové experimenty dokumentujú vplyv cenovej

elasticity odberatělov na aktualizované objemy generovania energie jednotlivými zdrojmi

a výrobné náklady. Prezentovaná pŕıpadová štúdia skúmala tieto efekty v kontexte

zmien z nižš́ıch na vyššie rozĺı̌senia siet́ı, ktoré zdôrazňujú úlohu dopytovej elasticity

v systéme s vyšš́ım počtom zón a v konečnom dôsledku pod režimom uzlových cien.

Hlavný pŕınos tejto dizertačnej práce prezentuje vývoj heuristického algoritmu pre

modelovanie vodných nádrž́ı vo vysoko škálových modeloch uzlových cien. Práca

napomáha prekonať nedostatok dát o časových radoch stavov vodných nádrž́ı, problémy s

podmienkami zabezpečujúcimi časovú nadväznosť pri rozsiahlych simulačných modeloch

v sekvenciách a zobrazovańı sezónnosti naplnenia vodných nádrž́ı. Z týchto dôvodov

bol vyvinutý uzlový model európskeho trhu s elektrinou, ktorý aplikuje uzlový pŕıstup

oproti existujúcej zónovej cenovej schéme pomocou zahrnutia redispečovania zónového

modelovacieho pŕıstupu. Štúdia cien redispečovania dokazuje aplikovatělnosť modelu a

indikuje potenciálne šetrenie nákladov pre manažment preťaženia spôsobeného uzlovými

cenami.

Kľúčové slová: uzlová cenotvorba, model elektrického trhu, vnútorný európsky trh,

optimálny tok výkonu, optimalizácia, heuristiky
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Chapter 1

Introduction

Humankind is facing one of the most challenging tasks in its history, which is the

proceeding climate change. The increasing amount of carbon dioxide released into the

atmosphere since the industrial revolution is becoming an obvious issue that needs to

be addressed with joint efforts. In the aftermath of COP21 in 2015 in Paris, countries

have committed to contribute to this major change in various aspects of human life, but

most prominently within the energy sector (UNFCCC, 2015). How energy is produced,

distributed, and consumed contributes largely to global emissions. Hence, the need for a

transition of the whole energy system is commonly agreed upon and pursued with joint

efforts within the EU (Agora Energiewende and Sandbag, 2018).

Different strategies and regulations have been put forward to enable the transition of

the energy system from a fossil fuel-based one to a system relying predominantly on

renewable energies. In the context of the ”Clean Energy for all Europeans”, the European

Commission has proposed a set of regulations in 2016, and the Council and the Parliament

have approved these in 2018 and 2019, respectively (European Commission, 2016a). As

a part of this, the European Commission aims to push for the so-called Energy Union,

which among others, aims at redesigning and integrating the European electricity market.

This will allow electricity to flow freely across borders, not being held back by physical

or regulatory constraints. Integrating the electricity market is expected to allow for a

broader competition between energy utilities and ultimately reduce overall system costs

(Newbery et al., 2016).

Therefore, it is a task of high political interest to investigate possible future designs for

the European electricity market that can facilitate the formation of the Energy Union and

1



enable the integration of an increased amount of renewable generation into the electricity

mix.

Currently, the European market is based on zonal pricing. A uniform electricity price is

determined for bidding zones, which predominantly follow country borders. Thereby, the

physical limitations within the zones to the flow of electricity are disregarded. This calls

for congestion management, as intra-zonal capacity limits of the electricity network are

ignored in the price formation process, and flows that exceed these limitations represent

a danger to the system’s stability. One of the possible remedies to mitigate this problem

that is increasingly gaining interest since its development is the concept of nodal pricing

(Schweppe et al., 1988). In the process of determining nodal prices, the physical capacity

limits of the network are being taken into account, which can thus reduce the need for

redispatching and sending correct price signals to market participants (Hogan, 1999).

To assess nodal pricing or any market design for that matter, it is vital to rely on sound

modeling of the electricity system. Mende et al. (2018) point out that combining grid and

market models is vital to assess the electricity system properly. Market clearing models

of the day-ahead electricity market are formulated as optimization problems, where either

system operation costs are minimized, or social welfare is maximized (Purvins et al., 2018;

Brancucci Mart́ınez-Anido et al., 2013b). These problems are referred to as economic

dispatch models, as the employment or dispatch of generation units is the outcome of the

optimization that is to be determined. Now, in order to assess the zonal market design,

it is necessary to combine a day-ahead market model, with a redispatching model that

ensures that power flows are feasible throughout the entire network (Kunz et al., 2016;

Poplavskaya et al., 2020). The result of such a combined model can then be compared

against a nodal model, where the grid is already depicted in full detail. Therefore, one has

to solve large-scale so-called optimal power flow problems, which is the aforementioned

economic dispatch problem, including capacity limits for line flows that result from the

dispatch of generators (Felling et al., 2019; Leuthold et al., 2012; Bjørndal et al., 2014).

The assessment of design options for large-scale electricity market models for nodal pricing

lies in the focus of this work. Further, the solution to these problems, given the complexity

of such large-scale optimization problems, is an aspect addressed in this thesis.
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Chapter 2

Research Question

The energy system is undergoing significant changes in the face of decarbonization and

the incorporation of increasing renewable energy sources into the electricity mix. In

order to facilitate this system integration, the European Commission aims to push for

the so-called Energy Union (European Commission, 2016a). The aim is to create a fully-

integrated internal energy market across Europe as one of the pillars of the European

Commission’s roadmap for the Energy Union. Thus, it is a topic of political relevance

to advance this integration process and given the challenges the electricity system is

facing, to also investigate possible future pathways to redesign the current system. One

design option for the future electricity market that has received increasing interest by

policymakers and researchers alike is nodal pricing, which represents an alternative to the

currently-in-place zonal pricing-based market design. In order to evaluate the impacts of

a switch to nodal pricing or any other market design for that matter, it is important to

rely on sound electricity market modeling.

The electricity market is a complex and interconnected system with many stakeholders.

Thus, alternations in its functioning and the making of prices need to be carefully assessed

prior to implementation. Electricity market models are a key enabler to sound decision-

making in such a complex environment. There are different design options when building

a model of the European electricity market. Section 4 gives background information and

sums up approaches to model electricity markets, with a special focus on incorporating

nodal pricing. Each model features its individual focus and level of detail on different

modeling options. In the context of nodal pricing, it will be of particular interest to

incorporate a sound representation of transmission capacities along with modeling of

3



power flows.

Besides this, there are other aspects that can be of interest, e.g., time interdependencies

between optimization problems, when executing simulations in sequence due to the size

of a model with a long timescale; multiple criteria optimization taking into consideration

several objectives as environmental aspects besides economic objectives; fair optimization

to investigate the distribution of welfare among market participants; the exercise of market

power; or other market sessions as real-time or balancing markets as well as congestion

management.

Their importance will be evaluated on case studies, which will allow a comparison of

nodal and other market designs and ultimately assess the relevance of different modeling

aspects in terms of such a comparative study. Concretely, the overall research goal of this

thesis is:

The design of an extended electricity market model capable to investigate market designs

based on alternative pricing mechanisms with a special focus on nodal pricing.

The particular modeling design aspects that shall be investigated with respect to their

relevance when moving from a zonal to a nodal market design can be subdivided into two

main groups:

• Technical aspects concerning the modeling of the physical grid, e.g. transmission

capacity representation and utilization, the impact of AC-OPF and DC-OPF, or

intertemporal dependencies.

• Economic aspects of modeling electricity markets, e.g. demand elasticity, or

distribution of economic welfare.

The relevance of these modeling aspects will be quantified with regard to their impact

on system performance, in particular under a nodal market design. The expected

outcomes are twofold, on the one hand, this research will employ improved modeling tools

to assess the performance of electricity markets employing nodal pricing and enhance the

understanding of the impacts of different modeling aspects on electricity market outcomes.

On the other hand, this work will conclude with recommendations regarding the relevance

of each individual modeling aspect, weighing benefits and accuracy against additional data

4



dependency, complexity, and computational expense.

Therefore, the remainder of this document is organized in the following fashion to

address the questions introduced above. Section 3 introduces the theory behind the

modeling of electricity markets by discussing optimal power flow and relevant economic

concepts. Further, the evolution of electricity markets and their current functioning are

laid out. In Section 4, the fundamental literature on nodal pricing is introduced. Further,

the state of the art of modeling of nodal and zonal prices will be in the focus of this section,

by discussing developed models and their applications. Selected relevant modeling aspects

will be investigated in greater detail, which lays the ground for the studies conducted in

the context of the PhD studies. Lastly, the issue of data and tool accessibility will be

discussed, and different open-source models will be introduced. The main outcomes of

the PhD project are in the center of Section 5. The main findings have been published

in international conference proceedings and peer-reviewed journals. These papers serve

as guidance for this section. Section 6 concludes this work and provides a critical view

on shortcomings of the conducted studies, and formulates recommendations for future

research.
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Chapter 3

Electricity Markets: Theory and

Background

3.1 Theoretical Background

This section will give an overview of relevant concepts from power flow modeling and

economics that are essential to understanding electricity markets, which will be the focus

of the second part of this section. The European electricity market and its functioning

will be explained, and a short introduction to the US electricity system will be given as

an example of a successful introduction of nodal pricing.

3.1.1 Power Flow and Optimal Power Flow

In power flow analysis, we can consider the electricity grid a graph, which consists of a

set of nodes or buses N connected through a set of lines or edges E 1. With each node

i a number of variables are associated: voltage amplitude vi, voltage angle θi, net active

power Pi and net reactive power Qi. There are different node types defined according to

the variables known at that particular node: PQ nodes, Pi and Qi are known, and vi and

θi need to be calculated; and PV nodes, where Pi and vi are known and Qi and θi need to

be determined. The former ones are usually associated with loads without voltage control,

while the latter represents generating nodes that do have voltage control. Additionally,

there are so-called slack nodes or reference nodes V θ, where vi and θi are known and

Pi and Qi need to be calculated. As the name suggests, a reference node serves as a

1Much of this chapter is drawn from Andersson (2012).
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point of reference for the voltage angle, because this variable is determined with respect

to a reference angle. Furthermore, V θ nodes are needed to balance generation, loads,

and losses, due to the initially unknown active power losses. The physical properties of

lines connecting node i with node k are described through the conductance Gik and the

susceptance Bik.

The equations describing the network flow can be derived from Kirchhoff’s Law2.

Active and reactive power injected at node i are expressed through:

Pi = vi
∑

k∈N(i)

vk(Gikcos(θi − θk) +Biksin(θi − θk)), (3.1)

Qi = vi
∑

k∈N(i)

vk(Giksin(θi − θk)−Bikcos(θi − θk)), (3.2)

where N(i) is the set of nodes connected to node i. These nodal power equations describe

the main power flow problem, which is represented by a set of nonlinear equations.

Depending on the node type, either Pi and Qi or Pi and vi are known, and the other

variables need to be determined. This problem is usually formulated as a root problem

and solved by using for example Newton-Raphson method.

Optimal Power Flow (OPF) is an optimization problem that seeks to minimize costs,

with respect to constraints, which reflect physical limitations of the electricity grid as well

as those of generators and loads. It is an essential tool that finds application in power

system operation and planning. There are different formulations of OPF, while they can

be very precise e.g. in taking into account various aspects of power plant operational

constraints, we will introduce the general formulation of the AC-OPF and the linearized

approximation referred to as DC-OPF.

In the following, G ⊂ N is the set of power-generating nodes andD ⊂ N is the set of power-

consuming nodes. The objective function f of the minimization is usually considering

generation costs, while the choice of cost functions varies predominantly between linear,

2For a more detailed explanation, see Appendix A.1.2
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quadratic, and piece-wise linear. In the AC formulation, the OPF reads:

minimize
P,Q,θ,v

∑
i∈G

f(Pi) (3.3)

subject to

Pi =
∑

k∈N(i)

Pik =
∑

k∈N(i)

vivk(Gikcos(θi − θk) +Biksin(θi − θk)), i ∈ N (3.4)

Qi =
∑

k∈N(i)

Qik =
∑

k∈N(i)

vivk(Giksin(θi − θk)−Bikcos(θi − θk)), i ∈ N (3.5)

P 2
ik +Q2

ik ≤ F 2
ik, i ∈ N, k ∈ N(i) (3.6)

¯
Pi ≤ Pi ≤P̄i, i ∈ G ∪ D (3.7)

¯
Qi ≤ Qi ≤Q̄i, i ∈ G ∪ D (3.8)

¯
vi ≤ vi ≤v̄i, i ∈ N, (3.9)

where one seeks to minimize (3.3), subject to the following constraints: relation between

power and voltage through admittance or the power flow constraints for active and reactive

power (3.4)&(3.5), apparent power flow limits of the lines (3.6), operational power limit

for generation and load (lower active and reactive power limits
¯
Pi and

¯
Qi and upper active

and reactive power limits P̄i and Q̄i) (3.7)&(3.8) and voltage magnitude limits (lower
¯
vi

and upper v̄i) (3.9) (Andersson, 2012; Taylor, 2015).

AC-OPF is a quadratically constrained (3.6) non-convex optimization problem, because

of the power flow constraints (3.4)&(3.5). DC-OPF presents an approximation of this

problem, which is achieved through a number of assumptions that lead to a simplification

of the OPF: voltage magnitudes vi are close to 1 p.u. (power unit); reactive power flows

are neglected; conductances Gik are negligible relative to susceptances Bik; voltage angle

differences are (in stable operation mode of the grid) small, so that sin(θi− θk) ≈ θi− θk.

This leads to the DC-OPF, which reads:
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minimize
P,θ

∑
i∈G

f(Pi) (3.10)

subject to

Pi =
∑

k∈N(i)

Pik =
∑

k∈N(i)

Bik(θi − θk), i ∈ N (3.11)

−Fik ≤ Pik ≤ Fik, i ∈ N, k ∈ N(i) (3.12)

¯
Pi ≤ Pi ≤ P̄i, i ∈ G ∪ D. (3.13)

The following section will provide the economic motivation behind the OPF problem

formulation, and eventually will explain how one can derive nodal prices from these

optimization problems.

3.1.2 Electricity Pricing, Economic Dispatch and Unit Commit-

ment

In electricity markets, the market clearing problem is usually formulated as an economic

welfare maximization problem (for more details, see Appendix A.1.3.1). When the

elasticity of demand is set to zero, i.e. the demand is a constant quantity d, then instead

of welfare maximization, one can formulate the problem as the minimization of generation

costs. In the simplest formulation of the so-called economic dispatch, the optimization

problem can be formulated in this way:

minimize
gi

f(g) (3.14)

subject to∑
i∈G

gi − d = 0. (3.15)

Where the costs function f to generate power g is minimized, subject to the real

power balance in the system, i.e. the sum of all power generated gi from generators

G needs to equal the overall demand d. This is the simplest approximation of power flow

(see Section 3.1.1) (Taylor, 2015). The market-clearing price should reflect the costs of

producing (or consuming) one additional MWh of electricity. In the context of duality,
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this is represented by the dual variables λ of the power balance constraint (3.15)3. Usually,

the economic dispatch problem includes constraints reflecting the operational limitations

of generation units. Further, when also flow limits are included represented by the power

grid, one speaks of OPF (see Section 3.1.1). In the DC-OPF formulation, the optimization

problem takes the form as it has been stated in Equations (3.10)-(3.13).

In a zonal representation, which is currently in place in Europe, for every pricing zone,

one power balance is enforced as well as flow limits between the zones. The dual variables

associated with each power balance constraint will render the zonal market-clearing price.

Moving towards a more detailed representation of the electricity network, further energy

balances can be introduced, in which case one would speak of a nodal representation and

the dual variables of these constraints will render the nodal prices or locational marginal

prices (LMP).

In the above formulation of the economic-dispatch problem, power could be drawn

continuously. However, in reality, it will be delivered by a discrete number of power plants

(units) that are committed to delivering. Therefore, the problem formulation needs to

include binary variables, which leads to Unit Commitment (UC).

3.2 Evolution of Electricity Markets

Electricity markets worldwide were undergoing some evolution in the 1990s. Before,

electricity systems were vertically integrated and in their entirety highly regulated. Often

a single utility controlled generation, transmission i.e. electricity networks and their

operation and distribution, they thus held a monopoly on electricity and had to be

overseen by regulatory authorities to ensure fair pricing for consumers. Then there was a

push for deregulation in many countries, which led to the unbundling of the energy value

chain and allowed more players to enter into the market, giving room for competition.

The EU initiated the process of liberalizing electricity markets in 1996 within the First

Energy Package (European Union, 1996). With the Third Energy Package in 2009,

ownership unbundling became mandatory and in this context, ACER was founded to

further facilitate the cooperation across countries (European Union, 2009). However, the

operation and maintenance of the power grid remain the task of regulated entities, as it

3The concept of Lagrangian duality and the Karush-Kuhn-Tucker conditions are presented in
Appendix A.1.1
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represents a natural monopoly on distribution. With the deregulation of the energy sector,

energy utilities had to sell their generation units, allowing others to enter the market. As

a result of more market participants, wholesale electricity markets were created.

3.2.1 The European Electricity Market

The liberalized European electricity market can be subdivided into three sequences, as

indicated in Figure 3.1.4 On the forward market, long-term agreements are made for

months and years before the physical delivery of electricity. Moving closer to real time,

the day-ahead market (DAM) plays a central role and can be viewed as the reference

market. DAM auctions open at 10 CET and close at 12 CET the day before the delivery

of the good. Electricity is traded with an hourly granularity for all the 24 hours of the

following day. Within a bidding zone, electricity offers and demand bids are collected,

and the market is cleared at a uniform market clearing price for an entire zone. A bidding

zone is predominantly equal to a country within Europe, while inter-zonal trading is

possible. Between zones, a difference in prices can exist, as for inter-zonal trading the

capacities of transmission lines are taken into consideration through available transfer

capacities (ATC). A consideration of line capacities of the grid is not implemented within

zones, which can be understood as viewing a zone as a copperplate. This may lead to

congestions of lines when their capacity is exceeded and calls for measures to be taken

to ensure a secure operation of the grid. These measures are referred to as congestion

management (including re-dispatching, counter trading) and are taken by the transmission

system operators (TSO) responsible for the respective zone (Holmberg and Lazarczyk,

2015). On the last sequence of the market the real-time or balancing market, balancing

service providers can offer their services in terms of reserves (i.e. capacities to increase or

decrease generation or demand) to TSOs, in order to allow them to perform congestion

management as well as ensure the overall balance of supply and demand in the system.

Following the zonal design of the market sequence, it is interesting to consider

where nodal pricing should be implemented within the existing scheme. The possible

introduction of nodal pricing in the DAM and the real-time market is the subject of

various research. Therefore, the next chapter shines light on the current functioning of

4A number of regulations of the European Commission lay out the rules for the operation of the
transmission system and electricity markets, which are commonly referred to as Network Codes (European
Commission, 2017a, 2015, 2017b, 2016b).
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Figure 3.1: Market sequence in Europe consisting of forward market, DAM, intra-day market,
and real-time balancing market (Schittekatte et al., 2019).

the European DAM.

3.2.2 The US Electricity Market

The unbundling of electricity markets has also happened in the US in the late 1990s

and their system is in general comparable to the European model, though with some

important differences, which will be outlined in this section. The transmission grid

is owned and operated by so-called Regional Transmission Organizations (RTO) and

Independent System Operators (ISO), which are similar to each other and comparable

to European TSOs. RTOs carry out their duties on a larger geographic scale than ISOs,

differently than TSOs they usually also operate electricity markets.

The structure of markets varies across the country, but in general, the sequence of markets

is DAM, intra-day market, capacity market, and ancillary service market. Capacity

markets are used to ensure that a reserve margin of electricity generation is available

in order to maintain grid reliability. Ancillary service markets are used to reward other

services provided by utilities that are used, e.g. for frequency control. Even though the

US has a similar market structure in place to Europe, in order to provide RTOs/ISOs with

the tools to ensure grid stability, additionally and most importantly, some US markets

have implemented locational marginal pricing (PJM 1998, New York 1998, New England

2003) (Dietrich et al., 2005). Through prices that vary across regions, congestions in

the transmission grid are reflected, and this is the first countermeasure to manage these

congestions. LMPs are determined at the DAM and intra-day stage.
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3.3 Nodal Pricing in the European Electricity Mar-

ket

While the current design of the European electricity market is based on zonal pricing,

in the phase of the challenges that the electricity system is facing, several changes to

the functioning of markets are being under consideration. The European Commission

(2016c) in their impact assessment have investigated four possibilities for improving local

price signals to improve dispatch decisions and investments in the EU wholesale market

(Antonopoulos et al., 2020). It is stated that a switch from zonal to nodal pricing would

incorporate the value of available transmission capacity across market regions, which

would utilize available resources more efficiently. The impact assessment further points

out that for electricity markets and networks, nodal pricing is theoretically the most

optimal pricing system and would render remedial actions by TSO to alleviate congestions

unnecessarily. However, implementing nodal pricing in the European internal electricity

market would imply a fundamental change to the structure of markets, the management of

the grid, and trading mechanisms and was deemed disproportionate. Further, stakeholders

expressed concerns about creating a single EU Independent System Operator, instead, a

step-wise regional integration of system operation is preferred. Thus, currently, there

are some regulatory barriers to implementing nodal pricing in the European electricity

system, as well as some opposition by stakeholders, that would need to be overcome.
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Chapter 4

Electricity Market Modeling: State

of the Art

4.1 Nodal Pricing in a Broader Context

A potential transformation of the European electricity market towards nodal pricing is

subject of various discussions in research as well as in a policy context (Antonopoulos

et al., 2020) since it was proposed by Schweppe et al. (1988). The market design currently

in place in Europe is based on zonal pricing as mentioned above. One of the arguments

to maintain this is as opposed to moving to a nodal pricing-based market design is the

level of complexity that would arise when switching market design. However, this has

been questioned to be a valid argument as experiences made in the USA suggest (Neuhoff

and Boyd, 2011). In the following, some concrete advantages and challenges linked to the

introduction of nodal pricing will be highlighted, as they are being discussed in literature.

One of the main cases made in favor of nodal pricing is ”getting the price right” (Hogan,

1999). This means that several prices are needed to sufficiently display the economic and

physical reality of a transmission grid. Conversely, a single price i.e. a zonal price will

not reflect the physical constraints within a zone appropriately. Capacity limits of the

grid do not allow for a free flux within a zone, as a homogeneous price suggests. This

fact is giving rise to readjustments as counter-trading and re-dispatching done by TSOs

in order to ensure system stability. This is because the reality i.e. the bottlenecks of

the grid are not displayed in electricity prices. These issues can be addressed through

the introduction of nodal pricing (Schweppe et al., 1988). Furthermore, nodal prices can
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facilitate the integration of day-ahead and balancing markets. As has been mentioned

above, in the zonal design of the market, as it is in place in Europe as of today, firstly,

the DAM is cleared. In a subsequent step, real-time trading is needed, in order to provide

for balancing of the system by TSOs through managing reserve capacity. In this context

nodal pricing can make this step of re-dispatching obsolete or less important, which is

mostly necessary because the physical grid constraints are being disregarded in the zonal

approach (Hogan, 1992).

In every node, the particular price will display the physical reality and thus send the

correct economic signals. By sending the right price incentives, nodal pricing can also

contribute to avoiding boom and bust cycles as they tend to appear within investments in

generation units (Schubert et al., 2006). Boom and bust cycles refer to the phenomenon

that in times of low electricity prices investments in electricity generation units decrease

(Ford, 2002). They do so up to a point, when there are fewer and fewer units in the market,

which will eventually cause an increase in electricity prices, which will in return increase

investments in generation units again. However, this is not a cost-effective investment

scheme for the overall system, and the potential to mitigate it through nodal pricing

an opportunity worth mentioning. A prominent argument made against nodal pricing

is the increased presence of market power. Market power is exercised when a market

participant is able to dominate the market due to its strong position in the same and

abuse this power. A larger bidding zone does not only offer a higher liquidity, but as

there is a large number of participants, their individual capabilities to gain and exercise

market power is mitigated. Based on technical considerations and experiences gained

from the implementation of several zones in the Californian market, Harvey and Hogan

(2000) arrive at opposite conclusions. While a node represents a smaller area than a zone,

the optimization and clearing of market prices is done considering a much larger area.

Thus, at the same time, in the face of smaller bidding areas on a nodal level, market

surveillance can become simpler.

Hu et al. (2018) perform a literature review of market designs favoring increased RES

in the system. Their findings are that there are many barriers in the way of RES

integration, one of them being the integration costs. As a remedy, they identified among

other locational marginal pricing, as it reduces grid costs. Therefore, they suggest further
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work to focus on model based cost-benefit analysis of suggested LMP based markets.

In a technical report of the JRC, Antonopoulos et al. (2020) conduct an analysis of

the effects and possibility to implement nodal pricing in the European internal electricity

market. While they point out the possible benefits, they identify a couple of challenges

as the practical transitioning, which would be cumbersome in the face of several technical

and regulatory challenges. Further, a shift in the reference market would be required,

i.e. balancing market would be the reference market while DAM and intra-day market

would be considered forward markets. Thus, further harmonization of European balancing

markets is a prerequisite. Lastly, Antonopoulos et al. (2020) also stress the question of the

roles of TSOs and DSOs and their interactions in the face of increased decarbonization

and decentralization of the electricity system. As opportunities for future research, they

identify the investigation of zonal-nodal hybrid systems, as well as the possible benefits

of a pan-European nodal system.

Weibelzahl (2017) survey nodal, zonal, and uniform pricing mechanisms in the context

of congestion management. The main advantages of nodal pricing are identified to be

welfare maximization and efficient pricing; and perfect integration of generation and

transmission. Disadvantages, on the other hand, are a large number of prices, low liquidity,

and a small number of traders and resulting low competition as well as the complex

coordination of submarkets. The author concludes that nodal pricing yields the first best

outcomes, as congestion is reflected in LMPs. Though many countries still maintain a

uniform or zonal pricing scheme due to the discussed disadvantages of a full nodal pricing

mechanism. This in consequence leads to welfare losses, thus, studies need to carefully

assess and quantify the advantages and disadvantages. Thereby, one is faced with a

trade-off between the detailed technical depiction of nodal systems and computational

solvability. While there may be some difficulties in the joint implementation of nodal

pricing in Europe, it is worth investigating the feasibility given the advantages nodal

prices could provide.
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4.2 Models of Zonal and Nodal Markets

The algorithm utilized to clear the European area covered under the price coupling of

regions (PCR) is EUPHEMIA (Pan-European Hybrid Electricity Market Integration

Algorithm). EUPHEMIA is an algorithm focused on the economics of the electricity

system that includes great detail in terms of possible bid types that market participants

can utilize. Though, the algorithm does not include the actual technical constraints that

the participating units and the grid actually encompass. Due to the large variety of

bid types and the corresponding complexity, most market models presented in literature

do not try to realistically emulate EUPHEMIA, but rather rely on unit commitment or

economic dispatch, which include technical constraints and merge them with an economic

perspective.

In the following various studies that rely on zonal, nodal or a combination of both are

presented and applications of these models are discussed.

4.2.1 Zonal Models

The Joint Research Centre (JRC) of the European Commission has developed a pan-

European economic dispatch model (Purvins et al., 2018; Zalzar et al., 2020). The

optimization problem is formulated as a generation cost minimization problem. Costs

are minimized for a period of 24 hours, while constraints are enforced for every hour

of a day. The typical simulation horizon is one year. The commercial energy modeling

software PLEXOS is used to implement the described model (energyexemplar.com). The

model includes 33 countries, which are modeled through 55 nodes. Purvins et al. (2018)

applied the economic dispatch model to perform a techno-economic cost-benefit analysis

of a submarine cable linking North America’s and Europe’s electricity systems. For this

purpose consumer, producer, and merchant surplus were determined. Following basic

economic theory, consumer surplus cannot be obtained when demand is a fixed input,

which corresponds to a vertical demand function leading to infinite consumer surplus.

Thus, Purvins et al. (2018) apply linear demand functions determined through a short-

run demand elasticity value applied to all the nodes for the entire year of the simulation

horizon. More detailed modeling of flexible demand has been identified as a shortcoming

of the thus far conducted work and was picked up already as a starting point for improving
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the present model (see Section 5.2).

Bakirtzis et al. (2018) of the Aristotle University of Thessaloniki developed PHOEBE

a European market model. PHOEBE is implemented using GAMS, MATLAB and MS

Excel. At the core of the bottom-up model lies the 3-level unit commitment optimization

model. The optimal scheduling of power plant electricity generation is done in three

successive steps that clear the different markets: day-ahead market, intra-day market, and

balancing market. The model resolution features the hourly operation of the system for a

yearly horizon. The main application of their model is the assessment of different demand

response schemes and the impact of system adequacy and flexibility. The employed market

model is a unit commitment model formulated as a mixed-integer linear program (MILP),

which is executed in GAMS. The objective is to minimize the overall costs over all hours

of the scheduling horizon, which is usually 24 hours. The results are assessed based on

factors quantifying the adequacy and flexibility of the system. The main features of this

model are the holistic view of 21 European countries, the great technical detail in modeling

the power plants and their operation, and the coupling of a 3-level market optimization

model with probabilistic considerations based on Monte Carlo simulations that can assess

different scenarios based on climatic variations. Possible extensions to PHOEBE can be

a higher time resolution going from hourly to quarter-hourly operation as well as the

extension to include more countries. Especially, a more detailed representation of the

transmission grid can be a useful extension to the model.

Ringler et al. (2017) analyze the potential benefits of creating an integrated European

electricity market through an agent-based model. They give special attention to design

aspects such as cross-border congestion management and capacity mechanisms. These

are investigated with respect to their impact on two system performance measures, i.e.

market-wide welfare and adequacy. In a case study considering Central Western Europe,

they confirm the benefits entailed by cross-border market coupling and the furthering of

market harmonization across Europe.

4.2.2 Nodal Models

Leuthold et al. (2012) developed ELMOD a model of the European electricity market,

building up on the work of Dietrich et al. (2005). The model is formulated as a welfare

maximization problem, where the cost of generation is represented by a step-wise supply
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function, while the demand is modeled through a linear function. Furthermore, the model

includes start-up costs and hydro storage. Simulations are conducted at increments of

one hour and social welfare is maximized considering the entire time horizon, which in

the foreseen application of this model is 24 hours. Another simplification is fixing the

demand levels, which allows formulating the objective as a generation cost minimization

problem and making it a linear program (LP). Extending this problem again to include

unit commitment makes it a MILP. The model is implemented in GAMS.

Leuthold et al. (2012) model the European grid considering more than 4,000 nodes and

more than 2,000 lines. Janda et al. (2017) utilize ELMOD for a study on the impacts

of renewable energy sources on transmission networks in Central Europe. In particular,

they assess the implication of the German Energiewende through different scenarios for

2050 for the transmission system and cross-border flows. They find that increased wind

and solar power increase the flows between zones and their volatility. Due to a lack of

capacity especially in the German system, higher in-feed of wind is identified as the main

contributor to loop-flows through neighboring countries. Interestingly, they further find

that the nuclear phase-out does not contribute significantly to this increased volatilities

and stress to the system.

Quelhas et al. (2007) consider the US energy system and model the flows of energy

through a generalized minimum cost flow problem. What differentiates their model from

the previously introduced one is that next to physical and economic aspects, they also

include environmental factors. Though their general problem formulation is similar to

previous models, they use a slightly different approach of a standard network flow model.

They perform a transformation, in which node-like facilities are represented through a pair

of nodes connected by an arc and consequently the arc parameters represent the facility’s

properties that restrict the flow through it. Generation costs are a convex function of the

flow and are being approximated with a piece-wise linear function, which is comparable

to the previously discussed generation bids making up the supply curve in the actual

DAM. Now, additionally they propose another side constraint that ensures that the overall

nationwide Sulfur dioxide (SO2) emission target will be respected:

∑
i∈G

∑
j∈N(i)

SO2i · (1− ηi) ·
∑
l∈Ig

Fijl

 ≤ NSO2, (4.1)
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where SO2i is the Sulfur dioxide emission rate of generation unit i, ηi is the SO2 efficiency

rate of the emission removal equipment installed at unit i, NSO2 is the national SO2

limit.

Horsch and Brown (2017) study the role of spatial scale on the optimization of

transmission and generation capacity for a European system with 95% reduction in CO2.

In order to identify locations for solar, on- and offshore wind, and grid expansions a

sufficient spatial resolution is necessary, to determine the hotspots and benefits of such

expansions. From their case study, they find that a scenario with no grid expansion is only

20% more costly than the system with optimal grid expansion. By focusing investments

on expansions of existing lines, the issue of public acceptance of newly build transmission

lines can largely be avoided. The authors stress that their results rely on the assumption

of a fully-integrated European system relying on nodal pricing.

4.2.3 Nodal vs. Zonal Models: Case Studies and Applications

Dietrich et al. (2005) investigate nodal and zonal pricing in the German electricity system

through a welfare economic analysis. The electricity system model ELMOD is used for

the assessment of increased integration of wind power into the electricity system, with a

focus on Germany. They identify potential for savings in cost for congestion management

in the nodal system but conclude that there is a need for extension of grid representation

in such case studies.

Egerer et al. (2016) employ ELMOD in order to assess a splitting of the single German

bidding area into two. This is a topic of interest given the heterogeneous distribution

of demand and supply in Germany, which is only expected to become more pronounced

with the increasing installation of on- and offshore wind in the North. In their case study,

Egerer et al. (2016) find that there is a modest decrease in cross-border re-dispatching

levels. However, the need for congestion management remains high even under a splitting

of bidding zones. Further, results are very sensitive to more than two bidding zones.

Future work can include a geographical extension to investigate the effects on exports,

especially to Southern Europe.

Bjørndal et al. (2014) develop an electricity pricing model, which investigates a hybrid

pricing scheme consisting of areas with zonal and areas with nodal pricing in the Nordic

electricity market and the impacts on congestion management. The model is applied to
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a 13-node system emulating the Norwegian and Swedish power systems. The authors

pay special attention to a high-demand scenario, in which they conduct simulations for

a single hour of peak demand. Results for the three pricing schemes are compared in

terms of prices, line loading and utilization, social surplus, and total production and

generation. Bjørndal et al. (2018) apply their hybrid zonal-nodal pricing model to a case

study including the Czech Republic, Germany, Poland, and Slovakia. In their scenario,

Poland adopts a nodal pricing scheme, and they investigate a case of business as usual and

one of high wind penetration. They find that Poland can benefit from a shift to a nodal

pricing scheme, as it helps them manage impacts on their grid caused by their vicinity

to wind power generation units. Poland is able to reduce their needs for redispatching.

At the same time, Bjørndal et al. (2018) find that a country like Germany with a diverse

supply and demand structure can benefit from keeping a zonal pricing scheme, as it helps

them maintain a relatively low electricity price level throughout the entire country.

Felling et al. (2019) investigate the existing price zone configuration in central Western

Europe and propose different configurations based on the results obtained from employing

a large-scale modeling framework. Their model is based on flow-based market coupling.

The comparison performed by Felling et al. (2019) comprises technical and socio-economic

impacts of the different configurations.

Their modeling efforts can be best described in a step-wise scheme. In the first step, an

OPF model is employed to calculate LMPs for all nodes. Their OPF is based on the

DC-lossless approximation, for which they use MATPOWER (Zimmerman et al., 2011).

In the consecutive step, an algorithm is used in order to cluster nodes into zones. The

hierarchical process firstly assigns one node to one zone and continues until all nodes are

part of a single zone. Nodes are assembled based on the smallest difference in LMPs

between the different nodes, i.e. the merging criterion is for the variation in prices within

a zone to be as small as possible (see (Felling and Weber, 2018)).

At the D-2 stage (two days before delivery), the allocation of capacity is determined,

which is in reality a task of the TSOs (see also Figure 4.1 for a comparison between

real-world mechanisms and the modeling approach of the same suggested by Felten et al.

(2019a)). These capacities are the remaining available margins (RAM) resulting from the

zonal power transfer distribution factors.

At the D-1 stage (day-ahead stage), the WILMAR Joint Market Model (JMM) is
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Figure 4.1: Illustration of real-world processes and the corresponding modeling (Felten et al.,
2019b).

employed to clear the market (Tuohy et al., 2009; Meibom et al., 2011). This scheduling

model depicts almost the complete European electricity market and hence they merely

employ the linear deterministic program version in order to keep calculation times

manageable. This assumes that plant operators have perfect knowledge of their generation

at the day-ahead stage, even for a renewable-based generation. Furthermore, generation

units are grouped in units of similar age and capacities within a single pricing zone. The

level of knowledge results in very similar prices reached at the day-ahead and intra-day

stage of the market, yet this feature is only present in the market model. In general,

the JMM solves a cost minimization objective subject to inter-zonal capacity limits

(RAMs), zonal power balance, and generator operation constraints. However, in its actual

implementation, JMM has more than 40 constraints that are being enforced and are thus

not all depicted here in detail. At the D stage, the real-time stage, or redispatching

stage, the TSO needs to adjust the dispatching of power. After the scheduling of plants

is determined from the market-clearing stage, TSOs calculate the corresponding line

loadings and in case of overloadings redispatch power plants. The redispatching model

is formulated as an OPF with the objective of minimizing redispatching costs, i.e. those

for ramping up or down generators. The constraints enforce nodal flow capacity limits,

energy balance, and various limitations to redispatching capacities.

Felling et al. (2019) apply their model to assess alternative bidding zone configurations

for Central Western Europe and neighboring countries. Bidding areas are clustered based

on LMPs using a novel hierarchical clustering algorithm (Felling and Weber, 2018). Felling
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and Weber (2018) conclude that welfare gain can be generated through a switch in

configuration. The benefits originate mostly from reduced costs for redispatching due

to avoided intra-zonal line congestions.

Mende et al. (2018) stress the need to combine market and grid models in order to

perform studies that can assess the increased integration of RES into the electricity system.

When exploring future scenarios for the power system, the market perspective can only

be a starting point, as especially grid extension and operational issues will play a key role

in the future evolution of the system. Thus, they propose a soft-linked combined market

and grid model. They apply their model to a case study on the German system and

study the level of congestion due to a zonal dispatch of generators. They conclude that,

especially given the spatial distribution of RES, a detailed representation of the grid and

all power systems components is vital for a sound contingency analysis of future power

systems.

Poplavskaya et al. (2020) develop a novel market design that integrated redispatching

into a zonal market with flow-based market coupling. They compare their outcomes

against a full nodal model and a zonal model without integrated redispatching. They

find that their approach can reduce the need for ex-post redispatching and increase cross-

border capacity utilization.

Kunz et al. (2016) compare nodal to zonal pricing through two models. The zonal

model minimizes generation costs subject to zonal balance and generation constraints. In

a subsequent step, congestion management is modeled through another cost minimization

problem, where line capacity limits are enforced as constraints. The nodal model

combines this two-step approach in a single optimization. Kunz et al. (2016) investigate

distributional impacts of a switch from zonal to nodal pricing in Germany. Through

the allocation of financial transmission rights (FTR), the impacts of price changes

on individual actors can be mitigated. In their case study, they find that the

distributional effects on the demand side and also largely on the conventional generation

can be successfully mitigated with the right allocational design of FTR. However, they

identified more challenges with regards to intermittent renewable generation, where more

sophisticated FTR design is needed to facilitate an effective switch from zonal to nodal

pricing.

It can be seen from various of the previously discussed studies that for a comparative
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Figure 4.2: Schematic depiction of nodal model and zonal model, including redispatching.

assessment of the performance of a nodal market design against a zonal market design, it

is necessary to include redispatching into the consideration. This is because a model that

determines zonal prices and employs a zonal network representation, disregards intra-

zonal congestions that occur. While a model with nodal network representation that

determines nodal prices will regard the physical limitations of the grid. Therefore, it is

necessary to combine a zonal model with a redispatching model to have a comparable

picture of the final results. This higher level rational is depicted in Figure 4.2. It can be

seen that a nodal model can arrive at a dispatch of generators that is feasible, in the sense

that grid constraints are respected. On the other hand, the generator dispatch of a zonal

model needs to be readjusted by a redispatching model to ensure feasibility. According

to Schittekatte et al. (2019), redispatching actions are firstly applied within a zone, and

only if this is not sufficient to relieve all congestions, also cross-zonal redispatching is

employed.

In the literature, different formulations of the redispatching problem have been

proposed. In general, the objective is to avoid line overloadings (Felling et al., 2019).

Concretely, this objective is either formulated as cost-based or technical-based (also

referred to as volume-based) redispatching. The former is more common, where the costs
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of redispatching are minimized. It is employed in several studies and regarded to be the

approach closer to reality (Spieker et al., 2016; Grimm et al., 2018; Van Den Bergh et al.,

2015; Chychykina, 2019). Usually, upward redispatching makes a positive contribution

to the objective function, and downward redispatching a negative distribution. Felling

et al. (2019) suggest to price upward redispatching at the marginal costs of the respective

generator and downward redispatching at a positive cost that is determined by an inverse

merit order. This means that the generator with the highest marginal costs is the cheapest

to be utilized for downward redispatching and conversely the generator with the lowest

marginal costs is the most expensive to be downregulated. Thereby, they avoid arriving

at the same dispatch of generators with the redispatching model as they do with the nodal

model.

In the volume-based approach, the intervention in the dispatch of generators is

minimized. This means that the minimization of redispatched power is the objective,

regardless of the type of generator and the connected costs. Poplavskaya et al.

(2020) suggest a parametrized objective that puts weights on minimizing either the

volume or the cost of redispatching. Similarly, also Mende et al. (2016) introduce a

multiobjective optimization that considers a trade-off between the volume- and the cost-

based redispatching approach.

4.2.4 Overview and Summary

The previous section presented a literature review on different nodal and zonal models as

well as their applications. To conclude this overview, a closer look will be taken at the

different modeling aspects that are included in the previously mentioned papers. Further,

the applications of various models will be summarized by considering what case studies

were performed and what were major outcomes and shortcomings of these studies.

In order to build a model of the electricity market, one is faced with different design

choices. However, there are some set building blocks that are virtually always present in

such models. An overview of these modeling aspects and examples of choices presented

in the literature are summed up in Table 4.1. The market-clearing model is formulated

as an optimization problem subject to a number of constraints. The objective can be

formulated as cost minimization or welfare maximization. Closely related to this is the

way costs of supply and surplus of demand are depicted. Supply functions are often
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approximated as linear, piece-wise linear, step or quadratic functions. If the objective is

to minimize costs, then the demand is modeled to be inelastic. While in the case of welfare

maximization, demands are depicted as functions in the model. Related to the level of

technical detail of power plant operations is the formulation of the problem as economic

dispatch or unit commitment. The former considers plant operation to be continuous,

while the latter takes into account that there is a minimum operational point, which calls

for binary decisions of plants to be either on or off. Thus, the unit commitment would

render the optimization problem a mixed-integer problem. The operation of power plants

is virtually always at least modeled through setting an upper limit for the power of the

respective generation unit. Other aspects of modeling power plant operations can be the

following. Start-up and -down costs that add additional terms to the objective function.

Ramping constraints take into account that in order to start or stop a power plant, it

takes time (and fuel/costs) to arrive at the minimum operation power level. Minimum up-

and down-times to avoid unrealistic shutting on and off of power plants from one hour to

the next. Lastly, the choice of power flow model is being considered. The most accurate

model of displaying power flows is the AC-OPF, which considers all physical properties of

lines, and flows are calculated accordingly. The DC-approximation represents a common

simplification of the full flow model, which is also referred to as linear approximation. The

simplest approximation to display electricity flows in power lines is the transport model,

which is ensuring flow conservation.

From the overview in Table 4.1 one can see that both types of objectives cost

minimization and welfare maximization are being employed in the literature. Regarding

the formulation of the supply function, linear functions are common, while also piece-

wise linear or step-wise functions are being used. For the models that do consider elastic

demand, linear demand functions are used exclusively. When it comes to the detail of

generation unit operation, economic dispatch is prevalent, while also unit commitment

receives due attention. Also, the consideration of start-up and down, and on- and offline

constraints, as well as reserves is sometimes included in the models, but not imperative

in the surveyed studies. Last, the choice of power flow model is rather dominated by

DC-OPF. Only dedicated studies explore more detailed formulations of the power flow

equations. Transport models are sometimes used, which is predominantly the case in

zonal models.
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Table 4.1: Modeling choices for electricity market models; objective function formulation,
supply and demand function, economic dispatch or unit commitment, intertemporal constraints
or reserves, and power flow model. Shown are references that present electricity market models
and the choices made for the respective models.

Reference
Objective
Function

Supply
function

Demand
function

Economic
Dispatch
(ED) / Unit
Commitment
(UC)

Further
operational
constraints &
reserves

Power Flow
Model

Felling, et al.,
(2019)

min cost
piece-wise
linear

none ED

start-up &
-down, on- &
offline
constraints

DC

Grimm, et al.
(2018)

max welfare linear linear ED none DC

Bakirtzis, et
al. (2018)

min cost linear none EDUC

start-up &
-down, on- &
offline
constraints,
reserves

DC

ENTSO-e.
(2018)

min costs N/A N/A ED none DC

Leuthold, et
al. (2012)

max welfare step-wise linear UC
on- & offline
constraints

DC

Bjørndal, et
al. (2014)

max welfare
piece-wise
linear

linear N/A N/A DC

Baghayipour,
et al. (2012)

N/A quadratic none ED none
DC, improved
DC and AC

Breuer, et al.
(2013)

min cost linear none ED none DC

Purvins, et al.
(2018)

min cost
piece-wise
linear

optional
(linear)

ED (UC
optional)

reserves transport

Quelhas, et
al. (2007)

min cost
piece-wise
linear

none ED none DC

Kunz et al.
(2016)

min cost linear none ED none DC
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4.3 Selected Modeling Topics

From the literature on various market models, one can understand that depending on the

focus and the aim of the modeling exercises and case studies, there are different design

options to build a model of the European electricity market. In the following, a more

detailed view of some design options of models is given.

Firstly, the choice of flow models will be investigated. In OPFs, the representation

of flows in the network is a central choice. In the simplest way, network flows can be

represented by a so-called transport or network flow model, where only the conservation

of flows needs to be ensured. However, in order to account for physical flows, one needs

to either choose a DC-OPF or AC-OPF. Even though it is rather common to account for

power flows through a DC-approximation, there is increasing interest also in employing

the full AC-OPF or improved approximations thereof. The state of the art in research in

this area will be detailed in Section 4.3.1.

For comparative studies of zonal and nodal pricing-based electricity systems, the

representation of networks is essential. Models of these two pricing systems need to

rely on different spatial representations of the same network. Research in this area will

be laid out in Section 4.3.2.

In the context of the restructuring of the electricity system also the role of the different

players and stakeholders in the market will change. In order to increase the resilience of the

grid and incorporate a high share of RES into the grid, more flexibility is needed. Thus,

the flexibility of consumers and their reaction to price signals can play an increasingly

important role in future market designs. Therefore, the modeling of demand elasticity,

the sensitivity of consumers to price signals, is a topic that is receiving increasing interest

and should be considered carefully when designing models to assess future market designs.

Section 4.3.3 gives an overview of modeling methodologies for demand elasticity.

When it comes to medium-term electricity system models that investigate the dispatch

and price evolution throughout a year, it is vital to consider seasonal patterns of hydro

storages to model their role in the system accurately. Thus, a review of the literature on

hydro storage modeling is reviewed and presented in Section 4.3.4.
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4.3.1 Power Flow Models: DC-OPF vs. AC-OPF in the Context

of Nodal Pricing

Optimal power flow is a central tool in power system operation and planning, as the

optimization problem takes the physical limitations of the power grid into account and

renders optimal flows that minimize the overall costs of the system. The question of

whether one should employ the full AC formulation, or the approximate DC formulation

is sufficient in some contexts, is the subject of continuous research efforts.

Overbye et al. (2004) perform a comparative study between the AC and the DC

formulation of the OPF in the context of LMP. They do not employ the conventional

formulation of OPF but an extended one that allows considering contingency constraints,

commonly known as security-constrained OPF (SCOPF). Without going into detail, this

extension includes additional constraints to the OPF that account for a more robust

system, which is more resilient against unforeseen line outages, sudden demand increases,

and alike. Two case studies are conducted.

The first case considers a 37 node system with 58 branches. Beginning with a base

case scenario with an initial overall system demand of 750MW (the load at which

line congestions start to appear), 126 demand cases are considered, where the load is

increased up to 1000MW in increments of 2MW. Each demand case was run for a set

of contingencies, which consisted of 58 single line outages. For each of the 126 cases,

AC-OPF and DC-OPF simulations are performed and the following observations are

recorded. The congested lines and the number of demand cases for which they represent

a constraint. Furthermore, the average LMPs for each node over all the 126 demand cases

are reported. The found results are the following. The AC-OPF identified 6 congested

lines that summed up to an overall number of constraints of 330 (i.e. congested lines

in the 126 demand cases). The DC-OPF managed to identify 5 of those lines and 77%

of the 330 overall congestions. According to Overbye et al. (2004), average node LMP

obtained by AC-OPF and DC-OPF respectively showed a good general agreement with

some deviations. They also present tabular contour plots to report the LMP at each

node for all the 126 demand cases. One can optically confirm an overall agreement in

patterns with some variations, a detailed quantitative analysis is not possible based on

the presentation of results.
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The larger case study considers a system of 12,925 nodes (of which 1,790 generators)

and 17,647 branches. Again, the system load was increased from the initial 171.48GW,

yet it is not specified by what increment and up to what load. Further, the case studies

were performed under 1,360 different contingency scenarios of outages or load moves.

Initially, the average line flows were compared for the DC and the AC solution and found

to differ by only 4.12 MW/MVA (as a difference in LMP only arises from reaching the

flow limits in lines, this is a reasonable predictor for the to be expected difference in

LMP). 1 Large errors in the flows originated from reactive power flows. They again

recorded in what cases the DC-OPF was able to identify the binding constraints. Almost

half of the constraints were missed by the DC-OPF . They performed a further analysis

as to how much the line loading was in the particular missed cases and they report

that most of the unidentified constraints were only missed by a few percent (as only

actually hitting a constraint matters). In this larger case study Overbye et al. (2004)

report the average overall LMP, which are 38.56 $/MWh and 36.13 $/MWh for AC-OPF

and DC-OPF respectively. The way that more detailed results are presented allows, for

now, accurate evaluation of the numerical values. Computation times, in this case, were

95 seconds for the DC-OPF and 95 min for AC. They conclude that the DC approach

generates fairly good results with the clear advantage of having significantly lower running

times. They suggest investigating to improve the DC-OPF in future work. Specifically,

they point to a technique introduced by Grijalva et al. (2003) that allows accounting for

reactive power flows in the DC approximation of OPF.

Li and Bo (2007) develop an improved DC-OPF algorithm that is able to account for

losses, which presents an improvement of the commonly used lossless DC approximation

of the OPF problem. In their previous work, they introduce the concept of Loss Factor

LF of a node i as the change in overall power loss in the system with respect to a 1MW

increase in injection at that node i; and Delivery Factor DF , as DF = 1−LF (Li et al.,

2006). LF and DF can only be calculated once the DC-OPF ran once, therefore their

proposed model in an iterative one. Relying on LF the loss is overestimated, prompting

an improvement to their model by introducing fictitious node demand (FND) (Li and

1LMP differences within a system will only arise when the flow limits are exceeded. What Overbye
et al. (2004) explain is that in any case, the results obtained from the AC approach will be higher as they
consider the overall total power flow of active P (in MW) and reactive power Q (in MVA) as opposed
to the DC one, which only considers active power flows and is hence always lower. Flow limits in AC
considerations are given in terms of apparent power S and S2 = P 2 +Q2.
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Bo, 2007). Thereby, they allocate the overall loss to the respective lines or rather the

adjacent nodes of each line. The LMPs for their DC-OPF are the sum of the following

three factors. The LMP energy for energy is identified to be the Lagrangian multiplier for

the flow constraint of their OPF, LMP cong considering the congestion costs are calculated

based on GSKs and Lagrangian multipliers for the transmission constraints, and the

LMP loss is calculated based on the Lagrangian multiplier of the flow constraint and the

DF.

This iterative FND DC-OPF is compared to AC-OPF and the lossless formulation of

the DC-OPF using two cases, a 5 node system (PJM) and the IEEE 30 node system. The

design of the experiments features an increase of the load level from the initial base case

(900MWh) from 1 to 1.3 per unit of the base case in 0.0025 p.u. increments. The power

factor at all loads is assumed to be 0.95 and thus reactive power is thought not to be a

limiting factor in their experiments. As results, the maximum difference in LMP and the

average difference in LMP of the lossless DC-OPF and the iterative FND DC-OPF each

with respect to the AC-OPF is plotted. The lossless DC-OPF matches the AC-OPF in

82% of the load levels, while the iterative FND DC-OPF outperforms the lossless DC-

OPF and only shows mismatches at 2 load levels (4%). It needs to be noted that these

mismatches are however more significant in amplitude than those of the lossless DC-OPF

. Results from the 30-node case are not reported but claimed to be similar 2.

Li and Bo (2007) discuss the origin of the significant differences in LMP obtained by

different models. Evidently, differences originate from the approximations made in the

DC models. Especially, the dispatching of generation and thus the set of marginal units

is identified to have the largest impact on the difference, as marginal units determine the

prices. The authors come to the conclusion that their proposed iterative FND DC-OPF

produces results close to that of the AC-OPF. They suggest testing their algorithm on

other test cases. Running times were not reported.

Baghayipour and Foroud (2012) introduce a method to allocate transmission losses in

lines to adjacent nodes, thereby developing an improved DC-OPF model. They compare

their approach to the conventional lossless DC-OPF and accurate AC-OPF in three case

studies: IEEE 30 and 118 node systems and the Iranian transmission network (648 nodes).

In particular, they compare the obtained generation levels, voltage angles and middle line

2Results from the IEEE 30-node case are subject of a consecutive paper, see Bo and Li (2008).
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flows, and computation time. Their improved DC representation obtains rather accurate

results with respect to those of the AC model and has significantly lower running times.

The cost functions employed are quadratic polynomials. The two IEEE node test cases are

freely available, and they account for their underlying assumptions regarding generation

cost coefficients.

Abdel-Karim and Abdel-Ghaffar (2010) investigate the impact of increased wind power

injection on the Northeast Power Coordination Council (NPCC) US power system in

terms of system operation and costs. They utilize a simplified 36-node representative

system as a test case. Different scenarios and levels of wind generation are considered and

the impact is measured in terms of: generation outputs and costs, generation dispatch,

and in terms of the sensitivity of LMPs to the different injection scenarios. LMPs were

calculated through different approaches, i.e. AC-OPF and DC-OPF that considers line

losses through loss factors and delivery factors, similar to the approach suggested by Li

et al. (2006). The results are compared in terms of differences in LMP, obtained by the

two approaches. One of the key findings in terms of the impact of net power injections

on the LMP at a particular node is that at nodes with minimum LMP, the values show

greater sensitivity to variations in injection. While at nodes with high LMP and expensive

generation, the sensitivity of LMP to a change in power injection is low. The nodes with

LMPs that showed greater sensitivity to power injection, were also the ones with the

largest convergence discrepancies between AC-OPF and DC-OPF. The reasoning behind

this is the fact that at nodes with low prices and high injections more constraints are

limiting and these are the circumstances under which DC-OPF and AC-OPF tend to

diverge the most.

Sharma et al. (2017) compare a DC-OPF model with distributed losses, the conven-

tional lossless DC-OPF and the accurate AC-OPF. A case study is performed on the

IEEE 30-node system and different load level scenarios are considered. The results are

presented in terms of maximum and average difference in LMP obtained by the three

models for the different load scenarios. Lossless DC-OPF shows a decreasing tendency

in average difference from AC-OPF as load levels increase. The DC-OPF taking into

account distributed losses is outperforming the lossless model consistently throughout the

scenarios, reaching average LMP differences in comparison with AC-OPF as low as 2%.

Sharma et al. (2017) also report LMPs for the load base case obtained by the three models
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per individual node. It is noticeable that AC LMPs vary on each node, while neither the

lossless nor the distributed loss DC-OPF deliver significantly varying prices for the base

case (with only minor exceptions on 4 nodes). Reasons for the difference in LMP lie

in the approximations of the DC-OPF. In the case of no congestions in the system, the

only difference in LMP originates from losses, which are not accounted for the DC model.

However, the reported results of the loss distribution model are curious in the sense that

also its performance is rather poor in the absence of congestions.

Liu et al. (2009) point out the central role that LMPs play in many wholesale power

markets and criticize the lack of transparency regarding the derivation of prices from

OPFs. They provide a detailed derivation of LMPs from AC-OPF and DC-OPF and

thereby tackle this non-transparency regarding market operations. Yang et al. (2018)

propose a linear OPF that includes reactive power and voltage magnitudes to improve the

commonly applied DC-OPF and obtain results closer to the full AC-OPF. The motivation

lies in the improved accuracy, while They iterate that DC-OPF is the method commonly

used by system operators even though it can increase operational costs, jeopardize security

and threaten market inefficiency, this is because of the robustness and guarantee of

convergence as well as the transparency of the solution of linear OPF. Gross and Bompard

(2004) investigate the application of the optimal power flow problem (AC-OPF) to obtain

nodal prices in competitive markets. They find that there are several issues with using

AC-OPF to clear the market. Firstly, this is because of the flatness of the optimal

solution and the resulting continuum of ”optimal” solutions. Secondly, they identify

issues with the level of capability that lie with the central decision-making authority that

can execute their powers arbitrarily and discriminate against market participants without

greatly affecting market efficiency. According to Gross and Bompard (2004), there is

considerable arbitrariness involved in the entire chain of utilizing OPF, i.e. from model

formulation, level of detail in network representation, and solution methodology.

4.3.2 Network Representation: Role in Nodal vs. Zonal Based

Electricity Market Models

In the process of determining nodal prices, the physical capacity limits of the network

are being taken into account, which can thus reduce the need for redispatching and send

correct price signals to the market Hogan (1999). Therefore, there is a need for sound
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modeling of the electricity system that takes the physical network into account in great

detail. There are some challenges to modeling electricity systems based on nodal pricing

coming from zonal pricing-based approaches.

While there are numerous modeling design options, there is a common difference

between the presented nodal models, when they are contrasted to zonal models, which

is the detail of network representation employed. Nodal pricing can only be applied or

investigated, for that matter, based on an electricity grid that features a high enough

granularity in terms of nodes and lines accounted for. In this context, it is rather

important to have network representations to compare the two market designs, which are

mostly differentiated by their level of detail in terms of grid representation incorporated.

Several studies have explored different methodologies to aggregate networks. Klein et al.

(2016) develops a methodology to aggregate large-scale transmission networks based

on an optimization algorithm that minimizes flow errors. They apply their clustering

methodology to the IEEE 118 node case and aggregate it to a 12-node network. The aim

of their study is the reduction of complexity for applications such as network extension

studies. They achieve improved results in terms of flow errors in comparison to Shi and

Tylavsky (2015), who apply a method based on equivalent transmission lines. Felling

and Weber (2018) applies a hierarchical cluster algorithm as an extension to Ward’s

method Gupta et al. (2018) to create clusters out of nodes with similar nodal prices.

By applying their methodology to the European grid, they create zones, which differ

significantly from the currently existing bidding zone configuration. They report the

benefits of their proposed configurations to be a similar size to the different price zones

limiting market power and reduced intra-zonal price fluctuations. Gupta et al. (2018)

reports on different aggregation methodologies as well as challenges accompanying these

studies. Their findings indicate that the choice of aggregation method should be problem

dependent and that the operation point of a system plays a major role when it comes to

the accuracy of the aggregated system. Zonal representations of a network can always

only be an approximation, as power flows within lines or branches that lie within a zone

are disregarded, impacting the flows in interconnecting branches, which will consequently

also lose accuracy. What gives rise to nodal prices are congestions in branches, thus an

approximation of these flows will affect price outcomes, nodal as well as zonal prices.
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4.3.3 Demand Elasticity Modeling

Consumers’ sensitivity to electricity prices is a subject that is increasingly receiving atten-

tion in electricity system planning. While country studies exist, which are investigating

the impact of demand elasticity on electricity market modeling (Thimmapuram and Kim,

2013; Kladnik et al., 2012), even under altered bidding zone configurations (Dietrich

et al., 2005; Bjørndal et al., 2013), there is a lack of a holistic view at a pan-European

level. In addition, pursuant to the recently entered into force EU regulation on the

internal electricity market, transmission system operators and regulatory authorities are

encouraged to review the current bidding zone configurations, which emphasizes the need

for such research (ENTSO-E, 2018b). Typically, models aiming at considering demand

elasticity as a variable of the problem often do so through the introduction of linear

demand function into the objective function, which seeks to maximize social welfare

(Dietrich et al., 2005; Leuthold et al., 2012; Bjørndal et al., 2014, 2018). Modeling demand

as a variable is difficult also considering the fact that historic demand data or demand

forecasts are often available in terms of time series of absolute demand values, which

only allow for considering demand as inelastic; for this reason, a methodology to estimate

demand functions is needed. Various studies determine demand function variables through

a given demand elasticity and for (a single) fixed reference price and demand throughout

the time horizon. Kladnik et al. (2012) propose a three-step approach to estimate elastic

demand bids from the results of market equilibrium calculations.

Eskeland and Mideksa (2010) study the relationship between residential electricity

demand, temperature, and climate change. They base their estimate on data from

1995 to 2005 from 32 European countries (Austria, Belgium, Bulgaria, Croatia, Cyprus,

Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,

Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland,

Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Turkey, United Kingdom). The

resulting overall demand elasticity for households is estimated to be -0.2.

Azevedo et al. (2011) investigate electricity consumption in the EU and the US and

the impact of rising prices on CO2 emissions. Their study is based on annual data on

electricity prices and consumption, weather, and income per capita for the years 1990-

2004, it covers 15 European countries (we will never know which ones, they mention
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explicitly 13). By employing a static regression model and estimating its parameters

through OLS (ordinary least square) they obtain an electricity price elasticity of -0.2 to

-0.21 for European households.

Blázquez et al. (2013) analyze the residential electricity consumption in Spain. Based on

data from 47 Spanish provinces from 2000 to 2008 on aggregated electricity consumption,

average electricity price, demographic and weather data. A dynamic partial adjustment

approach is used to model the data and GMM is used to extract amongst others

the demand elasticity. The estimated short-run electricity price elasticity of Spanish

households is -0.07 and the long-run elasticity is -0.19.

Madlener et al. (2011) look at the energy consumption of households in eighteen

OECD countries and the industrial sector in Germany, of which the latter will be

reported on in more detail in the following section based on a dedicated publication

regarding this part of the study by Bernstein and Madlener (2015). The study on the

demand responsiveness of households is based on time series data from 1978 to 2008 on

residential electricity consumption and price and net disposable income. The authors

explore several econometric methodologies based on cointegration analysis to evaluate

time series and panel data, i.e. maximum likelihood system approach, fully modified

OLS (FMOLS), dynamic OLS group-mean panel estimation framework (DOLS) and

autoregressive distributed lag bound testing procedure (ARDL). Many of the obtained

results for demand elasticity values of residential consumers in the investigated countries

were not statistically significant, those that were ranged from -0.11 to -0.21 short-run and

from -0.14 to -0.8 long-run.

Bernstein and Madlener (2015) report on the short- and long-run elasticity of several

industrial subsectors in Germany, based on the more extensive study conducted by

Madlener et al. (2011). The study is based on data on nominal electricity prices,

electricity consumption, real value-added, and value-added price index. They employ

a cointegrated vector auto-regression (VAR) model and estimate its parameters using

maximum likelihood. For short-run price elasticities, they only obtained significant for

the non-metallic minerals sector (-0.57) and for the transport equipment sector (-0.31).

Significant values for long-run electricity price elasticities were estimated for the following

three sectors: non-metallic minerals -0.3; transport equipment -0.3 and pulp and paper

-0.52.
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Iimi (2010) studies the elasticity of industrial energy demand in 7 Eastern-European

countries with respect to electricity prices. The underlying data is drawn from a

survey on a sample of about 1,000 enterprises and their output and cost structures

throughout the years 1995 to 2005. Short-run elasticities of energy demand were estimated

indirectly by considering translog cost functions of firms and the sensitivity to changes

in electricity prices, which were determined through seemingly unrelated regression

(SUR) and stochastic-frontier analysis(SFA) estimators. Only the former method yielded

statistically significant results for all countries, which are: Albania -0.774, Bosnia &

Herzegovina -0.26, Bulgaria -0.33, Croatia -0.37, Macedonia -0.76, Romania -0.21 and

Serbia -0.372. With the SFA method, Iimi (2010) obtained higher elasticity values for

two countries, i.e. -1.01 for Macedonia and -0.896 for Serbia.

4.3.4 Hydro Storage Modeling in Large-Scale Nodal Pricing

Models

The significance of sound hydro storage modeling in medium-term electricity market

models, as well as different approaches to do so, has been studied in various research.

Stoll et al. (2017) give an overview of the different hydropower modeling challenges. One

of the major difficulties is linked to the time horizon considered. While for short-term

models with potentially a high time resolution operational constraints are the issue at

hand whereas the accurate modeling of hydro storage reservoirs is not very relevant.

Medium-term hydro optimization is concerned with the seasonality of reservoirs and

inflows as well as the storage aspects throughout a year. Long-term models are more

oriented towards considering climatic fluctuations and the impacts on the hydrological

system. They discuss the application of soft constraints to model hydro storages and

the difficulties of choosing penalty costs correctly and balancing well between different

objectives. Lastly, run-time requirements are identified as a major challenge and discussed

in the context of finding a trade-off between accuracy and computational tractability. Stoll

et al. (2017) discuss the use of cost functions to forecast the future value of water stored

in hydro reservoirs. This is especially relevant when optimizing a model in sequence over

a longer time horizon. This needs to be done through additional constraints to account

for the time-dependent factors. The relevance of hydro storages for zonal modeling and
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the impact it has on different pricing regimes are explored by Weibelzahl and Märtz

(2018). They investigate the challenges hydro storage dispatch pose also in the context

of congestion management and different zonal configurations. In EUDispatch a zonal

model of the European electricity system, the seasonality of hydro is captured through a

preliminary run where a temporal aggregation of the model allows obtaining weekly SOC

profiles. These serve as input to simulations with hourly resolutions that are performed

in sequences of a week. The weekly SOC profiles provide fixed target values for the

beginning and end of each simulation step (Brancucci Mart́ınez-Anido et al., 2013a,b).

Sahraoui et al. (2019) study the hydro unit commitment problem formulated as MILP cost

maximization and in particular focus on mitigating data errors and infeasibility issues.

They suggest providing fixed operational points to hydro facilities, as well as mid-horizon

and final target volumes. Through the introduction of marginal corrective slacks into

their model, they eliminate infeasibility issues through a two-stage method. They test

their methodology on real-world test cases that are comparatively small. Fosso et al.

(1999) discuss the standardized bidding procedures for the dispatch of hydro storages

in Norway. They describe the use of water values to be utilized as bidding prices in

long and medium-term models. While under some circumstances constant bid prices

for hydropower can be used (Fosso and Belsnes, 2004), it is rather common to work with

dynamic bid prices. These bids are deduced as shadow prices of the hydro storage reservoir

continuity constraint (Fernández-Blanco et al., 2017; Braun, 2016; Baslis et al., 2009).

4.4 Open-Source Data, Tools and Models

In power system modeling there are initiatives as Open Energy Modeling (openmod), an

initiative of researchers from different universities and research institutes that promote

and practice openness in energy models and data (Open Energy Modeling Initiative,

2022). Through an open-source policy in energy system modeling, transparency and

reproducibility will be improved, which is vital also when it comes to public acceptance of

studies on future scenarios for the electricity system (Wiese et al., 2014). The accuracy of

models can be improved through the facilitation of cooperation and joint projects, which

help to avoid double work and redundancies. Especially, the necessity of reliable input

data for sound energy modeling is an issue raised by the open-source community and
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addressed in the open power system data project that developed as part of the openmod

initiative (Wiese et al., 2019).

Also, Medjroubi et al. (2017) stress the issue of grid data availability in the context of

energy system modeling. They discuss the different types of grid models as copper plate

approach, where there is only a single node present; transshipment models, which feature

different nodes or regions. The latter regularly employ a transport model approach, where

physical flow principles are neglected. This is addressed in more detail in DC-OPF models

and even more sophisticated AC-OPF models, which also account for reactive power

flows. Medjroubi et al. (2017) discuss further the data requirements for the different

types of models. In the simplest copper plate models, ’merely’ data on generation and

demand are required. In transshipment models, additional information about NTC is the

only physical properties of the grid considered, this, however, already requires additional

regional information of generation and demand. DC-OPF additionally calls for additional

knowledge on power lines as their thermal capacities, and the susceptance. Additionally,

AC-OPF models require the definition of buses as PQ- or PV -bus as well as specifications

of generation and demand with regard to reactive power and voltage. Further, line

property information also needs to be extended to include conductance and reactive power

limits. There exist several issues regarding data accessibility not only with regard to grid

data but also renewable energy source locations, load data, power plant locations, and

operational properties. ENTSO-E has released a partial dataset on the European grid

topology, however, it is not geo-referenced, this can also not be compensated by the

fact that some TSOs have released more comprehensive data. Therefore, research on

energy system modeling, especially considering the transmission grid, needs to draw from

open-source data. There are several research projects building upon publicly available

data and Medjroubi et al. (2017) focus in particular on open street map (OSM) and

power data in OSM. This data includes geolocations of different components as well as

transmission line types, voltage levels, and frequency. It represents the basis for models of

the transmission system such as SciGRID, osmTGmod, and GridKit. Comparative studies

of these and other models focus largely on the German grid (Heitkoetter et al., 2019;

Medjroubi et al., 2017; Medjroubi and Vogt, 2017). Also Syranidou et al. (2022) compare

power system and grid models in Germany against each other, these are ELMOD, eTraGo,

Europower, ISAaR, MarS/ZKNOT, MILES, PERSEUS, PowerFlex. While several of the
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above-mentioned models are open source for single countries or regions, there is a scarce

amount of models that cover a larger geographical scope and are freely accessible. A model

of the European system that was introduced by Zhou and Bialek (2005) and updated by

Hutcheon and Bialek (2013), covers transmission lines, but only includes cross-border

capacities. On the other hand, SciGRID and GridKit, which is developed as an extension

of SciGRID, cover the entire transmission system. They both rely on OSM data but

use different data types to build up the network of lines. Hörsch et al. (2018) developed

PyPSA-Eur, which is an open-source energy system model of the European transmission

grid. It uses GridKit to extract the grid topology from ENTSO-E’s interactive map

(ENTSO-E, 2022). Given the fact that this map is a somewhat artistic depiction of the

reality, there are admittedly some errors in the dataset, however, in comparison to other

approaches, there is merit in reproducibility and accessibility of data. PyPSA-Eur builds

up on the topology data and assigns standard line types and properties to transmission

lines. Thereby, the transmission system at and above 220 kV voltage level is covered as

well as DC lines. The resulting network is depicted in Figure 4.3. Further, load and

generation units are collected from open sources and added to the network. Load is

allocated to nodes based on a heuristic that is oriented on the population density. Time

series for the availability of renewable energy sources are also added, as well as other

meteorological data as hydro inflows to storage reservoirs. By design, PyPSA-Eur can

analyze future scenarios for capacity extension of grid and generation. The model relies

on PyPSA a Python-based power system model, which can build and solve different types

of optimization problems such as OPF, PF, and capacity extension (Brown et al., 2018).
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Figure 4.3: European transmission network as extracted from ENTSO-E’s grid map by PyPSA-
Eur (Hörsch et al., 2018).
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Chapter 5

Towards a European Nodal Pricing

Model: Results

This chapter presents the main outcomes of the work performed in the context of this

PhD studies. Firstly, the choice of power flow model and the role for nodal prices as

well as the impact of different network representations are examined in Section 5.1. This

part is thus dealing with some more traditional modeling aspects and represents a first

approach to performing analyses on the assessment of modeling choices.

Secondly, a study on demand elasticity in a European context is presented in

Section 5.2. The commonly used commercial modeling tool Plexos is used to implement

demand elasticity. Incorporating consumers’ elasticity to prices on a European scale

represents a novelty.

Thirdly, the issue of modeling hydro storage state of charge evolutions under myopic

foresight is addressed in Section 5.3. This is necessary due to a lack of data and the

computational challenge of solving large-scale optimization problems of systems with very

high spatial and hourly time resolution. Through the development of a heuristic algorithm,

hydro state of charge profiles were obtained that allow for comparative nodal vs. zonal

case studies. Lastly, to demonstrate the applicability of this heuristic, a case study on the

costs of redispatching is performed. The methodology relies on a full nodal model and a

zonal model coupled with a redispatching model.

The following sections are all structured in a similar fashion. An introduction along

with the description of the problem initiates the sections. This is followed by outlining the

methodology and the formulation of the underlying model used for the respective studies.
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The data and case study design is introduced in the subsequent section. Thereafter, the

results of the performed numerical experiments are presented and conclusions for each

section are presented at the end.

5.1 Study on Power Flow Models and Network Rep-

resentation

5.1.1 Introduction and Problem Description

The electricity system is evolving with the increasing incorporation of renewable energies,

therefore also the transmission system is facing expanding challenges. As a consequence,

electricity markets are also evolving. A topic of increasing interest is nodal pricing as

an alternative to zonal pricing-based electricity markets in Europe. As nodal prices arise

from physical constraints of the electricity grid, accurate modeling of flows in networks

through optimal power flow models is a necessity. This section is focusing on two aspects

of this modeling endeavor, being the type of optimization problem: DC-OPF, AC-OPF, or

unit commitment DC-OPF on the one hand; and the network representation on the other

hand. In Sections 4.3.1 & 4.3.2 a literature review on these topics has been presented.

Firstly, the two most widely used formulations for OPFs AC-OPF and DC-OPF and

their performance at determining nodal prices are compared, through the consideration

of border cases, where larger differences tend to arise. Further, computational costs are

assessed in a second case study. Lastly, the impact of different network representations is

investigated.

5.1.2 Model Description

The formulation of the optimal power flow problem has already been formally introduced

in Section 3.1.1. The full AC formulation was presented in (3.3)-(3.9). The costs to

produce power are minimized (3.3), subject to active (3.4) and reactive power flow

constraints (3.5), flow constraints for apparent power (3.6), operational limits for active

(3.7), reactive power (3.8) and voltage (3.9) (Andersson, 2012; Taylor, 2015).

The linear approximation DC-OPF has been introduced in (3.10)-(3.13). Additionally,

unit commitment is considered in this study and therefore the unit commitment
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formulation of the DC-OPF is presented here:

minimize
p,θ

∑
i∈G

fi(Pi) (5.1)

subject to

Pi =
∑

k∈N(i)

Pik =
∑

k∈N(i)

Bik(θi − θk), i ∈ N (5.2)

−Fik ≤ Pik ≤ Fik, i ∈ N, k ∈ N(i) (5.3)

αi
¯
Pi ≤ Pi ≤ αiP̄i, i ∈ G ∪ D. (5.4)

The objective function, power flow and flow constraints are the same as for the previously

introduced DC-OPF. What renders this formulation different is the introduction of binary

decision variables αi. They indicate whether a generator is in operation or not and render

the unit commitment formulation of the OPF a MILP (see also Section 3.1.2).

According to Liu et al. (2009), nodal price or locational marginal price (LMP) is the

price to provide an additional increment of power at a node while respecting all network

constraints. They can be derived as Lagrange multipliers or dual variables for the active

power balance constraints (3.4), (3.11) and (5.2) respectively.

5.1.3 Data & Case Study

The computational experiments were conducted using MATPOWER , a built-in tool of

MATLAB designed to perform power flow calculations (Zimmerman et al., 2011). A first

case study was conducted on the ACTIVS 500-node test case, for which LMPs were

calculated using DC-OPF and AC-OPF. In an effort to identify borderline cases, where

differences in DC-OPF and AC-OPF are expected to occur, the system was put under

stress by altering its constraints. The second part of the study relies on 41 test cases

that are freely available. Cases are chosen, which include cost functions as only they

are appropriate to perform OPF calculations. For the first part of the study, all cases

are solved using DC-OPF, AC-OPF and unit (de)-commitment. Computational times

are recorded and the average run times over 10 runs are reported. DC and AC-OPF are

solved using MIPS (Matpower Interior Point Solver) (Wang et al., 2007). MATPOWER

does not support the solving of mixed-integer problems, therefore the unit commitment

problem is solved as “unit de-commitment” problem. Thus, it is not the MILP presented
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in 5.1-(5.4) that is solved. Instead, the heuristic approach of MATPOWER follows two

steps. Firstly, the DC-OPF is solved as it is presented in (3.10)-(3.13). In this step,

all generation units are dispatched, at least with their minimum capacity as imposed by

(3.13). In a consecutive step, a heuristic algorithm is applied that shuts down generation

units until no further improvement can be achieved. However, the solution found through

this approach is not guaranteed to be optimal.

The third part of the experiments takes a closer look at one example case, the IEEE

118 node case. A special focus lies on an approximation of this case. Klein et al. (2016)

proposes a methodology to aggregate large-scale networks into smaller representative

networks. Their methodology is applied to the 118-node test case in order to reduce

it to a 12-node case. The original nodes are aggregated into clusters, which consist of

2 to 20 nodes. Clusters are found by solving an optimization problem, which seeks to

minimize the error between line flows calculated from the original 118-node case and the

aggregated case. The authors find that 12 clusters lead to a minimization in flow errors

as opposed to other numbers of clusters. Besides the clustering of nodes, they also report

the parameters of the lines connecting clusters. However, these parameters do not feature

limits on line flow capacities, as imposed by (3.6), (3.12) and (5.3) respectively. Thus,

capacity limits are introduced to the 118-node case, which are oriented according to the

outcomes of a power flow calculation for the base case, consequently, capacity limits are

introduced that allow an unconstrained flow in the base case. The results of line flows are

used, and 1 MW is added to all line capacities in order to ensure uncongested flows. For

the aggregated 12-node case, capacity limits are not derived from flow calculations, but

capacity limits stem from the aggregations of the 118-node case’s lines and the previously

imposed new capacity limits. For the comparative study of several cases, the load factor

is increased within the entire system in steps of 0.02 from 1 to 1.018, which is the highest

value for which the optimization problem remains feasible. This is an artifact of the

way capacity limits are introduced to the system, which makes it not very flexible to

accommodate higher load levels. However, this experiment gives us the chance to study

the system in 10 different states in a comparative fashion.

It needs to be noted that the IEEE 118 node test case and the aggregated 12 node

case of the former do not directly emulate the difference in a nodal vs. a zonal network

representation. However, the rationale is that also the transmission network’s nodes
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Figure 5.1: Locational Marginal Prices (in $/MWh) obtained through performing a DC-OPF
and an AC-OPF for four case studies on the ACTIVS 500-node test case system. a) Base case.
b) Increased upper limit for active power generation. c) Increased ranges for active and reactive
power generation (increased upper and decreased lower limits). d) Increased reactive demand
(1.83 p.u. wrt the base case).

are clustered into zones, while the zone borders follow predominantly country borders.

Therefore, the presented test case represents a somewhat ideal case of a clustering that

follows an optimization strategy rather than geographical clustering.

5.1.4 Numerical Experiments

A. LMPs from AC-OPF and DC-OPF: 500 node test case The results are

presented in terms of absolute LMP at each node. A base case scenario is compared to

cases of increased generation limits and to a case of increased reactive power demand. The

base case is shown in Figure 5.1a. One sees that AC and DC LMPs are well aligned. Both

models identify 1 congested line. In the next case, the maximum active power generation

of all units was increased with respect to the base case. As can be seen in Figure 5.1b,

the prices dropped significantly due to the employment of more capacities of cheaper

generation units. Further, the patterns of LMP differ considerably. DC-OPF identifies

only 2 congested lines, which may explain the similarity in the pattern to the base case,

whereas AC-OPF identifies 5 congested lines. In a third case, the minimum and maximum

generation constraints are loosened for both reactive and active power generation. The
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results are shown in Figure 5.1c. The overall difference in LMP patterns may be attributed

to the fact that the AC-OPF identified 5 congested lines, while DC-OPF only found 4,

yielding less significant spikes as observed in the previous case. The offset in prices can

be explained by the difference in dispatched generation units. In order to compensate

for line losses in the AC model, more generation of power is needed, which is realized

through dispatching one more unit with higher marginal prices than in the DC model.

For a fourth case study, the demand for reactive power was increased. The obtained LMP

patterns differ quite significantly, as can be seen in Figure 5.1d. AC-OPF finds 5 lines

to be congested, while DC-OPF only has 1 congested line (as in the base case), which is

evidently due to the reactive flows, which are neglected in the DC approximation.

The results of the performed case study suggest that DC-OPF renders rather accurate

nodal prices with little discrepancies when both models identify the same congestions and

the system is not under much stress. However, this is no longer true when it comes to

the border cases, i.e. just before congestion occurs; when there are large flows of reactive

power; when the two models suggest a different dispatch structure of generation units;

or when congested lines are not found by DC-OPF. It is, therefore, essential to bear this

discrepancy in mind as one investigates such cases. However, it needs to be noted that in

the application as a market-clearing tool, DC-OPF has some advantages over AC-OPF

when it comes to transparency (Liu et al., 2009; Yang et al., 2018; Gross and Bompard,

2004).

B. Computational Times: 41 Cases

Figure 5.2 reports the results of the runtime experiments conducted on 41 test cases

available to be used in Matpower. Shown are the computational time in seconds over the

number of nodes the case’s network has on a loglog scale for DC-OPF, AC-OPF, and DC

unit de-commitment. For cases with less than 1,000 nodes, one sees that both DC and AC-

OPF computational times lie around 1 s. As the number of nodes in the network exceeds

1,000 the trends start to deviate and AC-OPF computational times start increasing, while

also DC-OPF runtimes go up, but noticeably less. The unit de-commitment calculations

take longer already for several 10s of nodes in a network and start increasing significantly

from around 1,000 node cases, though it has to be noticed that it is difficult to identify

a clear trend as computational times vary largely for networks with 1,000s of nodes.

However, consistently runtimes for cases with around 10,000 nodes are very large and
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Figure 5.2: Run times in seconds (s) over the number of nodes in a network for 41 test cases.
Computational times are shown for DC-OPF (stars), AC-OPF (crosses) and DC-OPF with unit
de-commitment (UC DC-OPF) (open squares).

took up to 2 h and 52 min to be solved.

C. Comparison of 118 Node Case to Aggregated 12 Node Case

Figure 5.3 shows the LMPs of the IEEE118 case ordered by clusters for comparability to

the approximated 12 node case. The prices fluctuate roughly between 39.5 and 40 $/MWh.

Differences in LMPs originate from congested lines, 9 congested lines are found in this

case. In order to make these prices more comparable to the 12-node case, the load-

weighted average LMPs are shown, which is common practice in literature Zimmerman

et al. (2011); Wang et al. (2007). Load-weighted average prices are reported along with

the maximum and minimum prices for each cluster of the 118-node case as well as the

LMPs of the 12-node case in Figure 5.4a. One sees that the prices fluctuate around the

same interval, but they are mostly not well aligned. This can be understood from the fact

that different lines are identified to be congested, even though the number of inter-cluster

congestions is the same in both cases with 3 congested lines. In the 118-node case, lines

connecting clusters 2 and 4, 2 and 8, and 7 and 8 are congested, while in the 12-node

case congested lines are between clusters 2 and 5, 4 and 9, and 8 and 9. Additionally,

there are congestions within clusters in the 118-node case, which are not considered in
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Figure 5.3: Locational Marginal Prices (LMP) in $/MWh for the IEEE 118 node case. The
118 nodes are ordered into 12 clusters for comparability to the aggregated case.

the 12-node case; those congestions occur in cluster 2, where there are 4 congested lines

and one each in clusters 8 and 10. This may explain the large span between maximum

and minimum LMPs reported for the 118-case in clusters 2 and 8. It also needs to be

noted, that sometimes LMPs are over- and sometimes they are underestimated in the

12-node case in comparison to the 118-node average prices. This makes it difficult to

make predictions on what error to expect when there is no overall trend to be detected.

Figure 5.4b shows the results for several states of the 12 and the 118-node systems.

The number of congestions and the maximum relative error in LMPs are compared and

displayed for different load factors. It can be observed that in the base case (load factor

1), the number of detected congestions between clusters differs with 0 for the 118-node

case and 3 for the 12-node case. This discrepancy remains until for higher system load

more inter-cluster congestions are occurring also in the 118-node case. Interestingly, the

maximum error between LMPs does not exceed 2% until a load factor of 1.014, when the

error increases up until 3.4%, even though this is when both the 12 and the 118-node case

have an equal amount of inter-cluster congestions of 4. What does increase significantly

though are the intra-cluster congestions, which go up to 15. These type of congestions

goes undetected in the aggregate 12-node network and can contribute to the increase in

relative error. It needs to be noted that the optimization problems become infeasible for

higher load factors, which limits this experiment to a maximum load factor of 1.018.
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(a) (b)

Figure 5.4: (a) Locational marginal prices in blue the load-weighted average prices for
every cluster of the 118 case, the bars indicate the span between the highest and the
lowest price in every cluster. In red the LMP for each cluster in the 12-node case.
(b) Number of congested lines for the 118-node case in blue (congestions between clusters:
solid line; congestion within clusters: dashed line) and the 12-node case depending on the load
factor applied to the base case ranging from 1 to 1.018 in ten steps of 0.002. Further reported
is the maximum relative error in cluster LMPs as the difference between the LMP in a cluster
for the 12-node case and the maximum or minimum price in the 118-node case within a cluster
with respect to the 12-node case.

In the first part of the presented experiments, it is found that depending on the type

of optimization problem solved, computational times can increase largely for a higher

number of nodes, as is shown in Figure 5.2. In an electricity market context, these types

of problems need to be solved several times, e.g. for the day-ahead market 24 times and

when performing long-term studies a lot more, which calls to maintaining computational

efforts manageable. One way to tackle this issue is by aiming to improve algorithms to

solve these optimization problems. Another is to utilize different network representations,

which feature a smaller number of nodes through the aggregation of the larger network.

When investigating two network representations of the same systems, there are differences

that occur and need to be considered. The phenomena that lead to different LMPs are

congested network lines. It is thus important to notice that approximations of the same

network can lead to different numbers of congestions and this is also true depending on the

load present in the system as reported in Figure 5.4b. As a consequence, prices also differ

and are difficult to compare, as can be drawn from Figure 5.4a. There is no single trend

of over- or underestimation, which makes it difficult to assess the quality of estimation. It

will depend on each individual network as well as the scope of the overall study conducted.

In cases when scenarios are assessed, where there are other factors that will impact the

overall outcome significantly, the estimations provided by the aggregated case may be
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sufficient, while in situations when an accurate assessment of LMPs and congestions is

vital, the presented approximations may not be sufficient. It is thus essential to properly

chose the network models and network representations suitable for a given purpose. It

needs to be borne in mind that research and practice are always facing a trade-off between

higher accuracies and higher computational efforts.

5.1.5 Conclusion

The main findings of this section can be summed up as follows:

• DC-OPF and AC-OPF render similar LMPs when the same congestions are

identified, and the system is not under much stress.

• LMPs differ more in border cases, i.e. just before congestion occurs; when there

are large flows of reactive power; when the two models suggest a different dispatch

structure of generation units; or when congested lines are not found by DC-OPF.

• AC-OPF and unit commitment formulations of the power flow problem lead to

significantly higher computational times as the number of nodes in a network is

increased.

• Given the advantage that DC-OPF has in terms of computational efficiency as well

as transparency and the reasonably accurate performance on delivering LMP in

normal operation, it is to be preferred over AC-OPF to determine nodal prices and

model flows in transmission systems.

• Comparative studies between nodal and zonal pricing need to rely on different

representations of the same network in order to be able to assess two pricing schemes.

• Numerical simulations on the IEEE-118 test case show the discrepancy in identified

congested lines and LMPs for the full 118-nodes network and the aggregated 12-node

network.

Currently, there exists wide consensus on the utilization of DC-OPF to obtain nodal

prices and model electricity markets. However, there are increasing research efforts to

explore improved versions of the lossless DC formulation that incorporate losses and

reactive power flows to some extent.
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It needs to be noted that the employed test case of 118 nodes, usually does not provide

line capacity limits and the method of artificially creating them allows for questions

regarding the generalization of our results. This again calls for more efforts into the

investigation of network representation in the context of nodal vs. zonal pricing in order

to further gauge the trade-off between accuracy and computational efforts.

5.2 The Impact of Demand Elasticity on Future

Zonal Scenarios of the Italian Electricity System

in a European Context

5.2.1 Introduction and Problem Description

Consumers’ sensitivity to electricity prices is a subject that is increasingly receiving

attention in electricity system planning. Similar to Kladnik et al. (2012), this work

proposes a two-Step approach to implement demand elasticity, in which’s first step

renders reference price and demand for every hour of the simulation horizon. Thereby,

the need to determine reference points out of estimations or averaging is abolished and

reference points for every hour are used to determine hourly demand functions. In the

second Step, flexible demand is simulated similarly to existing studies through a welfare

maximization objective. Through analyses of the impact of demand elasticity, the current

paper supports policy decision-makers and regulators in the context of demand response

programs and gives indications for future design adjustments of markets. The impact

of demand elasticity is presented through techno-economic modeling of the European

electricity system, with a focus on Italy.

5.2.2 Model Description

In this section, the modeling methodology of incorporating demand elasticity, which

follows a two-step approach, is explained. The concept of demand elasticity and

linear demand functions as well as the employed European economic dispatch model

is introduced.
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Demand elasticity ϵ denotes consumers’ sensitivity to changes in prices. It defines

infinitesimal relative changes in demand to infinitesimal relative changes in prices. As

discussed later, demand functions can be determined with respect to a reference price

and demand. Therefore, it is necessary to determine this reference point. Thus, a two-

step modeling approach is applied, where in Step one demand is a fixed input, and the

corresponding reference or equilibrium prices are determined. From these and ϵ, demand

functions’ slopes and intercept can be calculated. These serve as input to Step two, where

demand is then elastic and thus a decision variable. Demand elasticity is discussed in more

detail in Appendix A.1.3.

In order to find the equilibrium points, a techno-economic power dispatch model is

used. The model emulates the DAM in Europe. Scenarios are developed in a commercial

power market simulation software PLEXOS (energyexemplar.com). The model optimizes

a day-ahead generation dispatch, hydro reservoir levels, and power flows, and provides

an asset performance valuation in terms of electricity prices. For every time step, power

generation is optimized to minimize generation costs, subject to a list of constraints:

minimize
gukn,Fnm,αukn

∑
n∈N

∑
k∈K

∑
u∈U

ckgukn (5.5)

subject to∑
k∈K

∑
u∈U

gukn +
∑

m∈N(n)

Fnm = dn +
∑

m∈N(n)

1

2
δmFnm, ∀ n ∈ N,m ∈ N(n) (5.6)

Fnm = −Fmn, ∀ n ∈ N,m ∈ N(n) (5.7)

¯
rIn ≤

∑
k∈K

∑
u∈U

rIukn ∀ n ∈ N (5.8)

¯
rIIn ≤

∑
k∈K

∑
u∈U

rIIukn ∀ n ∈ N (5.9)

αukn
¯
gukn ≤ rIukn + rIIukn + gukn ≤ αuknḡukn ∀ n ∈ N, k ∈ K, u ∈ U (5.10)

rIukn ≤ γuknḡukn ∀ n ∈ N, k ∈ K, u ∈ U (5.11)

¯
Fnm ≤ Fnm ≤ F̄nm ∀ n ∈ N,m ∈ N(n). (5.12)

ck is the production cost for generator technology k. gukn is the generated electricity by

generation unit u of generator technology k at node n. N is the set of power nodes,

i.e. the modeled bidding zones in Europe. Power plants at every node n are aggregated
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by technology k of set K, which are further divided into generation units u grouped

in sets U . The objective of minimizing the generation costs is subject to the following

constraints. The nodal power balances, which are expressed in Equation (5.6). The

total power generated at every node gukn plus the net exchanges Fmn from the set of

adjacent nodes N(n) in the modeled system, must be equal to the electricity demand

dn plus transmission losses. Fmn is the electricity flow to node n from adjacent node m,

Fmn > 00 correspond to imports to node n and Fmn < 0 correspond to exports from

node n. δ is the relative loss factor. Transmission losses are shared equally between two

interconnected nodes, which is expressed through the factor 1
2
in Equation (5.6). Equation

(5.7) ensures that imports Fmn to node n from node m equal exports Fnm from node m to

node n. Emergency power reserve constraints are expressed in Equations (5.8) and (5.9).

Reserves provided by generators at node n should meet the minimum reserve requirements,

that is,
¯
rIn for the primary reserve and

¯
rIIn for the secondary reserve. rIukn and rIIukn are

primary and secondary emergency power reserves, respectively, provided by generation

unit u of technology k at node n. Only generation units being already in operation

can provide reserves. Power generation constraints are expressed in Equation (5.10).

Electricity generated (gukn) and provided reserves (rIukn and rIIukn) of unit u of technology

k at node n should be between the minimum operation power
¯
gukn and the maximum

capacity ḡukn. The formulation in Equation (5.10) includes binary decision variables αukn,

which take the value 0 in case of outages and should ensure that generation units only

operate within their minimum and maximum stable levels. However, due to the use of

Linear Programming formulation, this binary constraint is relaxed to also allow non-binary

values for αukn. Thus, the cleared price will not necessarily be equal to the marginal costs

of the last dispatched generator, but rather to an average production cost. The maximum

primary reserve provision is limited to a fraction γukn of generation unit capacity ḡukn as

expressed in Equation (5.11). Power flows Fnm between interconnected nodes n and m

are limited to an lower
¯
Fnm upper F̄nm capacity limits in Equation (5.12). The electricity

wholesale prices for each node n at every time step are equal to the production cost ck

of the last generation unit dispatched. The electricity price reflects the abovementioned

constraints. Under unlimited transmission capacity and no losses, all nodes have the

same price for each time step, reflecting the generation cost of serving the last MW of

electricity demand. However, due to limited electricity flows between the interconnected

54



nodes (Equation (5.12)), electricity prices can differ between nodes (the bidding zones).

Prices reflect electricity transmission losses and congested lines and are found through

the dual variables of the net injection constraint at every node (Equation (5.6)).

In Step two, the model is implemented to find the equilibrium point between the supply

and demand curve, the parameters of which were determined in Step one, based on the

selected demand elasticity value. The demand variable dn is approximated through a step

function, which, in Step two, replaces the fixed value dn in Equation (5.5). Thus, the cost

minimization objective (Equation (5.5)) becomes a welfare maximization or equivalently

a negative welfare minimization problem:

minimize
gukn,Fukn,αukn,dni

∑
n∈N

(∑
k∈K

∑
u∈U

ckgukn −
10∑
i=1

pnidni

)
. (5.13)

The demand is approximated through a step wise function consisting of 10 steps dni,

where i is the step index. dni become decision variables, which in addition to Equations

(5.10)-(5.7) add the following set of constraints to the problem:

0 ≤ dni ≤
dn(pn = 0)

10
, ∀ n ∈ N, i = 1, . . . , 10. (5.14)

The length of each interval of the step function represents the upper constraint to each

demand step. The prices pni in Equation (5.13) are determined in accordance with

Equation (A.22) in the following way:

pni = bn · i ·
1

2
· dn(pn = 0)

10
+ an, (5.15)

where bn is the demand slope and an is the demand intercept. These parameters are

determined through the equilibrium price and demand quantity determined in Step one,

according to Equations (A.24) and (A.25) respectively. Through implementing demand

functions, the demand will react to changes in the system and new equilibrium points

will be determined. The scenarios that impose these changes will be elaborated on in

the following subsection. Further, details on values for the variables used in the objective

function and its constraints will be provided.
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5.2.3 Data Preparation

Extensive Europe-wide electricity system modeling data is available in the context of

the Ten-Year Network Development Plan (TYNDP) of ENTSO-E (ENTSO-E, 2019).

These data are currently available for future years up to 2040 and for different scenarios.

In this paper, the year 2040 under the Sustainable Transition scenario is chosen as

simulation horizon. Simulations are performed for a time step frequency of 1 hour. 36

European countries are modeled as 55 interconnected power nodes representing electricity

market bidding zones. ENTSO-E provides data on the aggregated installed generation

capacity per technology, key generation assumptions, demand profiles with an hourly

resolution, and reference capacities for cross-zonal interconnectors (ENTSO-E, 2019).

These are open-source data available for various future scenarios in Europe (ENTSO-

E, 2018a). Annual hourly generation profiles from wind and solar resources are acquired

from an open database: www.renewables.ninja. Generation from hydro energy is limited

by water inflow in power plants. Maximum monthly water inflow is fixed based on

historical Eurostat records (Eurostat, 2020). This is a constraint in the model, which

adds seasonal behavior to hydropower plant production. Still, hydro plants can contribute

to daily power balancing as a small fictitious water reservoir is added to each plant.

Generation from renewable energy resources and electricity demand are based on weather

conditions of 2007 – a typical year since 1990. Power plant characteristics and fuel prices

are listed in Table 5.1. Minimum operation power for thermal and hydro generation

technologies are obtained from ENTSO-E (ENTSO-E, 2019). Generation unit capacity

is an assumption for dispatchable generators adding modeling accuracy when aggregated

generation capacities are used.

Generation costs ck depend on fuel prices Pfuel and CO2 prices PCO2 , power plant

efficiency η (expressed through the inverse of the heat rate), the emission factor Femission

and variable operation and maintenance (O&M) costs CvarO&M
and are calculated

according to:

ck =
1

η
· Pfuel +

1

η
· PCO2 · Femission + CvarO&M

. (5.16)

Heat rates show the energy conversion efficiency from chemical to electrical, i.e. the fuel

quantity needed (GJ) to produce one MWh of electricity (Lacal-Arantegui et al., 2014).

Fossil and nuclear fuel prices are acquired from ENTSO-E Sustainable Transition scenario
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(ENTSO-E, 2019). Biomass prices are obtained from Purvins et al. (2018). CO2 prices are

taken from ENTSO-E Sustainable Transition scenario (PCO2 = 45 e/tCO2) and emission

factors Femission in fuel (t CO2/GJ) are obtained from EIA (2016); IEA (2019), while

variable O&M cost, CvarO&M(e/MWh) are taken from Eurostat (2020).

Planned and unplanned outages of the power plants follow annual rates listed in

Table 5.1 (World Energy Council, 2010). Outage schedules are obtained from one pre-

simulation run and then kept constant for all the simulations. For this pre-simulation,

planned outages are mostly scheduled during low electricity demand season. Average

repair time is assumed 30 days for nuclear power plants and one day for the rest. Energy

losses of 2% are assumed in the cross-zonal electricity exchange between the modeled

bidding zones.

Table 5.1: Power plant characteristics and costs by source/fuel.

Source/
fuel

Min.
operation
power

Unit
capacity,
MW

Heat rate,
GJ/MWh

Price,
€/GJ

Variable
O&M
cost,
€/MWh

Planned
outage
rate

Unplanned
outage
rate

Mean
repair
time, days

Wind - - - - 0 - - -

Solar - - - - 0 - - -

Hydro 15% 100 - - 5 8% 6% 1

Pumped
hydro

15% 100 - - 0 8% 6% 1

Gas 35% 300 6.21 5.5 2 6% 5% 1

Gas, CHP 35% 300 6.31 5.5 4 6% 5% 1

Coal 43% 300 8 2.5 3.6 7% 8% 1

Lignite 43% 300 8.57 1.1 4.5 7% 8% 1

Nuclear 50% 1000 9.72 0.47 8 13% 5% 30

Biomass 43% 100 10.28 5.8 3.8 7% 8% 1

Oil 35% 100 9 17.1 11 3% 5% 1

Modeling is performed on a European scale, where Italy is chosen as a case study. Two

scenarios for the Italian electricity system are studied: (i) a simple modeling approach

where Italy is modeled as a single bidding zone and (ii) a detailed modeling approach

where Italy is modeled as six bidding zones. The six-zone scenario considers the following
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zones: Italy north (ITn), Italy central-north (ITcn), Italy central-south (ITcs), Italy south

(ITs), Sicily (ITsic), and Sardinia (ITsar). Since Italy already consists of several zones,

there are sufficient data available in order to model this under sound assumptions. Each

of these two scenarios is further modeled by introducing three cases for Italy, one case

where demand is assumed inelastic (zero demand elasticity) and two further cases with

two different demand elasticity values: ϵ = −0.3 and ϵ = −0.74. Literature suggests a

variety of demand elasticity values present in the current electricity system in Europe

(Azevedo et al., 2011; Cialani and Mortazavi, 2018; Eskeland and Mideksa, 2010; Iimi,

2010; Krishnamurthy and Kriström, 2015; Madlener et al., 2011). An average from these

studies is ϵ = −0.3, which can be considered as a base case scenario. ϵ = −0.74 is the

average of the highest range of the reported demand elasticity values (Krishnamurthy and

Kriström, 2015). Although the focus is on Italy, for which the different elasticity values

and system changes are implemented, the whole European electricity system is modeled

to acquire electricity trade with neighboring countries and to assess the overall effects of

considering demand elasticity.

5.2.4 Numerical Experiments

Simulations are performed for every hour of the year 2040 and the interest lies on the

overall outcome, the first set of results is presented for the entire European system on an

annual basis in terms of (i) electricity generation cost, (ii) load-weighted average wholesale

electricity price and (iii) electricity demand. For each of the three demand elasticity values,

the three modeling outcomes are reported in terms of differences between the one-zone

and the six-zone configuration of Italy. The results presented in Table 5.2 consider the

entire modeled system of all 33 countries.

In the inelastic demand case, the total generation costs are increasing by 0.2%

comparing scenarios of one and six Italian zones. With modeled demand elasticity, the

total costs increase less, 0.01% for the ϵ = −0.3 demand elasticity case and eventually

decrease for the higher demand elasticity case of ϵ = −0.74. The load-weighted price is

increasing in all three scenarios in the six-zone case with respect to the one-zone case. The

prices are increasing less at higher demand elasticity. The annual demand in the whole

system is the same for the inelastic demand case. Elastic demand reacts to higher prices
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Table 5.2: Relative changes between Scenario 1 (Italy one zone) and Scenario 2 (Italy six zones)
of the three indicators total generation costs, load-weighted average wholesale electricity prices
and total annual demand for the three demand elasticity values (ϵ = 0 (inelastic), ϵ = −0.3 and
–0.74) for the entire system of 33 countries: Europe 2040.

Demand Elasticity ϵ ∆ generation cost ∆ price ∆ demand

0 0.20% 0.96% 0.00%

-0.3 0.01% 0.47% -0.02%

-0.74 -0.05% 0.20% -0.03%

and is decreasing. In the six-zones scenario in Italy, more constraints are introduced in the

form of electricity transmission capacity limits between these new zones. Under inelastic

demand, the total system costs in the whole of Europe increase slightly, by 0.2%. This

is expected as an optimization algorithm tries to optimize the same objective function

and under these additional constraints, the set of all feasible solutions becomes smaller.

Therefore, the optimal solution cannot be improved. Introducing demand elasticity

provides additional flexibility to the power dispatch and relaxes fixed demand constraint

providing more room to further reduce the overall generation costs, when system changes

occur, such as in this case moving from one zone to six zones in Italy. With ϵ = −0.3

demand elasticity, the total generation costs in the whole system hardly change comparing

one and six zones scenarios (there is only an increase of 0.01%). When implementing a

demand elasticity value of ϵ = −0.74 the total generation costs from one to six zones even

decrease slightly by 0.04%, which means that the loosening of the load constraints becomes

dominant over the tightening of constraints through the introduction of line constraints in

Italy. The increase in generation costs in the inelastic demand case can be associated with

higher load-weighted prices due to a more constrained system. As demand in Italy follows

a linear demand curve with negative slope, the overall demand in the system decreases

with higher demand elasticity values. The new equilibrium point is found through the

intersection of this linear demand curve and the supply curve. This is well in line with the

theory of implementing demand elasticity through linear demand functions. For a better

understanding of the elastic demand impacts on electricity system modeling, changes

in the Italian electricity system are depicted in Figures 5.5, since structural changes to

the system and demand elasticity were only introduced in Italy. Again, displayed are the

59



(a) (b)

Figure 5.5: Changes in Italy between Scenario 1 (Italy one zone) and Scenario 2 (Italy six
zones) of the three indicators load-weighted average wholesale electricity prices (in EUR/MWh),
annual demand (in GWh), and net flow (in GWh) from connected countries (net imports for
all zones but ITsic, which is a net exporter). The indicators are shown for the six zones Italy
central-north (ITcn), Italy central-south (ITs), Italy north (ITn), Italy south (ITs), Sardinia
(ITsar) and Sicily (ITsic) for (a) demand elasticity of ϵ = −0.3 and (b) high demand elasticity
of –0.74.

relative changes between the one-zone and the six-zone scenario for the two elastic demand

cases in terms of (i) annual load-weighted price (in EUR/MWh), (ii) annual demand (in

GWh) and (iii) net flow from connected countries (in GWh). The latter are imports into

Italy. An exception is ITsic (Sicily) as the sole net exporter among the Italian zones.

The values for the six Italian zones are displayed in Figure 5.5a for the ϵ = −0.3 demand

elasticity scenario and in Figure5.5b for the ϵ = −0.74 demand elasticity scenario.

Figure 5.5a and Figure5.5b show similar trends. An increase in load-weighted electricity

price leads to a drop in electricity demand and vice versa. The net flows follow the

trend of the price, i.e. both increase or decrease simultaneously. Comparing the results

presented in Figure 1a and Figure 1b, the differences in load-weighted prices and flows in

the ϵ = −0.74 demand elasticity case are less pronounced than in the ϵ = −0.3 demand

elasticity case, while the opposite is true for the demand, which changes more in the

higher demand elasticity case. In Figure5.5a, the load-weighted prices are reducing for

all zones except for ITn and ITcn. This means that the introduction of the transmission

capacity constraints within the Italian zones leads to congestions, which cause higher

prices in the north of Italy. ITn is by far the zone with the highest demand, consuming

more than half of the total electricity consumption in Italy. As a result, the demand

is reduced in the six-zone case in accordance with this price incentive, while the flows

are increased. Increasing net flows from neighboring countries in the northern part of
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Italy occur when prices in those countries are lower than in ITn. This occurs more

frequently in Scenario 2 - the six-zone configuration in Italy. An increase in flows to ITcn

cannot be observed, as it is only interconnected with Italian zones (ITn and ITcs). In

the remaining zones, demand is increasing and flows are decreasing, due to the drop in

prices, as generation units dispatched in Italy are more often competitive with generators

dispatched in connected zones. These considerations on the trends are also true for the

higher demand elasticity case of ϵ = −0.74. However, in Figure 5.5b a higher decrease in

annual demand is observed. Especially in ITn, where it is most pronounced, which can be

attributed to a higher demand elasticity, where demand reacts more drastically to price

signals. Consequently, prices do not change so much between the one and the six-zone case,

as price adopts to the lower demand. Correspondingly, flows are not increasing as much

compared to the ϵ = −0.3 demand elasticity case, since with higher demand elasticity of

ϵ = −0.74 demand decreases more and there is less need for imports. The observations

in Figures 5.5 correspond with the results reported in Table 5.2. With higher demand

elasticity, the overall load-weighted price is increasing less and the demand decreases more.

This is the effect of introducing elastic demand, which gives the model more freedom

when estimating power balance. Thus, depending on the demand elasticity value, the

demand adjusts to changes in the electricity system, contributing to minimizing the total

generation costs. In fact, in the ϵ = −0.74 demand elasticity case this degree of freedom is

becoming dominant over the constraints added to the optimization problem through the

introduction of power transmission capacity limits between Italian zones. Therefore, the

total generation costs are even reduced as has been reported above in Table 5.2, however,

at the cost of high demand elasticity.

5.2.5 Conclusions

The main findings and contributions presented in this section can be summed up in the

following points:

• A two-step modeling approach is used to incorporate demand elasticity in an

economic dispatch model.

• A study on the impact of demand elasticity has been conducted on a pan-European

level.
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• Adding internal electricity transmission constraints in the Italian electricity system,

i.e. limiting trading capacities between Italian bidding zones, electricity production

costs, and consequently prices increase.

• Introducing demand elasticity affects the calculated prices due to the additional

flexibility of demand and this effect can compensate for the increase in overall system

costs due to additional transmission capacity constraints.

• Consumers’ sensitivity to prices should be taken into account in sound electricity

market modeling, in the face of the system’s increasing need for flexibility to

accommodate more renewable energy sources.

The costs associated with demand elasticity have not been included in the modeling.

This should be considered in future work. Further case studies should be conducted,

where demand elasticity is considered in entire Europe and not only in one country.

5.3 Estimating State of Charge Profiles of Hydro

Storage Units for a Large-Scale Nodal Pricing

Model

5.3.1 Introduction and Problem Description

In order to investigate different market designs for the whole of Europe one needs to

solve large optimal power flow problems, ideally over longer time horizons (Borowski,

2020). This is a task that is computationally challenging, and it is common to subdivide a

problem into smaller ones through e.g. parallelization or sequencing. One of the problems

that arise in doing so is the seasonality of hydro storage facilities and the intertemporal

constraints describing hydro reservoir continuity. A model that is operating under myopic

foresight cannot display these aspects. Another dimension is the comparability between

models with different spatial resolutions as it applies to zonal and nodal models of the

European electricity system. It is necessary to ensure that models, aiming to explore the

advantages or disadvantages of one design against the other, need to be run in similar

conditions. Therefore, it is important to tackle the issue of limited foresight concerning
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hydro storages in models with high spatial and temporal resolution.

The goal is to investigate the European electricity market under a nodal pricing regime.

Nodal pricing based on so-called locational marginal prices (LMP) is opposed to the

currently existing zonal pricing mechanism in Europe. In each zone z in Europe, where

z ∈ Z is the set of all zones, there will be uniform prices, while under nodal pricing, LMPs

will be determined at every node n, which can be down to the resolution of individual

substations, and the set of all nodes is N . Prices will differ when transmission lines are

congested, and the flow Fn,m from node n to node m reaches the capacity limit F̄n,m or the

sum of cross-zonal flows from zone z to zone y ∈ Z(z), which border on zone z. Cross-zonal

flows are found as the sum of flows in transmission lines Fn,m from nodes n in the set of

nodes N̂(z) belonging to zone z to nodes m that are in the set of nodes connected to node

n and are also in N̂(y), the set of nodes connected to zone y. For comparative studies,

the compatibility between the two approaches is essential; this reflects in particular on

network representation. In order to calculate LMPs, one has to solve a large optimization

problem. The problem is formulated as an economic dispatch model (Brown et al., 2018;

Leuthold et al., 2012; Mende et al., 2018; Huang and Purvins, 2020; Goop et al., 2017;

Zalzar et al., 2020), which in its full formulation reads:
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minimize
P,P dis,P stor,soc,F,θ

∑
t∈T

(∑
g∈G

Pg,t · cg +
∑
s∈S

P dis
s,t · cs

)
(5.17)

subject to∑
d∈D(n)

Pd,t =
∑

m∈N(n)

Fm,n,t +
∑

g∈G(n)

Pg,t +
∑

s∈S(n)

(
P dis
s,t − P stor

s,t

)
, ∀ n ∈ N, t ∈ T (5.18)

Fn,m,t =Bn,m(Θn,t −Θm,t), ∀ n ∈ N,m ∈ N ′(n), t ∈ T (5.19)

Fn,m,t =− Fm,n,t, ∀ n ∈ N,m ∈ N(n), t ∈ T (5.20)

β · F̄n,m ≤Fn,m,t ≤ β · F̄n,m, ∀ n ∈ N,m ∈ N(n), t ∈ T (5.21)

NTCy,z ≤
∑

n∈N̂(z)

∑
m∈N(n)∩N̂(y)

Fn,m,t ≤ NTCz,y, ∀ z ∈ Z, y ∈ Z(z), t ∈ T (5.22)

0 ≤Pg,t ≤ P̄g, ∀ g ∈ Gconv, t ∈ T (5.23)

0 ≤Pg,t ≤ P̄g · pavailg,t , ∀ g ∈ Gres, t ∈ T (5.24)

0 ≤P dis
s,t ≤ P̄s, ∀ s ∈ S, t ∈ T (5.25)

0 ≤P stor
s,t ≤ P̄s, ∀ s ∈ S, t ∈ T (5.26)

0.3 · SOCs ≤socs,t ≤ SOCs, ∀ s ∈ S, t ∈ T (5.27)

socs,t =socs,t−1 + ηstor · P stor
s,t−1 −

1

ηdis
· P dis

s,t−1 + infls,t−1 − spills,t−1, ∀ s ∈ S, t ∈ T.

(5.28)

The objective Function (5.17) is minimized over all time steps t in the time horizon T =

{t1, t2, . . . , tend}. The objective includes the costs to generate power from all generation

units G and storage units S. Individual units’ costs are calculated from cg, the marginal

costs of generator g, and the dispatched power Pg,t of generator g at time t, and cs the

marginal costs of storage unit s and the dispatched power P dis
s,t of storage unit s at time

t. The nodal power balance is defined in Equation (5.18), which ensures that at every

time t the sum of demand Pd,t of all the loads d ∈ D(n) connected to node n equals

the sum of flows Fm,n entering from adjacent nodes N(n), the generation Pg,t from all

generators G(n) connected to node n, and the net power dispatch of storage units S(n)

connected to node n, which is the difference between dispatched power P dis
s,t and stored

power P stor
s,t . Equation (5.19) describes the relation between power flow Fn,m,t in AC lines

and voltage angles Θn, where Bn,m is the susceptance of the line connecting node n and
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adjacent nodes m ∈ N ′(n) connected via an AC line. In the network, there are also high-

voltage DC (HVDC) lines, in which the power flow is not determined by the physical

properties of the lines but is considered controllable. Therefore, for power flows Fn,m,t in

HVDC lines, only the conservation of flow is enforced in Equation (5.20). This relation

applies to both flows through AC and through HVDC lines from node n to adjacent

node m ∈ N(n). Power flow in transmission lines is limited in Equation (5.21) by the

thermal capacity of lines F̄n,m, which are reduced through the factor β. Including a fixed

reliability margin is a practice that is also proposed in the literature to approximate

security constraints Leuthold et al. (2012). Equation (5.22) limits the cross-zonal flow

from zones z ∈ Z to adjacent zones y ∈ Z(z) to the net-transfer capacities NTCz,y.

Power generation from conventional units Gconv, renewable units Gres, and storages, as

well as power consumption for storage, is limited by upper capacity constraints P̄g and

P̄s, respectively, in Equations (5.23)–(5.26). The power generation constraints (5.24)

from renewable energy sources solar and wind are further limited by a time-dependent

reduction factor pavailg,t of maximum power P̄g output of renewable generator g at time t

due to weather fluctuation. The filling of hydro storage expressed through the state of

charge socsu,t is limited by upper and lower limits (Equation (5.27)); the lower limit is

set at 30% of the total capacity SOCs. In Equation (5.28), the intertemporal continuity

constraint for hydro storages is defined. It ensures that socsu,t, the state of charge of unit

s at time t, equals the state of charge at t− 1 plus the storage power P stor
s,t−1 at t− 1 with

the storage efficiency ηstor, minus the dispatched power P dis
s,t−1 at t − 1, where ηdis is the

dispatch efficiency, plus infls,t−1 the inflow to storage unit s at time t − 1 and minus

spills,t−1, the spillage of storage unit s at t− 1. The optimization variables are Pg,t, P
dis
s,t ,

P stor
s,t , socs,t, and Θn,t. LMPs will be derived as dual variables of constraints (5.18).

Given the size of the European transmission grid, solving this optimization problem

is computationally highly intensive. It can be computationally tractable for short

time periods, but in the case of performing simulations for an entire year with an

hourly resolution, computation times can become very large, and simulations can only

be conducted on high-performance computers. A previous study investigated the

computational times for different formulations of the optimal power flow problem and

found that while the DC approximation will be solvable in polynomial time, a large number

of nodes and a long-time horizon still lead to very high computational times (Jansen
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and Buzna, 2021). Therefore, it becomes necessary to perform so-called rolling horizon

simulations, where the model is solved in sequences. Computations in parallel are not

possible because of intertemporal constraints. These concern, in the linear program

formulation of the economic dispatch problem, only hydro storage units and, in particular,

the SOC of reservoirs (Equation (5.28)). Given the seasonality of inflows to hydro

reservoirs and the fact that hydro units function not only as generation but also as storage

units, the seasonality needs to be accounted for. However, in a rolling horizon simulation,

the model has myopic foresight, and the optimization will be greedy and utilize the energy

stored in hydro reservoirs within the first sequences. This is because information about

future opportunities to dispatch hydropower in times of peak prices is not available for

the optimization. If detailed data on hydro SOC were available for storage units in Europe,

these issues would not need careful addressing. Hydro SOC profiles could then be used as

input to the model. However, due to the lack of data, SOC profiles need to be determined

from solving the large-scale optimization problem.

Therefore, it is necessary to develop a heuristic that passes the information about the

seasonality of inflows as well as the benefits of storing energy today and utilizing it in

the future. As mentioned above, the comparability of nodal outcomes to a zonal model

is interesting when assessing the potential benefits of nodal pricing. While a nodal model

clearly has to rely on a much higher spatial resolution than a zonal model, the two are

linked through constraints (5.22). The question of comparability can be extended to the

described issue of hydro storage modeling, and the utilization of zonal hydro profiles as

inputs to the nodal model poses a possibility to take this into account.

5.3.2 Methodology

In this section, firstly the proposed methodology to obtain SOC profiles for the large

nodal model described in Section 5.3.1 is introduced. Secondly, a method to compare

nodal against zonal pricing is introduced, which incorporates redispatching into the zonal

model. This is a common approach, which allows testing the applicability of the developed

heuristic to obtain SOC profiles to conduct comparative zonal against nodal pricing

studies.
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5.3.2.1 Heuristic method to obtain SOC profiles

As the computational efforts to run the full models with an hourly resolution are large,

simulations need to be performed in sequence. Therefore, the issue of hydro storage units

arises, i.e., the model would utilize all the stored water in the reservoirs and empty them

within the first sequences if there was no foresight included. Thus, a heuristic step-wise

modeling framework is proposed, which is illustrated in Figure 5.6. Utilizing heuristic

approaches in hydropower optimization is an increasingly researched topic (Azad et al.,

2020). Initially, in Stage 0, data are collected and prepared to serve as inputs for the

full nodal and a spatially aggregated zonal model. In Stage 1, the zonal model is run for

the entire time horizon to produce initial SOC profiles. These serve as input to Stage 2,

in which the nodal model is run in sequences and guided by the input profiles through

soft constraints. These soft constraints are implemented through slack variables, which

contribute to the objective function of the optimization problem and thus also require

the setting of penalty factors that quantify this contribution; therefore, a set of penalty

factors is another input to Stage 2. Finally, the produced SOC profiles are evaluated by

assessing the overall system costs of generating power and storing the best-performing

input parameters. The following describes Stage 1 and Stage 2 in more detail, whereas

the data preparation Stage 0 is explained further in Section 5.3.3.1.

Stage 1. The target is to produce SOC profiles for an entire year from a spatially

aggregated model that is referred to as zonal model. As has been mentioned in the

literature review, solving aggregated models to obtain hydro profiles is a common

approach. The main difference in comparison to the nodal model introduced in

Equations (5.17)–(5.28) is the level of network representation. Instead of including all

network constraints, the zonal model solely regards inter-zonal capacity limits. These

capacities are displayed through the net-transfer capacities (NTC) Brancucci Mart́ınez-

Anido et al. (2013b); Huang and Purvins (2020); Zalzar et al. (2020). Besides the fact that

the zonal model can be run in a reasonable amount of time for the whole reference year

with an hourly resolution, it also emulates the European electricity day-ahead market, as

it is functioning in its current design. The full mathematical description of the problem
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Figure 5.6: Stage-wise methodology to obtain SOC profiles for large-scale nodal models.
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reads:

minimize
∑
t∈T

(∑
g∈G

Pg,t · cg +
∑
s∈S

P dis
s,t · cs

)
(5.29)

subject to∑
d∈D̂(z)

Pd,t =
∑

y∈Z(z)

Fz,y,t +
∑

g∈Ĝ(z)

Pg,t +
∑

s∈Ŝ(z)

(
P dis
s,t − P stor

s,t

)
, ∀ z ∈ Z, t ∈ T (5.30)

Fz,y,t = −Fy,z,t, ∀ z ∈ Z, y ∈ Z(z), t ∈ T (5.31)

NTCy,z ≤ Fz,y,t ≤ NTCz,y, ∀ z ∈ Z, y ∈ Z(z), t ∈ T (5.32)

(5.23)− (5.28).

Equation (5.29) is the objective function, where the overall costs of generating power

from generators and storage units are minimized. The power balance in Equation (5.30)

ensures that for all times t, all power consumed by demands D̂(z) at zone z equals the sum

of all power generated from generators Ĝ(z), the net power output of storage units Ŝ(z),

and the sum of flows Fz,y,t going into zone z from adjacent zones y ∈ Z(z). Equation (5.31)

ensures that imports Fz,y,t to zone z from zone y equal exports Fy,z,t from zone z to zone

y. This represents a generic flow model, where flow conservation at zones is maintained.

Flows in cross-zonal lines Fz,y,t are limited by upper NTCz,y and lower NTCy,z capacity

limits, the so-called net transfer capacities, expressed in Equation (5.32). The constraints

for power generation and storage units were already introduced in Equations (5.23)–

(5.28) and are the same as in the nodal model. Resulting from this initial run of the zonal

model, hydro profiles for the hourly SOC of all the storage units present in the system

are obtained. These profiles are then aggregated to a zonal level, which means that all

storage units’ SOCs within a zone are aggregated to obtain hourly SOC profiles for each

zone. This profile, along with all the SOC profiles of individual storage units, functions

as input to the next step.

Stage 2. The purpose of this stage is twofold; firstly, to produce feasible profiles

for the nodal model, and second, to adjust the profiles to the more-constraint situation

of the nodal network. Given the discrepancy between the zonal and nodal network

representation, the outcomes of the former stage are not necessarily feasible in the nodal

model. Therefore, the SOC profiles for individual storage units and zones from Stage 1

are used as target values, but they are not enforced to be met strictly. Thus, a set of soft
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constraints are introduced that penalize deviations from the zonal input profiles by adding

a penalty term to the objective function. The nodal optimization model will be run in

sequences. These soft constraints are only introduced at the end of each sequence; thereby,

complete freedom to deviate from the input profile throughout the sequence is allowed,

which is a technique commonly employed in hydroelectric modeling (Philpott et al., 2000;

Setz et al., 2008). Thus, the model should be able to react to short-term incentives as

line overloadings or peaks in prices, while overall, the trend is followed through the soft

constraint at the end of each sequence. The first step in the sequence represents an

exception, as there, the constraints are also present at the beginning of the sequence time

window. This is because, in the consecutive steps, the initial SOC values will be passed on

from the previous step to ensure continuity, while in the first step, there is no input to be

passed. Thereby, the problem is considering a trade-off between minimizing overall costs

and following the target profiles, which, if not followed, increase the objective function

value through penalties. There is sequence of I smaller optimization problems i, where

each is solved for the set of times Ti = {ti,1, ti,2, . . . , ti,end}. The sets of Ti make up the

whole time horizon T = {T1, T2, . . . , TI}. The formulation of problems i ̸= 1 reads:

minimize
∑
t∈Ti

(∑
g∈G

Pg,t · cg +
∑
s∈S

P dis
s,t · cs

)
+

+
∑
s∈S

as,t=ti,end
· αs +

∑
z∈Z

az,t=ti,end
· αz

(5.33)

subject to

as,t ≥ socs,t − SOCtarget
s,t , ∀ s ∈ S, t = ti,end (5.34)

−as,t ≤ socs,t − SOCtarget
s,t , ∀ s ∈ S, t = ti,end (5.35)

az,t ≥
∑

s∈Ŝ(z)

socs,t − SOCtarget
z,t , ∀ z ∈ Z, t = ti,end (5.36)

−az,t ≤
∑

s∈Ŝ(z)

socs,t − SOCtarget
z,t , ∀ z ∈ Z, t = ti,end (5.37)

(5.18)− (5.28)

SOCmin
s,t ≤ socs,t, ∀ s ∈ S, t = ti,end. (5.38)
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The objective function Equation (5.33) includes, next to the costs of generating power,

also the penalty contributions for the SOC target values. These contributions come

from the slack variables as,t for the deviations from the input target values SOCtarget
s,t

for individual storage units s (Equations (5.34) and (5.35)) and the slack variables az,t

for the deviations from the input target values SOCtarget
z,t for the sum of storage units

s ∈ Ŝ(z) connected to zone z (Equations (5.36) and (5.37)). These deviations from the

input profiles are penalized with the respective penalty factors αs for individual storage

units and αz for the sum of SOC in a zone, to quantify the contribution to the objective

function. Equations (5.18)–(5.28) have already been introduced for the full nodal model.

Equation (5.38) ensures that at the end of every sequence a minimum level of SOCmin
s,t is

reached for each storage unit s, so that the cyclic constraint (Equation (5.28)) can also

be met for the overall time horizon. To understand how these minimum target values are

determined, it is necessary to differentiate between two types of hydro storages, which

are pumped hydro storages (PHS) and hydro dams. The target values for each storage

unit s at the end of the overall time horizon at tend SOCmin
s,t=tend

are determined from

Equation (5.28). Starting from this, the target values are backcasted for storage units s

belonging to the set of all PHS units Sphs following:

SOCmin
s,t=tend−(j+1) = SOCmin

s,t=tend−j − ηstor · P̄ stor
s , for j = 0, 1, 2, . . . , tend − 1. (5.39)

The minimum target value of SOC at every hour needs to be at least the target value

of the previous hour minus the maximum storage pumping power times the corresponding

efficiency, which can fill up the storage reservoir. On the other hand, storages s belonging

to the set of all dam hydro storages Sdam can be refilled by natural inflows; therefore,

their minimum SOC target values are determined from

SOCmin
s,t=tend−(j+1) = SOCmin

s,t=tend−j − infls,t=tend−j, for j = 0, 1, 2, . . . , tend − 1. (5.40)

Now, as mentioned above, the formulation of the optimization problem differs only for

the first step in the sequence, because there, also soft constraints for the first hour in

the sequence are present. The problem for T1 = {t1,1, t1,2, . . . , t1,end}, the first step in the
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sequence, reads:

minimize
∑
t∈T1

(∑
g∈G

Pg,t · cg +
∑
s∈S

P dis
s,t · cs

)
+

+
∑
s∈S

(
as,t=t1,1 · αs + as,t=t1,end

· αs

)
+

+
∑
z∈Z

(
az,t=t1,1 · αz + az,t=t1,end

· αz

)
(5.41)

subject to

as,t ≥ socs,t − SOCtarget
s,t , ∀ s ∈ S, t = {t1,1, t1,end} (5.42)

−as,t ≤ socs,t − SOCtarget
s,t , ∀ s ∈ S, t = {t1,1, t1,end} (5.43)

az,t ≥
∑

s∈Ŝ(z)

socs,t − SOCtarget
z,t , ∀ z ∈ Z, t = {t1,1, t1,end} (5.44)

−az,t ≤
∑

s∈Ŝ(z)

socs,t − SOCtarget
z,t , ∀ z ∈ Z, t = {t1,1, t1,end} (5.45)

(5.18)− (5.28).

Here, Equations (5.42)–(5.45) enforce the target values also at the first hour of the first

sequence, as opposed to Equations (5.34)–(5.37) of the consecutive steps in the sequence,

where they are only applicable to the last time step in the sequence. As discussed above,

this is because the initial SOC levels are passed as inputs to consecutive steps to the

intertemporal storage units constraints (Equation (5.28)).

After solving the sequence of nodal models with soft constraints, the overall system

costs as the costs of generating power are assessed, and if the result outperforms the costs

obtained with the previously best SOC profile, the SOC profiles, and the penalty factors

that led to them are stored. Then, a search strategy is employed to generate different

penalty factor combinations as inputs and perform the sequenced nodal model run again

and assess the costs until the number of previously defined iterations is reached. This

method is applied to benchmark cases introduced in the next section, which also briefly

describes the data preparation (see Stage 0 in Figure 5.6).
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Figure 5.7: Flowchart of the zonal model, which consists of firstly an economic dispatch
model with a zonal network resolution and secondly a redispatching model with nodal network
representation; in comparison to the nodal model, which consists only of a single economic
dispatch model with nodal network resolution.

5.3.2.2 Redispatching

The main difference between nodal and zonal models of the electricity system is the

resolution of network data. In reality, this calls for remedial actions such as redispatching

by TSOs, because a zonal dispatch of generators does not take the full network topology

into account. Thus, a zonal model needs to consist of two parts. This difference between

a nodal and zonal model is depicted in Figure 5.7. The nodal model determines a feasible

nodal dispatch of generators through solving the optimization problem (5.17)-(5.28). For

the zonal model, firstly, the zonal dispatch is determined by solving the optimization

problem described in (5.29)-(5.32), where the data has a zonal resolution. Consecutively,

this zonal dispatch needs to be corrected through redispatching to respect the physical

limits of the transmission grid.

The formulation for the redispatching model is presented, which is using as input the

outcomes of the zonal model in terms of power generation P z
g,t. In general, redispatching

can be formulated as cost or volume based redispatching Poplavskaya et al. (2020). The

approach presented in Felling et al. (2019) is followed and the optimization problem is

formulated as redispatching cost minimization:
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minimize
∑
t∈T

(∑
g∈G

ug,t +
∑
s∈S

vs,t

)
(5.46)

subject to

ug,t ≥
(
−P z

g,t + Pg,t

)
· cg, ∀ g ∈ G, t (5.47)

ug,t ≥
(
P z
g,t − Pg,t

)
· (cmax − cg), ∀ g ∈ G, t (5.48)

vg,t ≥
(
−(P dis,z

s,t − P stor,z
s,t ) + (P dis

s,t − P stor
s,t )

)
· cs, ∀ s ∈ S, t (5.49)

vg,t ≥
(
(P dis,z

s,t − P stor,z
s,t )− (P dis

s,t − P stor
s,t )

)
· (cmax − cs), ∀ s ∈ S, t (5.50)

(5.23)−(5.28) (5.51)

(5.18)−(5.22) (5.52)

Deviations of the power of generators G determined by the redispatching model Pg,t

from the input power of the zonal model P z
g,t are substituted with ug,t and analogously

deviations of the net power dispatch from storage units S of the redispatching model

P dis
s,t −P stor

s,t from the input of the zonal model P dis,z
s,t −P stor,z

s,t are substituted with vs,t. In the

objective function (5.46), the substitution variables are minimized. Constraints (5.47) and

(5.49) ensure that upward redispatching is priced at the corresponding marginal costs cg of

generator g and cs of storage unit s. Downward redispatching is priced through subtracting

the marginal costs of corresponding generators and storage units from the marginal costs

of the most expensive generator cmax, expressed in (5.48) and (5.50). This is ensuring

that more expensive generators are primarily used for downward redispatching. Equations

(5.23)-(5.28) are the generation and storage units operational constraints, (5.18) is the

nodal power balance, (5.19) the relation between power flows and voltage angles and (5.21)

and (5.22) the limits for flows in transmission lines, from previously defined optimization

problems.

5.3.3 Data Preparation and Experimental Design

In this section, the design of the experiments is presented along with a description of the

inputs and data preparation.
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5.3.3.1 Nodal and Zonal Network Preparation

In this section, the workflow to build up the base dataset is laid out. This corresponds

to Stage 0 of the proposed methodology (see Figure 5.6). The model is implemented

in Python using the open-source tool PyPSA Brown et al. (2018). The base network is

built using PyPSA-Eur Hörsch et al. (2018). PyPSA-Eur is an open-source tool that can

build and solve networks of the European transmission system from various data sources.

The network comprises transmission line capacities and physical properties; connected

to nodes are generators and loads; for RESs, capacity availability factors are assigned

to nodes that are time series indicating the maximum capacity percentage that can be

dispatched for solar and wind plants connected to the respective node. As the base year,

2018 is chosen because of data availability. PyPSA-Eur is used to build the base network

of 1010 nodes for Europe 1.

In a consecutive step, the nodal model is aggregated to 45 zones, which approximates

the reality of the zonal market in Europe in 2018. In this aggregating step, all transmission

lines are removed and replaced with inter-zonal transport lines with their NTCs. The

NTCs are taken from ENTSO’s ten-year net development plan (TYNDP) and are assumed

constant throughout the year (ENTSO-E, 2019). Flows through these new lines will be

modeled through a transport model, i.e., it is a generic flow model, where only flow

conservation at a node is maintained. Therefore, only line capacities need to be provided

to the model, as opposed to the DC approximation of power flow, where also physical

line properties as the susceptance need to be known. All other components (generators,

storage units, and loads) are reassigned to zones in accordance with the geographical

location of the node they were assigned to in the nodal network. However, the level of

detail for all the generation and storage units, as well as loads, is maintained. This is

performed in order to maintain comparability between the zonal and the nodal network

models. This becomes especially relevant when the ultimate aim of applying these models

is to compare them, also including redispatching. The resulting nodal and zonal networks

are illustrated in Figure 5.8.

1Included in the model are the following countries: Albania, Austria, Belgium, Bosnia and
Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Great
Britain, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Montenegro, Netherlands,
North Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden,
and Switzerland.
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(a) (b)

Figure 5.8: Nodal network consisting of 1010 nodes (left) and zonal network consisting of 45
zones (right) obtained using PyPSA-Eur (Hörsch et al., 2018).

5.3.3.2 Experimental Design

The goal is to determine the utilization of hydro storages through the methodology

described above. In particular, the state of charge time series for the different storage

units should be determined. The model is implemented in Python and relies heavily on

the PyPSA package (Brown et al., 2018). The optimization problems are solved using the

commercial solver Gurobi. Simulations are conducted on a cluster node with two ten-core

Intel Xeon processors and 750 GB RAM. The method described above in Step 2 is tested

against other approaches proposed in the literature (Fosso et al., 1999; Fosso and Belsnes,

2004; Fernández-Blanco et al., 2017; Braun, 2016; Baslis et al., 2009). Concretely, the

method is compared against using hydro shadow prices derived from constraint (5.28) in

Stage 1 of the zonal optimization, as well as using constant bid prices for hydro, which are

chosen to be higher than the marginal costs to produce electricity from hydro storages.

The different methods to obtain hydro SOC profiles are investigated under four different

scenarios. Two different simulation time horizons are analyzed, four months and the

whole year. Simulating an entire year is common practice in electricity market modeling.

The shorter horizon is chosen as computations of the full nodal model are achievable

in reasonable computational times. Then, the SOC profiles obtained from the different

methods can be compared against the SOC profile determined from an optimization that

simulates the entire four months in one simulation step and is therefore regarded as
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the optimal profile. Further, the capacities of transmission lines are varied to simulate

situations of higher congestion. In the base scenario, 70% of line capacity (β = 0.7) is

used, as this value is commonly used to approximate the N-1 criterion Müller et al. (2019).

Then, the available transmission line capacity is reduced to 50% of the thermal capacity.

Simulations are run with an hourly resolution. For the sequenced nodal model described

in Stage 2, sequences of one week are chosen. The proposed heuristic requires setting

the penalty factors αs and αz, a grid search is performed to explore these factors (in the

following, this method is referred to as SOC HEUR(αz, αs)). Concretely, the investigated

penalty factor combinations are: (1000,1000); (1000,10); (1000,0); (10,1000); (10,10);

(10,0); (0,1000); (0,0).

The quality of profiles is measured through different performance indicators. The

objective function value or overall system costs, the level of congestion, the amount of

demand not served (load shedding), and the computational times are analyzed. As a

measure of congestion, the system congestion proposed by Göransson et al. (2014) is

used. The system congestion sct at time t is measured through the standard deviation of

the locational marginal prices (LMP):

sct =

√
1

N

∑
n∈N

(
LMP t − LMPn,t

)2
, (5.53)

where LMPn,t is the LMP at node n at time t, and LMP t is the average LMP over all

nodesN at time t. LMPs are derived as dual variables of Equations (5.18) and (5.30) of the

zonal and the nodal model, respectively Liu et al. (2009). In the following, the numerical

results will be assessed using the average system costs sc over the whole time horizon.

For the redispatching case study, the SOC profile obtained with the best performing

method in the long-term benchmark will be used as a basis. Then, simulations are run for

a week, where high levels of congestions are identified. The results for the nodal model

are compared to the zonal model and the zonal modal plus redispatching. Comparisons

are done in terms of generation by technology as well as system costs.

77



5.3.4 Numerical Experiments

5.3.4.1 Benchmarks with Short-Time Horizon

This section presents the results for the benchmark case with the short-time horizon of four

months. Reported are the overall system costs, the level of congestion, and the amount

of load shedding, as well as the computation times. The results are presented for the full

nodal model run with an hourly resolution (referred to as NODAL), which optimizes the

entire four months in one simulation ((5.17)–(5.28)); the heuristic to obtain SOC profiles

described in Section 5.3.2, denoted by SOC HEUR(αz, αs) with the different penalty

factor combinations for the two α; and the methods described in the literature, the one

relying on shadow prices derived from Equation (5.28) of the zonal model is denoted as

SH PRICES and the one relying on constant bid prices BIDS(bidprice).

An overview of outcomes for the short-time horizon benchmark with transmission

capacity factor β = 0.7 is presented in Table 5.3.

The overall system costs obtained for most of the penalty factor combinations

are in a similar range, while the best performing combination penalty factors are

SOC HEUR(1000, 1000), SOC HEUR(1000, 10), SOC HEUR(10, 1000), and

SOC HEUR(0, 1000), which differ only 0.1% from NODAL. Next to this, also

SOC HEUR(1000, 0) shows system costs that are close to the nodal benchmark. Notably,

the combination with myopic foresight, i.e., where no guidance is provided to follow the

input profile SOC HEUR(0, 0), exhibits much larger system costs, which differ by 108.7%

from NODAL. The average system congestion is lowest for the combinations with the

lowest costs. The amount of load shed is lowest for the cases which have the lowest

costs. This is in line with the high value of lost load (VoLL) of EUR 10, 000/MWh.

Several penalty factor combinations reach the same amount of load shedding as the nodal

benchmark case NODAL. The overall low level of load shedding, in combination with

the observation that the lowest system costs are found among others for combination

SOC HEUR(1000, 1000), indicates that in a situation of low congestion, it is most

beneficial to follow the input profile closely. The share of load shedding costs makes

up around 50% of the overall costs for SH PRICES and the three BIDS cases. Thus,

these costs can explain the higher system costs in comparison to NODAL. In terms of run

times, one can observe that higher penalty factors also exhibit longer computational times.
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Table 5.3: Results overview for the short-time horizon benchmark with transmission capacity
factor β = 0.7. Reported are for the different methods: the total system costs, which are made up
of operational costs (i.e., power generation costs) and load shedding costs, the difference between
NODAL and the respective method in absolute amount and relative to the total system costs
of NODAL; the average system congestion (sc); the total amount of load shed and the share of
this amount with respect to the total load; and the run times.

Costs Congestion Load Shedding Run Time

Method
Sys-
tem [B
EUR]

Oper-
a-
tional
[B
EUR]

Load
Shed-
ding
[B
EUR]

Differ-
ence
System-
NODAL
[B
EUR]

Differ-
ence
System-
NODAL
wrt
NODAL
[%]

sc Amount
[GWh]

Share
of Tot
De-
mand
[%]

Run
Time
[h]

ZONAL 20.07 20.07 0.00 -0.98 -4.7 7.7 0 0.000 0.6

NODAL 21.05 20.63 0.42 0.00 0.0 663.4 42 0.004 184.8

SH PRICES 42.13 21.49 20.64 21.08 100.2 858.9 2064 0.208 1.3

BIDS(20) 42.31 21.49 20.83 21.27 101.1 861.5 2083 0.210 1.5

BIDS(40) 40.02 21.48 18.54 18.97 90.1 853.2 1854 0.187 1.2

BIDS(60) 43.34 21.53 21.81 22.30 106.0 861.2 2181 0.220 1.4

SOC HEUR(1000,1000) 21.06 20.64 0.42 0.01 0.1 663.4 42 0.004 11.6

SOC HEUR(1000,10) 21.06 20.64 0.42 0.01 0.1 663.4 42 0.004 4.9

SOC HEUR(1000,0) 21.06 20.65 0.42 0.02 0.1 663.4 42 0.004 36.6

SOC HEUR(10,1000) 21.06 20.64 0.42 0.01 0.1 663.4 42 0.004 22.5

SOC HEUR(10,10) 21.44 20.84 0.60 0.39 1.9 675.0 60 0.006 2.0

SOC HEUR(10,0) 21.52 20.91 0.60 0.47 2.2 675.0 60 0.006 1.6

SOC HEUR(0,1000) 21.06 20.64 0.42 0.01 0.1 663.4 42 0.004 14.5

SOC HEUR(0,0) 43.92 21.44 22.49 22.88 108.7 863.3 2249 0.227 1.3

The bid and shadow prices methods consistently outperform the proposed methodology

in terms of run times but not so in terms of all the other performance indicators. Higher

computational times for the heuristic approach can likely be attributed to the additional

constraints added to the optimization problem to guide the SOC profiles. Even though

computational times are always worth taking into account, for the purpose of this study,

achieving low computational times is not a critical issue, as opposed to the generation of

SOC profiles.
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Table 5.4: Results overview for the short-time horizon benchmark with transmission capacity
factor β = 0.5. Reported are for the different methods: the total system costs, which are made up
of operational costs (i.e., power generation costs) and load shedding costs, the difference between
NODAL and the respective method in absolute amount and relative to the total system costs
of NODAL; the average system congestion (sc); the total amount of load shed and the share of
this amount with respect to the total load; and the run times.

Costs Congestion Load Shedding Run Time

Method
Sys-
tem [B
EUR]

Oper-
a-
tional
[B
EUR]

Load
Shed-
ding
[B
EUR]

Differ-
ence
System-
NODAL
[B
EUR]

Differ-
ence
System-
NODAL
wrt
NODAL
[%]

sc Amount
[GWh]

Share
of Tot
De-
mand
[%]

Run
Time
[h]

ZONAL 20.07 20.07 0.00 -5.55 -21.7 7.7 0 0.000 0.6

NODAL 25.61 21.09 4.53 0.00 0.0 763.3 453 0.046 203.2

SH PRICES 45.92 21.99 23.93 20.31 79.3 901.2 2393 0.241 1.4

BIDS(20) 46.91 22.04 24.87 21.30 83.1 903.3 2487 0.250 1.3

BIDS(40) 45.74 21.98 23.76 20.12 78.6 900.6 2376 0.239 2.3

BIDS(60) 45.96 21.98 23.98 20.34 79.4 900.6 2398 0.242 1.3

SOC HEUR(1000,1000) 25.63 21.10 4.53 0.01 0.1 750.9 453 0.046 17.8

SOC HEUR(1000,10) 25.63 21.10 4.53 0.02 0.1 750.3 453 0.046 9.0

SOC HEUR(1000,0) 26.41 21.21 5.20 0.80 3.1 771.8 520 0.052 39.5

SOC HEUR(10,1000) 25.63 21.10 4.53 0.01 0.1 750.4 453 0.046 18.4

SOC HEUR(10,10) 26.25 21.30 4.95 0.63 2.5 757.9 495 0.050 5.4

SOC HEUR(10,0) 26.92 21.40 5.52 1.30 5.1 779.3 552 0.056 2.1

SOC HEUR(0,1000) 25.63 21.10 4.53 0.01 0.1 750.4 453 0.046 17.4

SOC HEUR(0,0) 45.79 21.95 23.84 20.17 78.8 902.8 2384 0.240 1.3

Computational experiments are performed for the short-time horizon benchmark with

transmission capacity factor β = 0.5. The results are summed up in Table 5.4.

This set of results is compared against the results from the previously discussed short-

time horizon benchmark with transmission capacity factor β = 0.7 (Table 5.3). The costs

to generate power in the β = 0.5 scenario are consistently higher than for the β = 0.7

scenario. The best-performing penalty factor combination in terms of system costs are,

again, SOC HEUR(1000, 1000), SOC HEUR(1000, 10), SOC HEUR(10, 1000), and
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SOC HEUR(0, 1000). The average system congestion is higher than in the β = 0.7

case throughout the β = 0.5 scenario. The lowest system congestion is also indicating the

lowest costs. The best-performing penalty factor combinations exhibit similar average

system congestion to the NODAL benchmark case. This can indicate that deviations

from the input SOC profiles allow mitigating line overloading, while higher costs occur at

another time; this will be investigated further later on. While more load shedding occurs

than in the β = 0.7 scenario, when considering the percentage of load shedding with

respect to the total load, one can observe that it is always less than 1%, and in the case of

the penalty factor combinations, only 0.05% of the entire load. Even though this is a small

amount of load, it contributes significantly to the overall system costs, as the share of

load shedding costs indicates. For the lowest levels of load shedding, the associated costs

make up 17.7% of the total costs, and for the SH PRICES and three BIDS, the costs of

load shedding make up more than half of the overall costs. Thus, load shedding explains

the high costs of these methods. Regarding run times, again, the best-performing penalty

factor combinations take significantly longer to compute. One can also see that it takes

longer to solve the problems with penalty factors than with bidding prices or shadow

prices for hydro defined.

In order to understand the above results better and, especially, shed some light on

the relatively bad performance of the bidding price/shadow price methodology, some

aggregated SOC profiles are shown in Figure 5.9.

Firstly, it can be observed that zonal, nodal, and penalty factor profiles exhibit the

same trend. At the same time, the NODAL SOC profile is shifted against the others.

The penalty factor combination profile SOC HEUR(1000, 10) follows the zonal input

closely. The SH PRICES profile differs significantly from the others, and the trend is

not preserved. It also needs to be noted that, while the SOC level decreases and hydro is

utilized to lower system costs, this needs to be made up for because of the end of the year

constraints (see Equation (5.38)). At the end of the year, SOC levels need to align with

the beginning of the year. It can be seen that the shadow price methodology is not able

to reproduce the pattern of hydro production, as seen in the zonal and nodal models.
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Figure 5.9: Aggregated SOC profiles in % for the short-time horizon benchmark with
transmission capacity factor β = 0.5. Zonal input profile from Stage 1 (blue), full nodal
benchmark case NODAL (orange), and penalty factor combination SOC HEUR(1000, 10)
(green) and SH PRICES (red).

5.3.4.2 Benchmarks with Long-Time Horizon

In this section, the results from the long-time horizon benchmark of one year are presented

and discussed. In this case, the optimal SOC profile for the nodal model is unknown, which

is the underlying problem addressed in this study and prevents, in the long-time horizon

benchmark, from comparing to the optimal results. Therefore, as a reference case, the

outcomes are compared against a zonal benchmark ZONAL, which provides the input

SOC profiles from Stage 1 of the methodology. In Table 5.5, results for the long-time

horizon benchmark with transmission capacity factor β = 0.7 are shown.

With respect to the overall system costs, the best performing SOC profiles are obtained

with the proposed methodology, concretely, SOC HEUR(1000, 1000), SOC HEUR(1000, 10),

SOC HEUR(10, 1000), and SOC HEUR(0, 1000). This is consistent with the short-

time horizon benchmark. The costs for all BIDS price parameters as well as the

SH PRICES approach are significantly higher than those of the best-performing penalty

factor combinations. This is because they lack the seasonality information of hydro

inflows. However, the costs are lower than in the case of providing no guidance to the

optimization at all (penalty factors SOC HEUR(0, 0)). The three combinations with the

lowest costs also show the lowest system congestion. The amount of load shed makes up
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Table 5.5: Results overview for the long-time horizon benchmark with transmission capacity
factor β = 0.7. Reported are for the different methods: the total system costs, which are made up
of operational costs (i.e., power generation costs) and load shedding costs, the difference between
ZONAL and the respective method in absolute amount and relative to the total system costs
of ZONAL; the average system congestion (sc); the total amount of load shed and the share of
this amount with respect to the total load; and the run times.

Costs Congestion Load Shedding Run Time

Method
Sys-
tem [B
EUR]

Oper-
a-
tional
[B
EUR]

Load
Shed-
ding
[B
EUR]

Differ-
ence
System-
ZONAL
[B
EUR]

Differ-
ence
System-
ZONAL
wrt
ZONAL
[%]

sc Amount
[GWh]

Share
of Tot
De-
mand
[%]

Run
Time
[h]

ZONAL 64.74 64.74 0.00 0.00 0.0 7.0 0 0.000 2.1

SH PRICES 216.65 68.47 148.17 151.91 234.6 957.0 14817 0.458 3.8

BIDS(20) 242.92 68.37 174.56 178.19 275.2 985.9 17456 0.539 4.1

BIDS(40) 230.50 68.75 161.74 165.76 256.0 977.6 16174 0.500 3.8

BIDS(60) 224.95 68.51 156.44 160.21 247.5 977.4 15644 0.483 4.2

SOC HEUR(1000,1000) 68.46 66.87 1.59 3.72 5.8 664.5 159 0.005 22.9

SOC HEUR(1000,10) 68.42 66.84 1.59 3.69 5.7 663.8 159 0.005 13.0

SOC HEUR(1000,0) 72.98 67.35 5.63 8.24 12.7 696.0 563 0.017 34.1

SOC HEUR(10,1000) 68.45 66.86 1.59 3.71 5.7 664.2 159 0.005 25.7

SOC HEUR(10,10) 180.44 67.45 112.99 115.70 178.7 901.2 11299 0.349 7.7

SOC HEUR(10,0) 220.17 67.94 152.23 155.43 240.1 973.9 15223 0.470 7.2

SOC HEUR(0,1000) 68.45 66.86 1.59 3.71 5.7 664.2 159 0.005 24.5

SOC HEUR(0,0) 279.17 68.96 210.22 214.43 331.2 1097.2 21022 0.650 5.8

0.005% of the annual system load for the penalty factor combinations with the lowest

costs and the lowest levels of congestion. It can be seen that it is significantly higher

for the bid price method, while highest for the case of no guidance SOC HEUR(0, 0).

Therefore, the higher costs can be attributed to the amount of costly load shedding. This

is confirmed when looking at the share of load shedding costs in the overall costs, which

is as high as 75.3% for the case of myopic foresight SOC HEUR(0, 0). Run times are

notably higher for the best-performing penalty factor combinations, indicating that lower

costs come at a computational price.
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Table 5.6: Results overview for the long-time horizon benchmark with transmission capacity
factor β = 0.5. Reported are for the different methods: the total system costs, which are made up
of operational costs (i.e., power generation costs) and load shedding costs, the difference between
ZONAL and the respective method in absolute amount and relative to the total system costs
of ZONAL; the average system congestion (sc); the total amount of load shed and the share of
this amount with respect to the total load; and the run times.

Costs Congestion Load Shedding Run Time

Method
Sys-
tem [B
EUR]

Oper-
a-
tional
[B
EUR]

Load
Shed-
ding
[B
EUR]

Differ-
ence
System-
ZONAL
[B
EUR]

Differ-
ence
System-
ZONAL
wrt
ZONAL
[%]

sc Amount
[GWh]

Share
of Tot
De-
mand
[%]

Run
Time
[h]

ZONAL 64.74 64.74 0.00 0.00 0 7.0 0 0.000 2.1

SH PRICES 263.78 71.46 192.32 199.04 307.4 1122.0 19232 0.594 6.5

BIDS(20) 265.82 71.51 194.32 201.08 310.6 1133.9 19432 0.600 6.6

BIDS(40) 263.72 71.45 192.27 198.98 307.4 1121.8 19227 0.594 5.6

BIDS(60) 260.11 71.48 188.63 195.37 301.8 1119.6 18863 0.583 5.4

SOC HEUR(1000,1000) 101.73 69.85 31.89 37.00 57.1 850.6 3189 0.099 34.8

SOC HEUR(1000,10) 102.01 69.56 32.45 37.27 57.6 847.2 3245 0.100 17.3

SOC HEUR(1000,0) 113.47 70.06 43.41 48.73 75.3 880.2 4341 0.134 38.3

SOC HEUR(10,1000) 101.90 69.76 32.14 37.16 57.4 847.6 3214 0.099 36.8

SOC HEUR(10,10) 198.37 70.06 128.31 133.63 206.4 1034.2 12831 0.396 27.8

SOC HEUR(10,0) 273.22 70.88 202.33 208.48 322.0 1159.4 20233 0.625 10.3

SOC HEUR(0,1000) 101.89 69.75 32.14 37.15 57.4 847.5 3214 0.099 38.1

SOC HEUR(0,0) 335.01 71.52 263.49 270.28 417.5 1254.4 26349 0.814 6.1

To test the performance of the proposed methodology to obtain SOC profiles, it is

applied to a scenario of higher congestion by reducing the available transmission capacity

to 50%. An overview of the performance measures is provided in Table 5.6.

The costs in this scenario are higher as the system is more constrained. The method-

ologies with the lowest costs are SOC HEUR(1000, 1000), SOC HEUR(1000, 10),

SOC HEUR(10, 1000), and SOC HEUR(0, 1000). The average system congestion has

increased with respect to the β = 0.7 benchmark. The lowest system congestion

does not correspond to the penalty factors with the lowest costs. The lowest system
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congestion is reached with SOC HEUR(1000, 10), while also SOC HEUR(10, 1000) and

SOC HEUR(0, 1000) lead to slightly lower average system congestions than the case with

the lowest costs SOC HEUR(1000, 1000). This suggests that more freedom to adjust

the SOC levels within a zone through choosing the second penalty factor to be lower

can mitigate line overloading. Low system costs correlate again well with lower levels

of load shedding. In this more congested benchmark case, the costs of load shedding

become increasingly dominant, as they make up 78.7% of the costs in the myopic case

(SOC HEUR(0, 0)). Run times are higher in almost all cases in comparison to the

β = 0.7 scenario, reflecting the more constrained system. The methods relying on shadow

prices and constant bid prices for hydro perform very similarly throughout the entire set

of performance indicators. They only outperform the two worst penalty combinations,

with low penalties SOC HEUR(0, 0) and SOC HEUR(10, 0).

It is especially interesting to investigate why the penalty combination with the highest

factors SOC HEUR(1000, 1000) is performing well throughout the scenario with the

lower transmission capacity factor, on the one hand; and on the other hand, why more

freedom to deviate from the ZONAL input profile within a zone does not lead to fewer

line overloadings, load shedding, and costs. Therefore, the evolution of costs differences in

the β = 0.5 scenario between the SOC HEUR(1000, 1000) and the SOC HEUR(1000, 0)

is investigated and displayed in Figures 5.10 and 5.11.

When regarding the costs to generate power (Figure 5.10), from January to April, the

costs for SOC HEUR(1000, 0) are lower than in the case of SOC HEUR(1000, 1000).

Throughout the following months, the costs fluctuate rather evenly, before the costs

increase in the last two months. This can be explained by the fact that minimum

targets are enforced for the end of the simulation horizon. Small gains in cost reduction

at the beginning of the year are lost at the end of the year when the optimization in

SOC HEUR(1000, 0) needs to fulfill the annual water balance and the generation costs

increase. When analyzing the difference in costs for load shedding (Figure 5.11), it can

be concluded that these constraints also contribute to higher load shedding costs towards

the end of the year.

In this context, it is also informative to examine the aggregated SOC profiles.

In Figure 5.12, one can see the deviation of SOC profiles from the input profile obtained

from Stage 1 (ZONAL). Concretely, the profiles for SOC HEUR(1000, 1000) and
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Figure 5.10: Difference in power generation costs between SOC HEUR(1000, 0) and
SOC HEUR(1000, 1000). Displayed is the differences in power generation costs in million
EUR. Displayed is the daily rolling average of the cost time series.

Figure 5.11: Difference in load shedding costs between SOC HEUR(1000, 0) and
SOC HEUR(1000, 1000). Displayed is the difference in costs of load shedding in million EUR.
Displayed is the daily rolling average of the cost time series.

SOC HEUR(1000, 0) under the two scenarios of transmission capacity of β = 0.7 and

β = 0.5 are compared. One can observe that, in general, higher penalty factors lead

to smaller differences with respect to the input profile. Inspecting the SOC profiles of
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Figure 5.12: Aggregated SOC profile difference between the ZONAL input profile of Stage 1
and SOC HEUR(1000, 1000) and SOC HEUR(1000, 0), respectively, in % with respect to the
ZONAL profile.

SOC HEUR(1000, 1000), one can see that within a sequence (i.e., a week), the profiles

can deviate; thus, the optimization has the freedom to adjust to line overloadings on a

short timescale. This is because target values are only enforced through soft constraints

at the end of each sequence. SOC HEUR(1000, 0), on the other hand, may also deviate

on a longer timescale from the target profiles because of the penalty factor for individual

storage unit deviations αs = 0. For this case, the graph shows that under the higher

congested case (β = 0.5), the profiles will deviate even more from the zonal input profile.

Under more congestions, the optimization tries to reduce costs by deviating more from

the input profile. Considering again in this context Figures 5.10 and 5.11, this leads to

gains in the system costs. However, because of the final year targets, the SOC profiles

ultimately need to align again, and this leads to higher costs, both in power generation

and load shedding. Therefore, it is beneficial to follow the input profiles on a longer

timescale and only deviate on a shorter timescale.

5.3.4.3 Redispatching Case Study

The best-performing method obtained from the heuristic for the β = 0.7 benchmark, i.e.

SOC HEUR(1000, 10) is used for a redispatching case study. The results are compared in
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terms of generation by technology and system costs for the zonal model, the zonal model

plus redispatching, broken down in positive and negative redispatching, and the full nodal

model. Simulations are performed for one week, in which high levels of congestion are

detected. The results are summed up in Tables 5.7 & 5.8.

Table 5.7: Results on system costs from the redispatching case study of one week for the nodal
model, the zonal model and zonal + redispatching model (zonal+RD).

System costs [bn EUR]

Model Total Operational Load shedding

Nodal 1.783 1.575 0.208

Zonal 1.512 1.512 0

Zonal+RD 1.829 1.617 0.213

Table 5.8: Results on generation by technology from the redispatching case study of one week
for the nodal model, the zonal model and zonal + redispatching model (zonal+RD), for which
generation is broken down in upward and downward redispatching with respect to the zonal
model. Shown is generation by technologies in GWh for gas, coal and lignite, oil, nuclear, wind
(on- and off-shore), solar, other RES (biomass, geothermal and run-of-river), hydro storage
(hydro dams and PHS) and load shedding.

Generation by technology [GWh]

Model Gas

Coal
&
lig-
nite

Oil Nuclear Wind Solar Other
RES

Hy-
dro
stor-
age

Load
shed-
ding

Nodal 6682.6 20414.9 177.4 21460.1 11504.1 1774.2 3877.4 9556.9 20.8

Zonal 3835.6 22752.1 0.0 21911.8 11539.5 1774.3 4019.2 9635.8 0.0

Zonal+RD 6285.5 21198.1 416.9 21088.0 11337.7 1754.4 3846.8 9519.6 21.3

Upward RD 2449.9 16.6 416.9 0.0 0.0 0.0 0.0 25.7 21.3

Downward RD 0.0 -1570.6 0.0 -823.8 -201.8 -19.9 -172.4 -141.9 0.0

Considering the overall system costs in Table 5.7, the zonal model has the lowest

costs, but if the redispatching is included the costs are higher than the ones of the nodal

model. This trend is also seen when only considering the operational costs. The change in

costs can be understood when considering the generation by technology (Table 5.8). One

can observe that net positive redispatching occurs for gas and oil-fired generators, and

also load shedding is increasing in the redispatching model. These are the technologies
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with the highest marginal costs. Consequently, negative redispatching affects coal and

lignite, nuclear, wind, solar, other RES, and hydro storages. In comparison to the full

nodal model, renewable resources are dispatched less in the redispatching model, which is

not favorable, as they are the cleaner and cheaper alternative to conventional generation

technologies.

5.3.5 Conclusions

The main outcomes and contributions of the work presented in this section is summed up

in the following points:

• A heuristic to obtain state of charge profiles for large-scale nodal and zonal models

of the European electricity market is proposed.

• The method helps to overcome the following issues related to modeling hydro

storage SOC: data availability, myopic foresight of a sequenced model, maintaining

seasonality pattern of SOC profiles, and respecting intertemporal constraints.

• From the results on system costs, system congestion, and load shedding, it is found

that the introduced methodology renders better results than a model with myopic

foresight, and the methodology also outperforms the shadow price and bid price

approaches when penalty factor combinations are chosen beneficially.

• The method gives freedom to the optimization to adjust profiles on a short timescale,

even for high penalty factors.

• In general, it seems reasonable to choose high penalty factors, which perform well

under different scenarios of transmission capacity availability.

• A case study on redispatching is performed that demonstrates the applicability of

the proposed heuristic framework.

• Results of the numerical experiments show that the nodal model renders lower

overall system costs than the zonal model, which includes redispatching.

• More expensive generators are affected by upward redispatching, and predominantly

renewable technologies are affected by downward redispatching. In comparison to

the full nodal model, overall less renewable generators are dispatched.
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Given that the need to develop the proposed method in the first place arose from a

lack of data, in general, it would be ideal to pursue an open data policy that would allow

for sound energy system modeling.

Improving the method in future work can be achieved by exploring dynamic penalty

factors. Through this, more long-term deviations from the initial profiles of Stage 1 could

be allowed in times of line overloadings, while in times of few congestions, following

the zonal profiles more closely could be enforced. This would require predictions of

congestions and would allow the methodology to behave in a more proactive way. Another

indication for future research regards the application of the proposed methodology to

perform comparative studies for nodal vs. zonal pricing through solving large-scale

optimization problems. Therefore, also further research should be put into analyzing

the outcomes from the redispatching model.
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Chapter 6

Summary & Conclusions

6.1 Summary & Contributions

This section summarizes the main findings and contributions of the conducted studies

presented in Section 5. The outcomes will be contextualized with the initially formulated

research questions in Section 2. Therefore, the following focuses on how the different

modeling aspects of a nodal model were investigated within the studies performed in the

context of this Ph.D.

Technical aspects: power flow model and network representation

In Section 5.1, the technical modeling aspect of the formulation of the optimal power

flow problem has been examined. Further, a study was presented that investigates the

role of network aggregation. The DC-OPF and AC-OPF formulation of the power flow

problem have been compared in the context of obtaining nodal prices under different

scenarios that stress the system. It was found that DC-OPF renders relatively accurate

estimates of nodal prices when the optimization is able to identify congestions in the

system. However, under scenarios of increased stress, when reactive power flows become

more dominant, there is merit in utilizing AC-OPF to determine nodal prices. Further,

the impact of the formulation of the optimization problem on run times was analyzed

by solving several test cases with increasing numbers of nodes in their networks. It was

found that run times for networks with less than 1,000 nodes were comparable for DC-

OPF and AC-OPF . As the number of nodes increased, the computational times for AC-

OPF increased significantly. This can be attributed to the formulation as a quadratically

91



constrained non-convex optimization problem. Run times were also compared for unit

commitment DC-OPF, which already exhibited longer computational times for a few 10s

of nodes in the network. Furthermore, as node numbers increased, the run times increased

significantly more than for the two other OPF formulations. Various research has already

been conducted on different approximations of reactive power flows that improve the DC

formulation without adding all the additional computational difficulty to the problem,

and this can be an interesting path to explore further. However, for large-scale electricity

market models, DC-OPF is the preferred approach given its transparency, computational

efficiency, and reasonable accuracy.

For comparative studies between nodal and zonal systems, the comparability of

networks is essential. To perform such analyses, networks need to be spatially aggregated.

On a 118-node test case, the impact of network aggregation was tested concerning the

effects on identified congestions and locational marginal prices. In a higher-resolution

network, congestions can be identified, and LMPs reflect these congestions, which is the

case for nodal pricing in general. The discrepancy between the aggregated and the full

network points toward the relevance of network representation in large-scale nodal models

and their comparability to zonal models. The question of network representation and

OPF formulation are interconnected as both will affect run times. Often, it is necessary

to consider a trade-off between accuracy and computational tractability. Especially the

aggregation of networks in comparative studies of zonal and nodal models is a topic that

should be investigated further in future research.

Economic aspect: demand elasticity

The study presented in Section 5.2 addresses an economic aspect of modeling electricity

markets, i.e. demand elasticity. A two-step modeling approach is introduced. Firstly, de-

mand function parameters are determined from equilibrium prices of a cost minimization

problem. These are then implemented through a step-wise function in the second step

of the modeling process, where a welfare maximization problem is solved. Included in

the formulation of the economic dispatch problem are the provision of reserves and unit

commitment through binary variables, which render the optimization problem a MILP.

For the first time, a pan-European study was performed that includes demand elasticity

consideration in the investigation of future scenarios of the European electricity system.
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A study conducted on the future Italian system under different zonal constellations

demonstrates the impact of demand elasticity on prices and welfare. More bidding zones

and thus more transmission constraints lead to higher overall costs. However, considering

demand to be elastic contributes to lowering these additional costs. Under a scenario

of high demand elasticity, the costs from additional transmission capacity constraints

can be fully compensated by elastic demand. This indicates that modeling the demand

elasticity in models that consider the full physical transmission network is an essential

task, especially given the increasing interest in demand response technologies and the

potential it is expected to have in the future. An aspect that has not been explored is

the costs associated with demand elasticity, which should be included in future studies.

Technical aspect: intertemporal dependencies and hydro modeling

In Section 5.3, a novel heuristic algorithm is introduced to determine hydro SOC profiles

for large-scale nodal models. Simulating large-scale nodal models with a high spatial and

temporal resolution over horizons of one year is computationally expensive. Performing

such computations in a reasonable amount of time and using fewer computational

resources calls for parallelization or sequentialization of the problem. Due to the lack of

data, the seasonality of hydro inflows to storage reservoirs, and the intertemporal nature of

hydro storage constraints, it is necessary to pre-determine hydro profiles that render a cost-

optimal solution to the large-scale problem. Thus, a stage-wise methodology to accurately

model these technical and economic aspects of hydro storages was proposed and tested on

different case studies. A heuristic approach allows adjusting SOC profiles obtained from a

first stage optimization of a spatially aggregated zonal model. The adjustment occurs in

a second stage, where the zonal SOC profiles are used as guidance for a sequential nodal

model. By using soft-constraints, deviations from the input profile are penalized with

different weights, allowing freedom to adjust the input profile to the more constrained

reality of the nodal model. The proposed methodology is tested using different input

parameters against other methods applied in the literature on four benchmarks of different

time horizons and levels of congestion. It is found that the introduced methodology

outperforms the case of myopic foresight and approaches presented in the literature. Under

scenarios of increased congestions in the network, it can be beneficial to explore the usage

of dynamic parameters that allow adjusting to time-varying constraints and congestion.
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Especially the discrepancy between the obtained results and the sequenced model with

myopic foresight underlines the relevance of accurately modeling the seasonality and

intertemporal dependence of hydro storages.

To demonstrate the applicability of the proposed heuristic, the obtained SOC profiles

are used to perform a case study on redispatching to compare nodal against zonal

plus redispatching. It is found that the system costs of the nodal model are lower

than those of the zonal model, which includes redispatching. This is because more

expensive generators are affected by upward redispatching, and predominantly renewable

technologies are affected by downward redispatching. Compared to the full nodal model,

overall, fewer renewable generators are dispatched. This study shows that the heuristic

enables conducting comparative studies between zonal and nodal models. Further research

should examine the employed redispatching methodology more carefully and also explore

solely price-based redispatching or market-based redispatching to estimate the costs

associated with redispatching more accurately.

6.2 Conclusions & Outlook

This work has explored various modeling aspects relevant to assessing nodal pricing

in large-scale European electricity market models. Concretely, technical aspects of

optimization problem formulation as DC-OPF, AC-OPF , and unit commitment have

been explored. Further, network capacity representation and intertemporal constraints of

unit commitment and hydro storages have been assessed. As to the economic aspects, the

role of demand elasticity in compensating costs of increased network resolution has been

considered, as well as the welfare effects of myopic foresight in hydro storage modeling.

Further, a redispatching step was implemented as part of a zonal model that allows for

a sound comparison between nodal and zonal pricing. This proved the applicability of the

developed methodology to estimate hydro SOC profiles and showed the path to finalize

the model. It should be further explored how to implement and conduct redispatching

modeling by comparing different approaches in the literature. In the effort to combine the

lessons learned from this Ph.D. thesis, a joint model that combines especially the elements

of demand elasticity with sound hydro modeling and redispatching should be developed.

There are various modeling choices one has to make when designing electricity market
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models, and thus this work is by no means exhaustive in assessing all of them. Future work

could focus on environmental aspects by including the costs of externalities or greenhouse

gas emission reduction targets into the objective. This will surely become more relevant

given the transformation of the power sector that lays ahead of us. In this context, the

distribution of welfare is also an interesting topic to consider, as a switch from zonal

to nodal pricing would entail distributional effects that need to be accounted for when

assessing the benefits and drawbacks of a switch in pricing schemes.

Building up on the work already conducted, it will be interesting to explore nodal

against zonal pricing in a pan-European context through exploring future scenarios of the

evolution of the power system. While various country-specific studies have already been

conducted, a broader perspective on the costs and benefits of nodal pricing is needed and

should be explored in future applications of the developed model.
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Appendix A

Theory, Literature & Code

A.1 Theoretical Background

This section will give an overview of relevant concepts from optimization, power flow and

economics that are essential to understand electricity markets.

A.1.1 Lagrangian Duality and the Karush-Kuhn-Tucker Condi-

tions

Consider this optimization problem in standard form1:

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m (A.1)

hi(x) = 0, i = 1, . . . , p,

where x ∈ IRn is the variable, domain D =
⋂m

i=0 dom fi ∩
⋂p

i=1 dom hi, which is

nonempty and the optimal value p∗. The problem does not need to be assumed to be

convex. For this problem, one can formulate the Lagrangian L : IRn × IRm × IRp −→ IR,

which can be interpreted as the weighted sum of the objective function and the constraints:

L(x, ν, λ) = f0(x) +
m∑
i=1

νifi(x) +

p∑
i=1

λihi(x), (A.2)

1Much of this subsection drawn from Boyd and Vandenberghe (2004) and Buzna (2019).
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with dom L = D × IRm × IRp. νi and λi are the Lagrangian multipliers or dual variables

associated with the constraints fi(x) and hi(x) respectively. One can then write the

Lagrange dual function g : IRm × IRp −→ IR as:

g(ν, λ) = inf
x∈D

L(x, ν, λ) (A.3)

= inf
x∈D

(
f0(x) +

m∑
i=1

νifi(x) +

p∑
i=1

λihi(x)

)
. (A.4)

L is affine in (ν, λ) and g is the infimum of an affine functions, thus g is concave, even

if (A.1) was not convex. The dual function takes the value −∞, if the Lagrangian is

unbounded below in x.

If ν ⪰ 0 2 then the dual function represents a lower bound to the optimization problem

g(ν, λ) ≤ p∗. Thus one can formulate the so-called dual problem:

maximize
ν,λ

g(ν, λ) (A.5)

subject to ν ⪰ 0. (A.6)

It will yield the optimal value d∗, which is the best lower bound on p∗. Thus, d∗ ≤ p∗

holds, even for non-convex optimization problems (A.1), and is referred to as weak duality.

For convex problems usually strong duality holds and the optimal duality gap is zero, i.e.

d∗ = p∗, where the optimal value of the dual function delivers the optimal value of the

original problem. There are a number of constraint qualifications, which are conditions

under which strong duality holds. A sufficient condition is Slater’s constraint qualification,

which states that if the problem (A.1) is convex and there exists an x so that all (affine)

equality constraints are respected and all non-linear inequality constraints hold strictly,

i.e. fi(x) < 0, then strong duality holds.

2⪰ represents a vector inequality.
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If strong duality holds and x∗ is primal and ν∗ and λ∗ are dual optimal respectively, then:

f0(x
∗) = g(ν∗, λ∗)

= inf
x∈D

(
f0(x) +

m∑
i=1

ν∗
i fi(x) +

p∑
i=1

λ∗
ihi(x)

)

≤ f0(x
∗) +

m∑
i=1

ν∗
i fi(x

∗) +

p∑
i=1

λ∗
ihi(x

∗)

≤ f0(x
∗). (A.7)

These two inequalities hold with equality. Therefore, it follows that x∗ minimizes

L(x, ν∗, λ∗). Further,
∑m

i=1 ν
∗
i fi(x

∗) = 0 and since all terms in this sum are non positive

it follows that ν∗fi(x
∗) = 0, i = 1, . . . ,m. This is referred to as complementary slackness

and often formulated in the following two equivalent ways:

ν∗
i > 0 =⇒ fi(x

∗) = 0, fi(x
∗) < 0 =⇒ ν∗

i = 0. (A.8)

If there are x∗, ν∗ and λ∗, which are any primal and dual optimal points and strong duality

holds then x∗, ν∗ and λ∗ satisfy the Karush-Kuhn-Tucker (KKT) conditions. The KKT

conditions for a problem (A.1) with differentiable fi and hi are:

1. for primal constraints: fi(x
∗) ≤ 0, i = 1, . . . ,m, hi(x

∗) = 0, i = 1, . . . , p,

2. for dual constraints: ν∗ ⪰ 0,

3. complementary slackness: νifi(x
∗) = 0, i = 1, . . . ,m,

4. the gradient of the Lagrangian with respect to x∗ vanishes:wordsssssss word

∇f0(x
∗) +

∑m
i=1 ν

∗
i ∇fi(x

∗) +
∑p

i=1 λ
∗
i∇hi(x

∗) = 0.

For a convex optimization problem that satisfies Slater’s condition and has differentiablef0,

fi and hi, the KKT conditions are necessary and sufficient criteria for optimality.

When strong duality holds, dual variable yield important information, which can be
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understood through considering the perturbed optimization problem:

minimize
x

f0(x)

subject to fi(x) ≤ ui, i = 1, . . . ,m (A.9)

hi(x) = vi, i = 1, . . . , p,

where x is the primal variable, u and v are parameters and f ∗
0 (u, v) is the optimal value.

The perturbed problem is similar to (A.1) where the inequality constraints have been

tightened or loosened by ui and an additional term vi is introduced in the equality

constraints. The dual variables νi and λi can be interpreted as the sentsitivities of the

objective function value to small changes in the parameters given that f ∗ is differentiable

at u = 0 and v = 0:

ν∗
i =

∂f ∗
0

∂ui

∣∣∣∣
u=0,v=0

, λ∗
i =

∂f ∗
0

∂vi

∣∣∣∣
u=0,v=0

. (A.10)

This means when a constraint is modified by an infinitesimal amount, the respective dual

variable reflects the rate at which the objective function value changes.

A.1.2 Basic Formulation of the Power Flow Problem

In power flow analysis the electricity grid is considered as a network of nodes or buses

connected through lines or edges3. With each node i a number of variables are associated:

voltage amplitude vi, voltage angle θi, net active power Pi and net reactive power Qi.

There are different node types defined according to the variables known at that particular

node: PQ nodes, Pi and Qi are known and vi and θi need to be calculated; and PV nodes,

where Pi and vi are known and Qi and θi need to be determined. The former ones are

usually associated with loads without voltage control, while the latter represent generating

nodes that do have a voltage control. Additionally, there are so-called slack nodes or

reference nodes V θ, where vi and θi are known and Pi and Qi need to be calculated. As

the name suggests a reference node serves as a point of reference for the voltage angle, for

this variable is determined with respect to a reference angle. Furthermore, V θ nodes are

needed to balance generation, loads and losses, due to the initially unknown active power

3Much of this Chapter is drawn from Andersson (2012).
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losses.

The equations describing the network flow can be derived from Kirchhoff’s Law.

Kirchhoff’s current law states specifically that the current injected into one node i needs

to flow out again into the adjacent nodes k ∈ N(i):

Ii =
∑

k∈N(i)

Iik, (A.11)

where Ii is the current injected or extracted at node i and Iik is the current flowing from

node i to the adjacent node j. Applying Ohm’s law, which describes the relation between

current, voltage and admittance (the inverse of the impedance), yields:

Ii =
∑

k∈N(i)

YikVk, (A.12)

where Yik is the corresponding element of the admittance matrix and Vj the voltage at

node j. The admittance matrix elements are comprised of the conductance Gik and the

susceptance Bik, which are a property of the line or edge connecting node i with node k:

Yik = Gik + jBik, (A.13)

where j is the imaginary unit. According to Euler’s formula one can express an alternating

sinusoidal voltage in polar form:

Vi = vi(cosθi + jsinθi) = vie
jθi , (A.14)

where vi is the voltage amplitude and θi is the voltage angle. Using this relation and

(A.13), we can write (A.12) as:

Ii =
∑

k∈N(i)

(Gik + jBik) vke
jθk . (A.15)

Further, we utilize the relationship between current and voltage and complex power at

node i:

Si = Pi + jQi = ViI
∗, (A.16)
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where Si is the complex or apparent power, Pi is the real or active power, Qi is the reactive

power, Vi is the complex voltage and I∗ is the complex conjugate of the complex current.

Plugging in (A.15) and using (A.14), (A.16) becomes:

Si = Pi + jQi = vie
jθi
∑

k∈N(i)

(Gik − jBik) vke
−jθk . (A.17)

Now, one can identify the real and the imaginary parts, using Euler’s Equation (A.14) in

order to obtain the equations for the active and reactive power injected at node i:

Pi = vi
∑

k∈N(i)

vk(Gikcos(θi − θk) +Biksin(θi − θk)), (A.18)

Qi = vi
∑

k∈N(i)

vk(Giksin(θi − θk)−Bikcos(θi − θk)). (A.19)

These nodal power equations describe the main power flow problem, which is represented

by a set of nonlinear equations. Depending on the node type either Pi and Qi or Pi and

vi are known and the other variables need to be determined. This problem is usually

formulated as a root problem and solved using for example Newton-Raphson method.

A.1.3 Economic concepts

A market is in general a place where buyers and sellers meet to exchange goods 4. A

particularity of electricity markets in comparison to markets of other commodities lies

in the non-storability of electricity. Though there are increasingly storage technologies

under development, there is no large-scale solution that would allow to trade electricity

similarly to easily storable commodities. Resulting from this electricity generation and

consumption need to be in almost perfect balance at all time. Firstly, the economic

consideration of suppliers and consumers of electricity will be introduced.

A.1.3.1 Fundamentals of Markets: Demand, Supply and Welfare

It has been a custom for entities supplying electricity to consumers to supply load forecasts

to system operators, which would result in a single defined demand quantity. In electricity

4This Chapter largely draws from Kirschen and Strbac (2019) and Ranci and Cervigni (2013).
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markets however, consumers or energy supplying utilities submit demand bids to the

market (Kirschen, 2003). A demand bid i is defined by a price pi and a demand quantity

qi. This leads to a step-wise demand function comprised of all the bids Id:

d(p) =
∑
i∈Id

di(p), (A.20)

where

di(p) =

qi, if p ≤ pi

0, otherwise.

(A.21)

In case of a large number of bids, (A.20) becomes a continuous function. Though, a more

commonly used version is the (inverse) linear demand function pd(q)
5, which is displayed

in Figure A.1:

pd(q) = bq + a, (A.22)

where b is the demand slope and a is the demand intercept. Displayed by a demand

function is a consumer’s willingness to pay for a certain quantity of electricity.

The concept of demand elasticity refers to the sensitivity of consumers to changes in

electricity prices and a consequential change in demand. Demand elasticity is usually

denoted with ϵ and defined as the infinitesimal relative change in demand to the

infinitesimal relative change in electricity price

ϵ =

δq
q

δp
p

=
δq

δp

p

q
, (A.23)

where q is the quantity of demand and p is electricity price. For a given reference price

pref and demand quantity qref and a price demand elasticity ϵ, one can determine the

demand slope according to

b =
δp

δq
=

pref
qrefϵ

(A.24)

and the demand intercept according to

a = pref −
pref
ϵ

. (A.25)

5Even though inverse demand function would be the correct term, we will refer to the function pd(q)
as simply demand function as it is common practice.
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pref

qref
q

p

Figure A.1: Demand functions, in green inelastic and in blue elastic demand, determined
around the reference equilibrium point with pref and qref and a given demand elasticity ϵ.

Similarly to the consumers, producers will make supply bids defined by a generated

electricity quantity qi and price pi to a market to offer their electricity. They will do so

in accordance with their costs to produce the next MWh of electricity. Again, the supply

function can be displayed as a step-wise function consisting of all the generation bids Ig:

g(p) =
∑
i∈Ig

gi(p), (A.26)

where

gi(p) =

qi, if p ≥ pi

0, otherwise.

(A.27)

If the numbers of bids is large enough, (A.26) becomes a continuous fashion. In accordance

with Equation (A.22) pg(q) is the inverse supply function. As a connected concept we

introduce the cost function c(g), which displays the costs to generate electricity, in its

discrete form:

c(g) =
∑
i∈Ig

gi(p) · pi. (A.28)

In a perfect competitive market all market participants are price takers and cannot

affect the price by their individual actions. Under this assumptions the market clearing

price or equilibrium price p∗ is determined through the intercept of supply and demand

function. This is where the quantity of electricity that consumers would like to purchase

at that price is equal to the quantity that producers are willing to provide at that price,
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p∗

q∗
q

p

Figure A.2: Inverse supply and demand curve, displaying price as a function of quantity q.
Indicated at p∗ and q∗ are equilibrium price and quantity. The shaded are is the total social
welfare, consisting of consumer surplus (blue area) and producer surplus (red area).

which is the equilibrium quantity q∗ thus:

g(p∗) = d(p∗) = q∗. (A.29)

The equilibrium price constitutes the price at which all electricity is traded. From

Figure A.2 one can see that the market clearing price is lower than the price some

consumers are willing to pay. The area under the inverse demand curve, minus the costs to

purchase the equilibrium quantity q∗, is defined as the consumer surplus. Correspondingly,

producers, who receive a higher price than they would be willing to sell their electricity

for, lead to the so-called producer surplus as also indicated in Figure A.2. The sum of

consumer and producer surplus is referred to as social or economic welfare W and can be

determined through:

W =

∫ q∗

0

pd(q) dq −
∫ q∗

0

pg(q) dq (A.30)

We can identify the second integral of (A.30) to be the cost associated with generating

the amount of electricity q∗. When designing electricity markets, the maximization of

social welfare is often the objective.

A.2 Literature Review: Overview of Case Studies

Table A.1 summarizes several case studies presented in Section 4.
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A.3 Model Code

The code developed in the context of this Ph.D. will be made available on the author’s

github page https://github.com/LucaLJ.
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Hörsch, J., Hofmann, F., Schlachtberger, D., and Brown, T. PyPSA-Eur: An open

optimisation model of the European transmission system. Energy Strategy Reviews,

22(September):207–215, 2018. ISSN 2211467X. doi: 10.1016/j.esr.2018.08.012. URL

https://doi.org/10.1016/j.esr.2018.08.012.

Hu, J., Harmsen, R., Crijns-Graus, W., Worrell, E., and van den Broek, M. Identifying

barriers to large-scale integration of variable renewable electricity into the electricity

market: A literature review of market design. Renewable and Sustainable Energy

Reviews, 81(September 2016):2181–2195, 2018. ISSN 18790690. doi: 10.1016/

j.rser.2017.06.028. URL https://doi.org/10.1016/j.rser.2017.06.028.

113

http://ksgwww.harvard.edu/people/whogan
http://ksgwww.harvard.edu/people/whogan
https://doi.org/10.1016/j.esr.2018.08.012
https://doi.org/10.1016/j.rser.2017.06.028


Huang, J. and Purvins, A. Validation of a Europe-wide electricity system model

for techno-economic analysis. International Journal of Electrical Power and Energy

Systems, 123(March):106292, 2020. ISSN 01420615. doi: 10.1016/j.ijepes.2020.106292.

URL https://doi.org/10.1016/j.ijepes.2020.106292.

Hutcheon, N. and Bialek, J. W. Updated and validated power flow model of the

main continental European transmission network. 2013 IEEE Grenoble Conference

PowerTech, POWERTECH 2013, pages 1–5, 2013. doi: 10.1109/PTC.2013.6652178.

IEA. CO2 Emissions Database (2019 Edition). International Energy Agency, page 92,

2019. ISSN 15509613. doi: 10.1670/96-03N. URL http://wds.iea.org/wds/pdf/

Worldco2{ }Documentation.pdf.

Iimi, A. Price Elasticity of Nonresidential Demand for Energy in South Eastern Europe.

Policy Research Working Paper Finance,Economics and Urban Development(FEU)The

World Bank, WPS5167(January):1–29, 2010. URL http://econ.worldbank.org/

external/default/main?pagePK=64165259{&}piPK=64165421{&}theSitePK=

469382{&}menuPK=64166093{&}entityID=000158349{ }2010010710180.
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