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Abstract
KOPČAN Jaroslav, Ing.: Towards Explainable Pattern Recognition. [Dissertation

Thesis] University of Žilina in Žilina. Faculty of Management Science and Informatics.

Faculty of Information Networks. - Thesis supervisor: prof. Ing. Martin Klimo,PhD. -

Žilina: FRI ŽU, 2023, 162 pages.

Research in this dissertation hones in on the explainability of predictions obtained by

deep learning classifiers. As the mining of input data may generate novel features that

are not readily interpretable within the application domain, our main goal is to establish

a system that provides explanations of the prediction and from those, help the end-user

infer the interpretability of involved features. To sustain the high performance of a

non-linear system, we concentrate on a post-hoc explanation strategy, which involves

constructing an interpretable model based on fuzzy logic which provides explanations

of the decision-making of the black box. To overcome the challenge of interpreting

the vast number of non-linear functions, we decompose the DNN into two components:

the feature extractor and the classifier. The exact interpretation of features is a tough

task-dependent discipline that has the nature of scientific work. To facilitate this

process, we introduce a tool to help researchers and users comprehend newly extracted

features that may not be known in the specific application domain.

Following an evaluation of the related work in this field, we have concluded that the

current explainability mechanism fails to consider the possibility of anomalies. This

means the interpretation method may attempt to explain unexplainable inputs, and

users remain uninformed of such misuse of recognizers. To safeguard users against

these issues, we suggest integrating an anomaly detector into the explainability system.

This work examines an innovative approach to anomaly detection that does not rely on

measuring the similarity between the tested pattern and those in the training set as

conventional methods. Instead, the proposed method aims to compare the underlying

mechanisms responsible for forming the tested image with those used for forming images

in the training set. By focusing on the creation mechanisms, the proposed method can

more accurately identify anomalous patterns.

Keywords: explainability, interpretability, anomaly detection, deep generative

modeling, deep learning, feature extraction, pattern recognition, fuzzy logic



Abstrakt
KOPČAN Jaroslav, Ing.: Vysvetliteľné Rozpoznávanie Vzorov. [Dizertačná práca]

Žilinská univerzita v Žiline. Fakulta riadenia a informatiky. Katedra Informačných

Sietí. - Vedúci dizertačnej práce: prof. Ing. Martin Klimo,PhD. - Žilina: FRI ŽU, 2023,

162 pages.

Výskum v tejto dizertačnej práci sa zameriava na vysvetliteľnosť predikcií nelineárnych

klasifikátorov hlbokého učenia. Keďže systém može zo vstupných dát extrahovať

príznaky, ktoré nie sú ľahko interpretovateľné v rámci aplikačnej domény, hlavným

cieľom je vytvoriť systém, ktorý poskytuje vysvetlenia predikcií. Z nich má následne

používateľ možnosť odvodiť interpretovateľnosť príslušných príznakov. Pre zachovanie

výkonnosti nelineárnych systémov sa sústredíme na post-hoc prístup, ktorá znamená

vytvorenie interpretovateľného modelu založeného na fuzzy logike. Logický model

poskytuje vysvetlenie predikcií čiernej skrinky. Aby sme prekonali problém interpretácie

obrovského množstva nelineárnych funkcií, konceptuálne delíme nelinárny klasifikátor

na dve časti: extraktor príznakov a klasifikátor. Presná interpretácia príznakov je

náročná disciplína, ktorá má charakter vedeckej práce. Na uľahčenie tohto procesu

predstavujeme nástroj, ktorý pomáha výskumníkom a používateľom porozumieť novo

extrahovaným príznakov, ktoré nemusia byť v konkrétnej aplikačnej doméne známe.

Na základe hodnotenia súčasného stavu vysvetliteľnosti konštatujeme, že sa neberie

do úvahy možnosť dátových vstupov, ktoré sú anomálne voči trénovaciemu dátovému

súboru. Teda systém vysvetliteľnosti sa bude snažiť vysvetliť nevysvetliteľné. O takomto

nesprávnom používaní rozpoznávačov nie sú používatelia poučení, preto by bol detektor

anomálií vhodnou súčasťou. V práci navrhujeme detektor anomálií ako možnú súčasť

vysvetliteľného konceptu. Pre detekciu anomálií je skúmaných viacero metód, ktoré

nehodnotia podobnosť testovaného vzoru so vzormi v trénovacej množine, ale sa snažia

porovnávať mechanizmy vzniku testovaných obrazov s mechanizmom vzniku obrazov v

trénovacom súbore.

Kľúčové slová: vysvetliteľnosť, interpretovateľnosť, detekcia anomálií, hlboké

generatívne modelovanie, hlboké učenie, fuzzy logika, extrakcia príznakov



List of Abbreviations

AE Autoencoder.

AI Artificial Intelligence.

ARIMA Autoregressive Integrated Moving Average.

CART Classification and Regression Tree.

cGAN Conditional Generative Adversarial Network.

CNN Convolutional Neural Network.

DAD Distributed Anomaly Detection.

DenseNet Densely Connected Convolutional Network.

DGM Deep Generative Modeling.

DL Deep Learning.

DNF Disjunctive Normal Form.

DNN Deep Neural Net.

DRL Deep Reinforcement Learning.

ELU Exponential Linear Unit.

FCNN Fully Connected Neural Network.

FGSM Fast Gradient Sign Method.

FIR Finite Impulse Response.

FLF Fuzzy Logical Function.

6



GAN Generative Adversarial Network.

GMM Gaussian Mixture Models.

GOFAI Good Old-Fashioned Artificial Intelligence.

GRU Gate Recurrent Unit.

IoU Intersection over Union.

LOF Local Outlier Factor.

LRP Layer-wise Relevance Propagation.

LSTM Long Short-Term Memory.

ML Machine Learning.

MNIST Modified National Institute of Standards and Technology.

MSE Mean Squared Error.

NLP Natural Language Processing.

NN Neural Networks.

OCSVM One-Class Support Vector Machine.

PCA Principal Component Analysis.

ReLU Rectified Linear Unit.

ResNet Residual Neural Network.

RNN Recurrent Neural Network.

SGD Stochastic Gradient Descent.

SotA State of the Art.

SVDD Support Vector Data Description.

7



UI User-Interface.

VAE Variational Autoencoder.

VGG Visual Geometry Group.

8



Contents

Introduction 17

1 Dissertation Thesis Objectives 19

2 Theoretical Foundations 21

2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Understanding the domain of Explainability in Man-Machine Systems . 28

2.2.1 Explainability vs Interpretability . . . . . . . . . . . . . . . . . 29

2.2.2 Attributes of Explanations . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Taxonomy of Explainable Methods . . . . . . . . . . . . . . . . 32

2.3 Neural Network Interpretation . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Adversarial Examples . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Hierarchical Learned Features . . . . . . . . . . . . . . . . . . . 37

2.3.3 Saliency Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.1 Understanding the domain of Anomaly Detection . . . . . . . . 48

2.4.2 Anomaly detection using Deep Generative Modeling . . . . . . . 54

3 Developed Explainable Approach: Proposal 63

3.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Introduction: How to Learn from Computers . . . . . . . . . . . . . . . 67

3.3 The concept of the proposed method: Overview . . . . . . . . . . . . . 69

3.4 How to measure the significance of features . . . . . . . . . . . . . . . . 71

3.5 Fuzzy Explanator as a Classifier . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 Training Phase of Fuzzy Classifier . . . . . . . . . . . . . . . . . 76

3.5.2 Testing Phase of Fuzzy Classifier . . . . . . . . . . . . . . . . . 78

9



3.5.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.4 The contribution of fuzzy logic to the explainability within the

classification domain . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Interface for Interpretation of Features . . . . . . . . . . . . . . . . . . 82

4 Developed Explainable Approach: Experimental Evaluations 86

4.1 Model Evaluation with MNIST and Fashion-MNIST . . . . . . . . . . . 87

4.1.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.3 Feature reduction for better explainability . . . . . . . . . . . . 90

4.2 Model Evaluation with ImageNet . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.3 Feature reduction when dealing with ImageNet . . . . . . . . . 95

4.2.4 Comparison with conventional method - Decision Tree Algorithm 96

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Challenges Posed by Outliers: An Investigation 100

5.1 Generator utilizing uniform noise . . . . . . . . . . . . . . . . . . . . . 105

5.2 Through controllable generation to anomaly detection . . . . . . . . . . 113

5.2.1 Truncation trick in GANs as inspiration . . . . . . . . . . . . . 113

5.2.2 Probability distribution of Radius . . . . . . . . . . . . . . . . . 117

6 Deep Generative Detection: Experimental Evaluations 120

6.1 Autoencoder-based anomaly detection . . . . . . . . . . . . . . . . . . . 120

6.2 GAN-based anomaly detection . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Controllable Generation:

Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.1 Generator model based on Uniformity . . . . . . . . . . . . . . . 124

6.3.2 Uniformity as anomaly indicator . . . . . . . . . . . . . . . . . . 127

6.3.3 Hypersphere Distance-based Anomaly Detection . . . . . . . . . 133

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Conclusion and Contribution 136

10



Bibliography 140

11



List of Figures

2.1 Example of adversarial and normal image . . . . . . . . . . . . . . . . . 35

2.2 Showcase of one-pixel attacks . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Intersection over Union . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 the principle of DeconvNet . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Showcase for comparison of gradient computations by various visualiza-

tion methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Comparison of different attribute methods . . . . . . . . . . . . . . . . 45

2.7 AE training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.8 AE inference for anomaly detection . . . . . . . . . . . . . . . . . . . . 56

2.9 existing AE architectures for anomaly detection . . . . . . . . . . . . . 56

2.10 The concept of VESC model . . . . . . . . . . . . . . . . . . . . . . . . 59

2.11 Architecture of BiGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Epistemological Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Epistemology triangle in machine learning . . . . . . . . . . . . . . . . 66

3.3 Pixel-attribution map with eye tracking system . . . . . . . . . . . . . 68

3.4 LRP heatmaps example . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Concept for proposed explainability approach . . . . . . . . . . . . . . 70

3.6 Architecture of Logical Fuzzy Classifier . . . . . . . . . . . . . . . . . . 73

3.7 Fuzzy model - training phase . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Fuzzy model - inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9 FLF as tertiary decision tree . . . . . . . . . . . . . . . . . . . . . . . . 81

3.10 UI for feature interpretation . . . . . . . . . . . . . . . . . . . . . . . . 84

3.11 Feature interpretation example . . . . . . . . . . . . . . . . . . . . . . 85

5.1 cGAN - training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

12



5.2 Inverse Transformation - training phase with adversarial images . . . . 103

5.3 Inverse Transformation - inference for outliers . . . . . . . . . . . . . . 103

5.4 Inverse Transformation - inference for originals . . . . . . . . . . . . . . 103

5.5 Inverse Transformation - training phase with originals . . . . . . . . . . 104

5.6 Inverse Transformation with Discriminator as a critic . . . . . . . . . . 104

5.7 The entropy of a random variable following a normal distribution . . . 106

5.8 The entropy of a random variable with a uniform distribution . . . . . 106

5.9 The difference of random variables with uniform and normal distribution 107

5.10 Relative entropy of a random variable with a uniform distribution with

respect to a normal distribution . . . . . . . . . . . . . . . . . . . . . . 110

5.11 Relative entropy of a random variable with a uniform centered distribution

with respect to the normalized normal distribution . . . . . . . . . . . 110

5.12 truncated normal distribution . . . . . . . . . . . . . . . . . . . . . . . 114

5.13 Data distribution space . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.14 Curse of dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.15 Inverse Transformation - training phase with cGenerator model . . . . 118

5.16 Inverse Transformation - inference for outlier detection . . . . . . . . . 118

6.1 Test phase - Histogram of reconstruction errors during outlier detection

/ MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Test phase - Histograms of reconstruction errors during outlier detection

/ CIFAR-10(right) and F-MNIST(left) . . . . . . . . . . . . . . . . . . 122

6.3 Test phase - Histogram of the MNIST-trained Discriminator evaluation

on different datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 Test phase - Cifar10 trained Discriminator(right)/FMNIST trained Dis-

criminator(left) for outlier detection . . . . . . . . . . . . . . . . . . . . 124

6.5 Images created from unit uniform distribution . . . . . . . . . . . . . . 125

6.6 Images created from normal and uniform distributions . . . . . . . . . 126

6.7 Generator-Inverse Transformation design for outlier detection . . . . . . 128

6.8 Statistical test results for uniformity . . . . . . . . . . . . . . . . . . . 129

6.9 Statistical test results for uniformity . . . . . . . . . . . . . . . . . . . 130

6.10 Hypercube Adversarial Example . . . . . . . . . . . . . . . . . . . . . . 132

13



List of Tables

3.1 Patterns mapping into codewords . . . . . . . . . . . . . . . . . . . . . 77

4.1 MNIST results on Fuzzy-logical Model with respect to enhanced LeNet5

classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 FMNIST results on Fuzzy-logical Model with respect to enhanced LeNet5

classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Responsiveness of the Feature Reduction Method used on LeNet-5/MNIST 91

4.4 Employed Architectures and their respective Accuracy score on ImageNet 92

4.5 ImageNet results on proposed Fuzzy-logical Model with respect to specific

classification Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Overview of best performance in combination Black-box/Fuzzy model . 93

4.7 The average stability of explanations within classes for architecture

VGG16 and ResNet50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 The average stability of explanations within classes for architecture

Inception V3 and DenseNet121 . . . . . . . . . . . . . . . . . . . . . . 94

4.9 Responsiveness of the Feature Reduction Method used on DenseNet-

121/ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.10 Performance of post-hoc Decision Tree as a substitute for Fuzzy logical

model used with DenseNet-121/ImageNet . . . . . . . . . . . . . . . . . 98

5.1 Relative entropy between the generalized normal distribution and the

normalized normal distribution . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Relative entropy between the uniform distribution and the test uniform

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Relative entropy between the normalized normal distribution and the

test uniform distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 112

14



6.1 The statistical analysis for hypothesis H0 . . . . . . . . . . . . . . . . . 130

6.2 Evaluation of Inverse Transformation based on hypersphere distance . . 133

15



List of Algorithms

1 Image-Specific Class Saliency . . . . . . . . . . . . . . . . . . . . . . . 41

2 SmoothGrade Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 46

16



Introduction

Deep learning (DL), a subset of artificial intelligence, is a rapidly growing field that has

led to significant advancements in many areas such as computer vision, natural language

processing, and speech recognition. It involves the use of neural networks with multiple

hidden layers, which can learn and extract complex patterns and representations from

vast amounts of data.

This area is one of the most promising trends for the future, and even nowadays is

used in a wide range of applications. These implementations assist the end-user in

decision-making or can directly make decisions and perform actions for the user itself.

They are used for everyday tasks such as customer selection based on shared interests,

weather forecasting, image recognition, natural speech recognition, autonomous driving,

text translation, etc. As the autonomy of DL models increases, so does the risk that

we want to eliminate because even a small number of bad decisions can have very

serious consequences. The great advantage of the deep learning area is technological

development, which enables the enhancement or replacement of human abilities across

a variety of industries. Models like this can be used in any sector to create new

opportunities and increase efficiency. However, there are still a few milestones to be

reached before AI algorithms are deployed en masse in any field. One of the most

important ones is the explainability of these systems.

So, neural network models are due to their complexity, notoriously difficult to explain

and give mostly no or very poor explanations to the end user. This state of affairs is

not ideal for both practical use and future research and development, as the models

are mostly black boxes. It is considered a major drawback, especially in areas such as

medical diagnosis, finance, and autonomous systems, where decisions based on deep

learning models would have a significant impact. Explainability in deep learning refers

to the ability to understand, interpret, and provide justification for the decisions made

17



by these models. The lack of explainability can create a barrier to the wider adoption of

deep learning models in various applications, as it makes it challenging for users to trust

the predictions made by these models. However, this problem is not straightforward

as the robustness of the model increases with increasing model performance, which

means that the model has a huge number of parameters and the information in the

models is difficult to track while lacking a clear representation. The second reason is

the non-linearity of these systems where the activation functions can transform the

space in a way that is incomprehensible to the human brain.

Another significant problem is that out-of-distribution data are often not considered

when it comes to explainability. This can lead to ambiguities in interpretation when

the model essentially tries to explain unexplainable data. Due to this, an anomaly

detection system should be an integral part of the solution. Anomaly detection is

another crucial task in many areas, including cybersecurity, finance, and healthcare,

where identifying unusual or suspicious events is crucial for ensuring the safety and

stability of systems. But traditional approaches to anomaly detection, such as rule-based

systems and statistical methods, have limitations in handling complex and dynamic

data patterns. On the other hand, Deep learning models, such as convolutional neural

networks (CNNs) and recurrent neural networks (RNNs), can learn and represent

complex patterns and relationships in data. This makes them well-suited for detecting

anomalies in high-dimensional, dynamic, and non-linear data sources.

The research presented in this dissertation aims to address the issue of explainability

in DL and highlights the challenges faced in applying DL to anomaly detection. The

experiments aim to demonstrate the potential of deep learning to reach adequate accu-

racy and robustness of anomaly detection systems and provide a better understanding

of how the novel design can be applied in real-world scenarios. The next objective

is to develop a method that can enhance the explainability of deep learning models

while maintaining their accuracy. The contribution to the field of anomaly detection

by providing insights into the capabilities and limitations of deep learning models for

this task is the second part of this work. The main part, is a contribution to the

explainability domain, to provide a better understanding of how DL models make their

predictions, thereby fostering trust in their use in various applications.
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Chapter 1

Dissertation Thesis Objectives

Motivation

The concept of "Good Old-Fashioned Artificial Intelligence" (GOFAI) operates on the

principles of a specific scientific discipline, wherein logical operations derive decisions

from knowledge-based concepts. The scientific discipline tasked with explaining these

concepts is the same discipline within which the decision-making system is applied. The

system user is assumed to have a fundamental understanding of the applied scientific

field. In contrast, machine learning systems extract the necessary features to make

decisions from vast amounts of input data, based solely on their need for successful

decision-making. The output generated by these systems is akin to a black box for the

user, which makes it necessary to develop a method to enable users to understand the

extracted features. By understanding the features generated by systems with higher

prediction success than humans, a user with knowledge in the application area will also

understand the meaning of newly obtained features that he did not know about before.

An often ignored issue with the explainability of decision-making systems is the possibil-

ity that the input samples could be data on which the system was not trained, leading

to attempts to explain the inexplicable. This means inevitably failing to interpret

results. Thus, we view the protection against anomalous data as a crucial aspect of

an explainable decision-making system. Given the practical applications and existing

datasets, this work will also concentrate on the threat of anomalous data (outliers) in

inference processes.

19



Objectives:

• The primary objective of this work is to develop a method for post-hoc explaining

the decisions made by a deep learning system, specifically for image recognition.

• The secondary objective is to develop an anomaly detection technique that

avoids the explanations of anomalous inputs. relies on deep generative modeling.

Such a system could serve as an extension of explainability methods, thereby

enhancing the robustness and reliability of systems. Alternatively, it could also

be implemented as a standalone application.

20



Chapter 2

Theoretical Foundations

2.1 Deep Learning

Today’s computers are mostly Turing machines, which are extremely fast at executing

instructions. For example, adding digits at high speed - thousands, possibly millions

per second - is impressive, but it is not enough nowadays when the complexity of tasks

is increasing. It is extremely challenging for the human brain to perform arithmetic

operations with high numbers at high speed, but the important fact is that the actual

process of such calculations does not require above-average intelligence, it only requires

knowledge of the algorithm.

On the other hand, some tasks are very difficult for traditional computing devices,

but the human brain, on the contrary, can process and solve them easily. A human

looks at an image with human faces, animals, etc., and in most cases, can identify

the object immediately. The entire process is really fast, with a minimum of effort

and with very high accuracy. This is because the brain can process the large amount

of information that the image contains and can identify very successfully what is in

the image. These types of tasks are not easy for computational devices because we

do not know the solution algorithm and they require a high level of parallelization.

Because of this, there has been a requirement for computing devices to be able to solve

cognitive tasks in addition to algorithmic ones and to continuously improve in this

area. It could be said that a certain level of intelligence is necessary for these types of

tasks. "Good old-fashioned artificial intelligence"(GOFAI) approaches problem-solving

by using human knowledge of the problem and proceeding to a solution in logical steps.
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Work in this cognitive area began shortly after World War II and the name itself

(Artificial intelligence - AI) was coined in 1956. However, the very idea that a machine

might have the ability to exhibit intelligent behavior indistinguishable from that of a

human was there before. Alan Turing, considered by many to be the father of artificial

intelligence, in his work [1] from 1950 asked the question:

"Can machines think?"[1]

However, he also introduced another way of answering this difficult question: by

creating a Turing test. A computing device-machine can pass the test if a person,

after asking several written questions, cannot tell whether the written answers come

from a person or a computer. To pass a designed test requires unusual effort and the

machine would have to master disciplines such as:

• Knowledge Representation and Reasoning - the specific form of information

that a computer system can use to solve complex problems, answer questions and

draw new conclusions.[1]

• Machine Learning - The ability to adapt to new circumstances, detect new

features, and change behavior according to them.[1]

However, the base version of the test does not take physical interaction into account.

Turing deliberately avoided disciplines like that, because the physical simulation of

a person is not necessary for intelligence. However, an extension of this test exists -

(Absolute Turing Test) where the test includes a video signal so a human supervisor

can test the subject’s perception, as well as the ability to handle objects. In order to

pass this extended version, the machine must satisfy even more disciplines[2]:

• Natural Language Processing (NLP) - the ability to communicate successfully,

• Computer Vision - the ability to perceive/see objects,

• Robotics - the ability to manipulate objects.

These 5 disciplines make up the majority of machine learning and deep learning research

to this day, and the Turing Test is still relevant even 70 years later.[2].
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In our opinion, even passing the Turing Test gives no answer to the actual question:

"Can machines think?"

But rather it gives an answer to the question: "Can machines imitate thinking?"

One of the highlights of GOFAI is the results achieved by IBM’s Watson system [3].

The system was especially popularized in 2011 in the TV knowledge quiz "Jeopardy",

in which Watson won against two of the best human participants up to that time. If

GOF-AI [4] concludes data with the use of logical operations and expert knowledge, it

should be possible to make conclusions directly by extracting them from the input data.

This idea is implemented in the form of a neural network (NN). The identification of

NN parameters is based on the optimization of neuron weights and biases in a way

that cost function (e.g. classification error) is at a minimum. The described approach

to identifying the right set of system parameters is called Machine Learning (ML) in

general, and it is one of the main designs in developing Artificial Intelligence (AI)

systems. The subset of ML when we are dealing with NN is called Deep Learning (DL).

Machine Learning spreads over a huge range of fields, from abstract areas (learning,

explainability, ...) to more specific ones, such as games, mathematical theorems, creating

art, autonomous driving, and diagnosing diseases. Nowadays it is a field relevant to

every intellectual task. [5]

Overall AI domain is about extracting knowledge from data. It is also known as

Predictive Analytics or Statistical Learning. The use of these methods in everyday life

has increased in the last 20 years, thanks to the digital age and immense computational

resources (applied mainly in computer vision and NLP). And so, these methods are

gradually becoming ubiquitous. Many modern websites and computing devices have

implemented these intelligent systems in one way or another, and in many cases, these

algorithms can also work effectively locally in real-time. Outside of the commercial

realm, Machine and Deep Learning methods have had a huge impact on the research

field. It is effectively used as a tool, for various scientific problems of the present time. In

the early days of "intelligent" applications, many systems used sets of pre-defined rules

that consisted of various ’if’ and ’else’ statements when processing data or modifying

user input. As an example, a simple spam filter moves incoming unwanted emails to

the SPAM folder. The plain solution is to create and program certain keywords in a

way, that if an incoming email contains such words, the spam filter will automatically
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mark the email and classify it as spam. Such an implementation can be considered

a textbook example of a model that works according to pre-designed and explicitly

pre-defined rules.[6] Engineering the decision rules by hand is suitable for some kinds of

applications, especially in areas that are well-known in terms of the modeling processes

of the system itself. (see Chapter 3)

However, the need for a pre-defined set of rules, according to which the system

should work has two main disadvantages:

• The logic behind the decision-making process is specific to one particular domain

and task. Even a small change in the task can result in the need to create the

system from scratch,

• During the process of model creation, defining the decision-making rules requires

a deep understanding of how decisions should be made, for a given specific task.

Also, they should be implemented as if they were being created by an expert,

specialized in the given field.

A perfect example, where the procedure of manually defined rules failed, is the

problem of detecting and classifying objects in images. Nowadays, smartphones and

digital cameras can detect different objects in photos and pictures very accurately, but

this relatively simple by today’s standards task was unsolved for a long time [7] [8] [9].

How the rule-based systems "see" an image and its pixels is diametrically different from

how images are perceived by the human brain. It is this difference in the perception of

an image, and its parts that have made it impossible to come up with a good set of

rules for describing what constitutes objects like a face in a digital image. On the other

hand, the use of deep learning in such a task is a suitable solution. A sufficiently large

data set with a collection of face images is enough for the algorithm to find out what

characteristics - features are necessary for the identification of faces in the image. The

formal definition of ML/DL can be formulated as:

Machine learning gives computing devices the ability to solve any given

task without the need for explicit programming. [10].

A key characteristic of this field is precisely the ability to learn. This refers

to the implementation of systems capable of detecting patterns found in data and
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improving performance based on data and empirical information, all without human-

defined instructions. [5]. Machine and Deep learning can also be defined as the process

of solving a specific problem in two main steps:

1. data collection,

2. parameters identification by the learning algorithm, from previously collected

data.

Such a model is then used as a tool to solve a given specific problem, contained in

the collected data. It should be taken into account that only data is not enough. It is

also highly important to choose the right procedure for how the model should approach

collected data. Various problems require setting up the right learning environment in

order to make the right choice depending on the task at hand and the available data.

Models in general may be split into static and dynamic. Static ones represent a

non-linear transformation and this dissertation deals exclusively with this type. Static

models of Deep Neural Networks (DNNs) are also called feed-forward DNNs. There are

several ways to train static models, but the basic ones are:

• Supervised learning

• Unsupervised learning

• Semi-supervised learning

There is also a specific learning algorithm for dynamic systems which is called Rein-

forcement learning

Supervised Learning

The main concept is based on the fact that the training dataset is a collection of labeled

data samples,{(xji ,y
j
i )}Ni=1. Each input sample xi in the set N is defined by coordinates

(descriptors) in a descriptor vector, (otherwise known as a feature vector. In this work,

the features refer only to the vectors extracted from the descriptors during the training

process). Such a vector has values j = 1,....,D that somehow describe the given sample.

For example, if we had a database of people in which each sample represents one person,

then the first coordinate (element) x(1)
i can carry information about the person’s height.
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Then the second one x(2)
i can contain information about weight, the third x(3)

i can carry

information about the gender of the given person, and so on. Important is also the fact,

that for all samples in the database, the specific element in the descriptor vector always

contains the same type of information across all other data samples. That means, if an

element x(2)
i carries information about a person’s weight in kilos, in a specific sample

xi, then x(2)
k carries the same kind of information in every other sample xk, k = 1,...,N .

The data label yi can be an element belonging to a finite number of classes {1,2,...,C},

a real number, or even a more complex structure such as a vector, matrix, and so on.

Classes are considered categories, to which individual data samples belong. Assuming

the problem of detecting spam emails, we would have exactly two {spam, not_spam}.

The grand design of Supervised learning is to train on labeled data, meaning the

data has a known outcome or target value. The main goal of supervised learning is to

build a model that can make predictions on new, unseen data, based on the patterns it

has learned from the training data during the training phase. [11]

Unsupervised Learning

In this type of training algorithm, the database consists of a collection of unlabeled data

samples {(xi)}Ni=1. That means the target or outcome values are not known. Again,

in this approach, x represents a vector that describes the given sample. The goal of

unsupervised learning is to find patterns or structures in the data without being told

what the patterns mean. Some common examples of unsupervised learning algorithms

include clustering, a method where the model groups similar data points together based

on their vector coordinates or returns an identifier to a certain cluster for each input

vector x. Another example is dimensionality reduction, where the goal is to reduce the

number of features in the data while retaining as much of the original information as

possible. In anomaly detection, data points that are significantly different from the

rest of the data could indicate an outlier/anomalous sample. So, unsupervised learning

should be used whenever the goal is to find patterns in the data without knowing the

outcome. [12]
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Semi-Supervised Learning

Data samples based on hybrid learning algorithms contain both labeled samples and

unlabeled samples. Usually, the frequency of unlabeled data is much higher. The goal

of such learning is the same as in the case of learning with a teacher. The added value

should be that both types of data are in the interaction, and the learning process can

achieve better results in terms of generalization. At first glance, it may seem that we add

more uncertainty to the learning process instead of improving the model. However, if

we add unlabeled data we bring more generalization to our problem. The larger amount

of data better reflects the probability distribution from which the labeled data come.

In theory, the learning algorithm should be able to use this additional information. [13]

Reinforcement Learning

Reinforcement learning algorithms are used to train an agent to make decisions in

dynamic environments, where the decision made by the agent affects the subsequent

state of ’the environment’ and the reward received. The agent interacts with the

environment by taking action and observing the resulting state and reward. The agent’s

goal is to learn a policy that maps states to actions and maximizes the cumulative

reward over time. The policy is learned through trial and error, where the agent receives

feedback in the form of rewards for its actions. The learning process involves the

agent discovering for itself the optimal sequence of actions to maximize the reward.

Overall, reinforcement learning is a powerful tool for solving decision-making problems

in complex, dynamic environments. [14]

27



2.2 Understanding the domain of Explainability in

Man-Machine Systems

The field of cybernetics has established a foundation for the automated control of

processes in machines, organisms, and society [15], and computers have become a

widespread tool for its implementation. Over the past seventy years, computers have

been utilized in various applications, replacing human decision-making in many cases.

The creation of computer programs follows a scientific knowledge-based process (the

epistemological triangle [16]), in which the problem to be solved is first understood

and then translated into a decision-making algorithm using the principles of Aristotle’s

logic (implemented in digital computers through Boolean algebra). This results in

explainable computer decisions, within the limitations of current scientific knowledge.

Any errors in these conclusions can be traced and corrected.

While solving complex problems and creating large programs can result in errors,

even computer decisions can be incorrect in exceptional circumstances. With the advent

of machine learning and its use in creating non-linear models, such as deep neural

networks (DNNs), the epistemological triangle method has been set aside. Instead, the

parameters of the non-linear model are determined directly from data using machine

learning techniques. This form of decision-making, which is also inherent in humans

and evolved prior to logical thinking, is utilized when quick decisions are needed and

there is not enough time for contemplation. The use of non-linear models, particularly

DNNs, has been instrumental in the success of machine decision-making in recent years.

However, this approach comes with the drawback of being unexplainable, which is an

issue not only for computer-generated decisions but also for human decisions. Although

we may tolerate this lack of explanation in standard operating conditions of automated

control systems with no history of significant errors, the same is not true in areas such as

medicine where human intervention is often required in the final decision-making process

[17]. Therefore, it is imperative that decisions made through the use of computers as

assistants be transparent and explainable. This issue has garnered significant attention

in the field of neural network science, as DNNs have been effective in augmenting human

decision-making [18] [23].

Human decision-making is often similar to decision-making based on logical reasoning,
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such as decision trees, if-then rules, logical expressions, or linear models, like regression

models, PCA [24], or linear predictive models (FIR, ARIMA[25]). Aristotle’s axioms for

correct thinking have been standardized and implemented in digital computers using

Boolean logic. To explain the behavior of non-linear systems, humans have approached

it by locally linearizing the systems under the assumption of only small and slow changes

over a short period. However, the general user is unfamiliar with the new properties

of non-linear dynamical systems such as chaotic behavior, multiple attractors, and

sensitivity to initial conditions. Additionally, they lack experience with static non-linear

transformations. Despite this, non-linear systems, in the form of deep neural networks,

have demonstrated superior performance in decision-making compared to optimal linear

systems. Hence, the issue of the explainability of these systems becomes increasingly

relevant.

2.2.1 Explainability vs Interpretability

As Artificial Intelligence continues to develop and permeate society, there has been an

increasing prevalence of systems that involve collaboration between human users and

agents. These systems, commonly referred to as Human-Agent Systems, have evolved

from theoretical constructs to practical applications, such as recommendation systems,

chat-bots, planning systems, or self-driving cars. A significant consideration in the

development of such systems is the quality and type of information exchange required

during interactions between human users and agents [26] [33].

One of the primary components of human-agent interaction is the level of internal

explainability that agents using complex algorithms must possess in order to account

for their decision-making. Nevertheless, there is currently no consensus on the precise

definition of explainability. This lack of clarity is likely compounded by the fact that

the terms "explainability" and "interpretability" are frequently used interchangeably,

while other researchers make distinctions between these concepts and implicitly define

them in distinct ways [34] [39].

What is Explainability ?

Explainability in a general sense refers to the capacity to present a clear and

comprehensible explanation of a model’s decisions to end users in a manner that is

both comprehensible and credible.
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This requires transforming the technical intricacies of a model into a format that can

be easily understood by non-technical audiences. Explainability frequently addresses

the impact of a model’s predictions on society, including its potential for prejudice

or discrimination, and is vital for fostering trust and accountability in the model’s

application. The paper [40] proposed the mathematical definition of Explainability. It

is based on the data samples and features utilized for training within a system, the

supervised output that requires identification, and the machine learning algorithm used

by the agent. Where the algorithm in use is denoted as L, which is formed from a set

of training data samples R. Each sample, r ∈ R holds values for a set of descriptors D.

Each descriptor is identified as d ∈ D. Therefore, the entire training set is comprised of

R×D. For instance, if the existing descriptors are d1 = age (in years), d2 = height (cm),

and d3 = weight (kg), then D is represented as {age, height, weight}. An example of a

sample, r ∈ R could be d(r) = (35, 160, 70). Although this example model is commonly

utilized with tabular data, it can also be applied to other forms of input such as text,

in which d represents strings, or images, in which d represents pixels, etc. The primary

aim of the algorithm, L is to accurately fit R ×D with respect to the ground truth -

labeled targets, l ∈ L.

So, the goal of any system is to ensure explainability, which involves presenting an

explanation E that facilitates human understanding of systems decisions(predictions)

T . To create the explanation, the user must first grasp the relationships between the

supervised inputs R×D and the targets L. The user’s understanding of an interpretation

function I forms the basis for creating the human-friendly explanation E. The function

I takes T,R ×D, and L as inputs and returns a representation of the underlying logic

within T that is readily comprehensible. Now, it is plausible to define the explanation

in the following manner:

E = I(T (R ×D,L)) (2.1)

Quite important is to note that the term "explainability" does not signify "inter-

pretability".

Then what about Interpretability ?

There is currently no universally accepted quantifiable definition of interpretability in

artificial intelligence (AI), but a qualitative definition can be given as follows:

Interpretability is the degree to which a human can consistently predict the impact
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of the input or internal model variables on the final decision [41] [42].

Interpretability, in contrast, represents the capacity to comprehend the inner work-

ings of a model and the methods by which it generates its predictions. This entails

scrutinizing the model’s internal mechanisms, such as its hidden layers, activations,

and weights, in order to gain an understanding of its decision-making process. Inter-

pretability is frequently centered on the technical aspects of a model, including its

architecture and parameters, and is critical for comprehending the reasoning behind a

model’s predictions and how it can be enhanced.

2.2.2 Attributes of Explanations

In terms of the explainability of systems, we always aim to explain the predictions made

by the black-box model. In order to accomplish this objective, we used an explanation

method, which constitutes an algorithm designed to produce explanations. In the paper,

[43] and [22] were proposed properties of explanations that may serve as a basis for

evaluating the quality of an explanation method or the explanation itself.

Performance Measures of Individual Explanations

• Accuracy - To what extent does an explanation predict unseen data? If the

explanation is utilized for predictions instead of the black box, high precision is

particularly crucial. If the accuracy of the black box model is low and the aim is

to decode the workings of the black box, low precision may suffice(fidelity would

be the only critical factor).

• Fidelity - To what extent does the explanation approximate the predictions of

the black-box model? This is a crucial attribute of an explanation, as one with

low fidelity is incapable of explaining the workings of the black-box model.

• Comprehensibility - To what extent do humans comprehend the explanations?

It is a crucial factor, but quite hard to define and measure.

• Stability - To what extent are the explanations for similar instances comparable?

• Consistency - To what extent do the explanations vary between models that

have undergone training for the same task and generate comparable predictions?
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• Certainty - Does the explanation incorporate the level of certainty associated

with the machine learning model? It is worth noting that certain machine learning

models solely offer predictions without explicitly indicating the degree of confidence

in the accuracy of their predictions.

• Novelty - Does the explanation account for the possibility that the given data

sample could originate from an out-of-distribution region significantly distant

from the distribution of the training data? In such circumstances, the model’s

accuracy may be compromised, rendering the explanation futile.

• Degree of Importance - To what extent does the explanation accurately convey

the significance of the features or components of the explanation?

2.2.3 Taxonomy of Explainable Methods

The explainability of deep learning models can be categorized into several groups

proposed in [22], [43], [40] including:

• Intrinsically (built-in) Explainable Models.

Explainability can be attained by constraining the complexity of the model. This

type of explainability pertains to models that are deemed explainable due to their

simple design (decision trees, sparse linear models).

• Post-hoc explainable methods.

Explainability can be accomplished by utilizing techniques that analyze the model

after its training. Post-hoc methods can also be used to improve the explainability

of models that are already inherently explainable.

• Model-Specific methods

Explanation methods like this are used for explaining models that are specific to

particular model classes. They are not universally applicable.

• Model-Agnostic methods

They are universal and follow a post hoc approach. These agnostic methods

generally examine the input and output pairs of the features. Also, these methods

cannot access the model’s internal parameters.
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• Local explanation.

A method is considered local if it provides an explanation for an individual

prediction.

• Global explanation.

A method is considered global if it explains the overall behavior of the model.

In the realm of deep learning and neural networks, model-specific methods are

commonly used, which are restricted to particular types of models, including models

with inherent explainability. A lot of sources like [44] - [52] address the issue of

explainability.

2.3 Neural Network Interpretation

In order to generate predictions using neural networks, the input data must traverse

multiple multiplication layers with learned weights and non-linear activation functions.

The complexity of a single prediction, dependent on the network architecture, involves

millions of mathematical operations. As a result, it is infeasible for humans to trace

the precise mapping of input data through the network to the output. To comprehend

the predictions of a neural network, it would be necessary to consider the intricate

interaction of millions of weights. Thus, the use of specific interpretation methods is

necessary to interpret the behavior of the model. It is worth noting that conventional

model-agnostic methods may also be used. There are two reasons for the utilization of

methods specifically developed for neural networks:

• Firstly, neural networks learn features and concepts in their hidden layers, requiring

the application of special methods for interpretation.

• Secondly, the gradient can be utilized to implement interpretable methods, making

them more computationally efficient compared to model-agnostic methods.
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2.3.1 Adversarial Examples

An adversarial example refers to an instance in a dataset that has undergone small,

intentional modifications to its features, leading to an incorrect prediction by a machine

learning model. It is similar to Counterfactual Explanations, with the distinction

being that the goal of adversarial examples is to mislead the model, rather than

interpret it. There are various techniques for creating adversarial examples, which

generally involve minimizing the distance between the instance and its adversarial

counterpart while ensuring that the prediction outcome changes to the desired result.

Some methods require access to the gradients of the model, which is limited to gradient-

based models like neural networks, while others only require access to the prediction

function, making them model-agnostic. In the case of image data, adversarial examples

involve intentionally manipulated pixels, designed to trick the model during runtime.

In the paper on adversarial examples [53], a gradient adjustment optimization

approach was used to discover adversarial examples for Neural Networks. These

patterns were generated by minimizing the following loss function with respect to r [22]:

loss(f̂(x+ r),l) + c · |r| (2.2)

In this equation, x represents an image as a vector of pixels, r represents the

modifications made to the pixels to generate an adversarial image (such that the result,

x+ r, yields a new image), l represents the intended outcome class, and the constant

c is employed to balance the distance between the images and the distance between

predictions. The first component in the equation calculates the distance between the

predicted outcome of the adversarial example and the desired class l. Meanwhile, the

second component measures the distance between the adversarial example and the

original image. It is worth noting that this formulation closely resembles the loss

function utilized in the generation of counterfactual explanations. Additionally, there

are restrictions placed on r to ensure that the pixel values remain between 0 and 1.

An alternative option to consider is the Fast Gradient Sign Method (FGSM) [54] for

producing adversarial images. The FGSM leverages the gradient of the underlying model

to identify adversarial examples. This approach involves perturbing the original image x

by adding or subtracting a small error, denoted by ϵ, to each pixel. The determination

of whether to add or subtract ϵ is based on the sign of the gradient (positive, negative)
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Figure 2.1: (left) correctly classified sample,

(middle) the magnified error added to the sample,

(right) adversarial example [53].

for that particular pixel, with the direction of the gradient determining the intentional

alteration of the image so as to induce a failure in the model’s classification. The core

of this method can be mathematically defined as [54] [22]:

x ′ = x+ ϵ · sign(∇xJ(θ,x,y)) (2.3)

where ∇xJ represents the gradient of the model error function with respect to the actual

input x (pixel vector), y is the actual label, and θ includes the model parameters. The

gradient vector (which has the same length as the vector of input pixels), is important

only for the sign of the gradient. This sign is positive (+1) when an increase in pixel

intensity results in an increased number of errors made by the model. Conversely,

the sign is negative (-1) when a decrease in pixel intensity increases the loss. The

vulnerability of this method arises when neural networks treat the relationship between

an input pixel intensity and the class score linearly. It is mainly specific network

architectures, such as LSTMs, networks with ReLU activation units, and logistic

regression, which favor linearity. Thus, even partial linearity leads to vulnerability to

extreme values, so the model can be fooled by shifting the pixel values of the image

to regions outside the data distribution. Besides that, it might be tempting to believe

that these adversarial examples are unique to a specific neural network architecture.

However, the reality is that adversarial examples can be reused to deceive networks

with different architectures trained on the same task.
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Thus, the gradient orientation method requires all pixels to change by at least a small

amount. Nonetheless, it is also possible to deceive the model by altering only a single

pixel in an image [55],[22]. The 1-pixel attack resembles counterfactual interpretations

because it also seeks a modified example x ′ that is close to the original image x

but results in a different classification. However, this time the notion of proximity is

defined differently: only a single pixel may be altered. This method uses the so-called

differential evolution to determine the pixel to be altered and the extent of alteration.

A certain number of pixels considered necessary to achieve a solution are recombined

until the correct solution is attained. Each of the possible solutions encodes a pixel

modification and is represented by a vector of 5 elements - x and y coordinates and

RGB (Red, Green, Blue) values. The search starts with a different number of possible

solutions (e.g 500 suggestions of pixel modification), where each solution represents a

certain pixel modification and also creates a new generation of solutions (new solutions

- children of parent modifications) such as [55]:

xi(g + 1) = xr1(g) + α · (xr2(g) − xr3(g)) (2.4)

where each xi represents an element in the candidate solution (i.e. x-coordinate,

y-coordinate, or R.G.B.). The g attribute is the actual generation of solutions. Next,

α is a scaling parameter, and r1, r2, and r3 are different random numbers. Each

subsequent child is a solution with a 5-element vector and each of those attributes is a

mixture of three random parent pixels. The creation of new possible solutions (children)

is stopped if any of the actual provided solutions are successful(adversarial example) or

the maximum number of iterations specified by the user is reached.

Other approaches to creating adversarial examples involve physically constructing

contradictory cases, as demonstrated in works such as [56] and [57]. In [56], the authors

developed a special label that, when placed beside the object under classification, can

mislead the classifier into believing the object is a toaster. Similarly, in [57], the authors

created a 3-D turtle that appeared as a gun to a deep neural network from nearly every

viewpoint. These methods diverge from above mentioned adversarial methods as they

do not require the adversarial image to closely resemble the original. Instead, they

substitute part of the image with a label of any shape that has been optimized for

different images and positions (such as shifted, enlarged, reduced, rotated, or mirrored).

Adversarial attacks present a formidable challenge for achieving explainability in
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Figure 2.2: Showcase of one-pixel attacks [55].

machine learning. A key issue is how to provide a clear and comprehensive explanation

of the change in classification that occurs when an adversarial noise is introduced. In

our view, a potential solution to this challenge is analogous to that of anomaly detection.

Specifically, the inclusion of a filter that screens out samples containing adversarial

noise can be an effective approach to improve explainability. This topic requires further

research to fully comprehend its feasibility and effectiveness.

2.3.2 Hierarchical Learned Features

Deep Neural Networks (DNNs) possess a significant advantage over other model options

due to their capability of learning complex features in the hidden layers without the

need of engineered them by hand. When an image is fed into a Convolutional Neural

Network (CNN) [58], the network processes it multiple times through its convolutional

hidden layers. During this process, the network acquires and enhances increasingly

complex features as the image progresses through the network. Finally, the transformed

image information is passed through fully-connected (dense) layers, resulting in a
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classification or prediction of the model. The possibilities of how to interpret these

learned hierarchical features are usually through visualization. Therefore they are

generally called feature-visualization methods. [59]

Visualization of Activations

The method proposed in [60] is centered around the visualization of activation maps

from a selected layer. This provides insight into how individual components of the

input image (referred to as receptive fields) influence the values of individual neurons.

Consequently, it is possible to examine, for instance, the neurons with the highest

activation through additional methods for further investigation.

Feature visualization through optimization

The method of activation maximization could be applied to various components

of a neural network, including neurons, activation maps (convolution channels) of a

convolution layer, entire convolution layers, and even predictive neurons at the output.

The fundament of the method is based on searching for an input that leads to the

maximum activation of the selected unit. While individual neurons represent the smallest

structural component of the network and offer the most comprehensive information, this

approach is not practical due to the complexity of neural networks, which can contain

millions of neurons, and the time-intensive nature of the operation. As an alternative,

feature maps (convolution channels) in convolution networks or entire convolution layers

may be selected for activation maximization, providing a balance between the level of

detail and computational efficiency. [61] [62] Mathematically, activation maximization

can be viewed as an optimization problem. With the parameters of the neural network

fixed (the network is considered to be trained), the objective is to find an image that

maximizes the average activation of a selected network unit, such as a neuron. [22]

img∗ = argmax
img

hn,x,y,z(img) (2.5)

The equation represents the activation of a network unit, denoted by h, as a function

of the input image (img), the layer specified by n, and the spatial information provided

by x and y. The index of the convolution channel is represented by z. If the entire

convolution channel is taken into consideration, the calculation of the average activation

would be:

img∗ = argmax
img

∑
x,y

hn,x,y,z(img) (2.6)
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In this scenario, each neuron in the feature map z carries equal weight, yet there exists

the potential to explore the interactions among neurons within the map. Another

approach is to maximize individual connections at random, resulting in neurons being

multiplied by varying parameters, even in a negative direction. This not only maximizes

activation but also allows for its minimization. An intriguing observation is that when

the activation is maximized in the negative direction, distinct symptoms arise for the

same network unit [63]. The concept of feature visualization bears a strong resemblance

to adversarial examples as both approaches aim to maximize the activation of the

neural network unit. However, in the case of adversarial examples, the goal is to achieve

maximum activation of the neuron for an incorrect (contradictory) class. Another

distinction lies in the initial images used. Adversarial examples require an image that

needs to be a distorted copy of the original, whereas in feature visualization probably the

best approach is to start with random noise. A slightly worse alternative to generating

new images is to search through the training images and select those that maximize

the activation.[64][65] While this approach is valid, it has the potential drawback that

elements within the images may be correlated, making it difficult to determine what is

truly important for a given neural network.

Network Dissection

Convolution layers operate by learning new features through their individual channels,

which are also called feature maps. However, simply visualizing these features is

insufficient to verify if a Network Unit has learned a specific concept. Additionally, a

metric is necessary to evaluate how accurately the network unit detects the learned

concept. While some feature maps may display recognizable concepts to the end users

(such as different objects or human contours - depending on the task), this may not be

the case across the board. To address this problem, the Network Dissection method

was proposed [66]. The Network Dissection method quantifies the interpretability of

a Convolution network unit by linking highly activated areas of feature maps with

human concepts like objects, textures, and colors. However, for this method to work,

it is based on the concept that CNNs could learn disentangled features, meaning

that specific network units detect individual concepts. Conversely, if the network

lacks individual units that detect specific concepts and instead it relies on collective

contributions for recognition, it is not possible to determine a decision-making process
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for the network (a state that is uninterpretable). As a result, CNNs with disentangled

features are considered highly interpretable since the detection of individual concepts

enables monitoring the whole decision-making process. But as always, it is not that

easy, and CNNs are not perfectly disentangled. The Network Dissection consists of 3

main steps (assuming the network has been trained and the weights are fixed)[66]:

• Establish an annotated dataset of visual concepts with varying degrees of abstrac-

tion (ranging from simple to more complex).

• Assess the activation of CNN feature maps for the annotated data.

• Quantify the extent to which the activation of feature maps aligns with the

annotated concepts (through the IoU metric - intersection over union).

Figure 2.3: To compute the Intersection over Union (IoU), the human ground truth

annotation is compared with the top activated area

In general, feature visualizations offer valuable insight into the internal workings of

neural networks. Given the complexity and opacity of networks, this method represents

a crucial step toward analyzing and interpreting their behavior. Last but not least the

paper [67] introduced feature visualization in terms of text and tabular data

2.3.3 Saliency Maps

Methods that fall under this concept are a specific form of feature attribution (also

referred to as pixel attribution when working with image data). Essentially, this

approach interprets the model’s predictions by assigning a weight to each input variable

based on its impact on the prediction (positive or negative). These variables may take

the form of pixels (in the case of images), words, or tabular data. There are various
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feature attribution techniques available, but they can be broadly categorized into two

types [22]:

• Occlusion or perturbation-based methods such as LIME [68], modify specific parts

of an image to generate explanations. This is a model-agnostic approach.

• Gradient-based methods compute the gradient of the prediction concerning the

input data.

As an illustration, a model outputs a prediction in the form of a vector of length C.

The output from the Network for the input image I is S(I) = [S1(I),...,SC(I)]. All

methods require an input x ∈ Rp with p features and then output a contribution score

for each p input feature as an explanation. When dealing with imagery, both types of

approaches have in common that they produce an output explanation that is the same

size as the input image, assigning a value to each pixel. This value is indicative of the

pixel’s significance in the prediction or classification of the image.

Image-Specific Class Saliency

The Image-Specific Class Saliency method (or Vanilla Gradient) [69] is among the

earliest feature attribution techniques based on gradient computation. This approach

is relatively straightforward, assuming familiarity with the gradient backpropagation

method. To begin, we compute the gradient of the model’s loss function for the class of

interest, given the input data (image). Once it’s done, the output is a map reflecting

the size of the input features, with both positive and negative values.

The algorithm looks like this[69]:

Algorithm 1 Image-Specific Class Saliency
Run the image of interest through a forward pass.

Compute the gradient of a class score of interest with respect to the input data:

Egrad(I0) = ∂Sc

∂I
|I=I0

Crucial step is to assign 0 to all the other classes.

Visualize the gradients by displaying their absolute values or by color-coding the

positive and negative contributions separately.

This controlled backpropagation technique is effective at visualizing the intricate

details within an image, with each unit serving as a specific feature detector. Usually,

41



it’s not positive/negative values that matter, but rather the magnitude of the gradi-

ent. Pixels with small gradient magnitudes are typically considered unimportant for

predictions. By contrast, if the magnitudes of the gradients are large, it signifies that

the pixel is important. However, the gradient’s sign remains significant as it provides

additional information. The negative value corresponds to a kind of inverse detection of

a feature during the processing of an image. On the contrary positive values corresponds

to positive detection of a certain feature. To sum it up, it should be noted that the

interpretation methods of saliency maps are not always reliable. This approach has a

saturation problem described in [46] Data preprocessing, including normalization, may

produce undesirable changes in the output maps [70]. Furthermore, these maps can be

vulnerable to adversarial attacks, as demonstrated in [71].

DeconvNet

The Deconvnet method is almost identical to the Vanilla Gradient method. Its

purpose is to reverse the neural network backward. The original paper [72] proposes

operations that are reversals of filtering, pooling, and activation layers. This approach

provides insight into the input image’s components that influence the consequent neuron

activation. So, the DeconvNet technique is grounded in the principles of convolution

neural networks themselves. Modifies the current CNN layers to allow operations

of the same layer in a backward fashion, creating a return path to the input image.

The process starts with an input image prediction, then obtaining activation maps

for the layer containing the monitored unit. Subsequently, all the map values, except

for the monitored neuron’s value, are set to zero. These maps serve as input to the

DeconvNet method. The proposed work assumes the use of ReLU as the activation

function. It is crucial to note that identical activation functions are essential for the full

reconstruction of unit contribution. Nonetheless, the same approach may be applied

to ELU or LeakyReLU activation functions. The method resembles vanilla gradient

calculation, but DeconvNet selects a different approach for backpropagating the gradient

through ReLU. Additionally, the monitored unit’s value is considered during the gradient

calculation.[72]
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Figure 2.4: At the top of the figure, we can see a DeconvNet layer (left) connected to a

ConvNet layer (right). The role of the DeconvNet layer is to reconstruct an

approximate version of the ConvNet features from the layer beneath. The bottom of

the figure illustrates the unpooling operation in the DeconvNet. This process utilizes

switches that record the location of the local max in each pooling region (indicated by

colored zones) during the pooling process in the ConvNet. [72]

Guided Backpropagation

This method is another approach that visualizes the activation of the neuron at the

input image level and involves the gradient calculation process, as implied by its name.

The authors refer to this approach as a modification of the DeconvNet method, which

yields significantly better results. The modification in this method involves adjusting

the gradient calculation at the ReLU activation function (again) by combining both the

DeconvNet and Saliency Maps (’Vanilla Gradient’) approaches. With this, the negative

gradient from the higher layer is zeroed out, and the prediction process’s information

is taken into account at the same time, leaving only the modified gradient at positive

positions. This method operates on the assumption that a negative gradient reduces the

activation value of the observed neuron (the inverse detection of feature), thus setting

it to zero [73].
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Figure 2.5: Showcase for comparison of gradient computations by various visualization

methods [73]

a) It begins by providing an input image and conducting a forward pass to the desired

layer of interest. The next step is to set all activations to zero, except for one, and

backpropagate to the image in order to generate a reconstruction.

b) The image showcases various techniques for backpropagating through a ReLU

nonlinearity.

c) Depicts the precise definition of various techniques used for backpropagating an

output activation through a ReLU in specific layer l. The Guided Backpropagation and

’Deconvnet’ approach do not calculate a true gradient, but an imputed version. [73]

Grad CAM

Grad-CAM (Gradient-weighted Class Activation Map) [74] is another method that

can provide visual interpretations for the decisions made by Convolutional Neural

Networks (CNNs). Unlike other methods, Grad-CAM does not backpropagate the

gradient to the input data. Instead, it typically computes the gradient with respect

to the last convolutional layer, which results in a coarse localization map. This map

highlights the areas in the image that have the most influence on the model. Grad-CAM

assigns a contribution to each unit of the network. This can be the model output

prediction, or it can be just another layer in the network. Grad-CAM’s objective

is to determine the areas of the image that the convolutional layer focuses on for a

particular classification. It accomplishes this by analyzing the activated areas in the

feature map of the previous convolution layer. The information passes through the
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convolution layers in the form of feature maps, with the features gradually becoming

more complex. Therefore, Grad-CAM’s analysis identifies the areas of the feature

map that are activated in the previous convolutional layer.[74] When analyzing a

Convolutional Neural Network (CNN) with k-feature maps A1, A2,...Ak, and a specific

class of interest c, simply averaging the feature maps and displaying them in an image is

insufficient for understanding how the CNN made its decisions. Grad-CAM is a method

that determines the importance of each feature map in classifying a given class c. This

involves weighing each pixel of the feature maps with a gradient before averaging the

maps, which results in highlighted areas that contributed positively or negatively to the

prediction of class c. After the gradient-weighing process, the resulting heat map passes

through the Rectified Linear Unit (ReLU) function to remove negative values, which

correspond to inverse detections. This step is important because we are only interested

in the areas that contributed positively to the classification of the given class. In this

scenario, the term "pixel" can be misleading in this context since the final heat map is

smaller than the original image due to pooling units, but at the end of the process is

scaled back to the original input size. The Grad-CAM map is then normalized to the

interval [0,1] for visualization purposes and overlaid onto the original image. Examining

the Grad-CAM approach, the main aim is to determine the localization map, which is

defined as [22]:

LcGrad−CAM ∈ Rx×y = ReLU

(∑
k

αckA
k

)
(2.7)

the variables x and y represent the width and height of the explanation, respectively,

and c represents the class of interest. This method provides class-selective visualizations

that only localize relevant areas of the image, without emphasizing the importance of

individual pixels, as the guided backpropagation method does.

Figure 2.6: Different methods for interpretation of network predictions [74]
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Guided Grad-CAM

From the explanation of Grad-CAM, it can be inferred that the localization is less

precise due to the lower resolution of the last convolutional feature maps compared to

the input image. In contrast, other attribution techniques, which backpropagate all the

way to the input pixels, offer more detailed information and can pinpoint individual

edges or spots that were most influential in a prediction. A combination of both types of

methods is known as Guided Grad-CAM, which is a simple technique. The Grad-CAM

and another attribution method, such as ’Vanilla Gradient’, are computed for an image,

then the Grad-CAM output is upsampled using bilinear interpolation. The two maps

are then multiplied (element-wise), with the Grad-CAM acting as a lens that focuses

on specific areas of the pixel-wise attribution map.[22]

SmoothGrad

The SmoothGrad paper [75] proposes a method to reduce noise in gradient-based

explanations by adding noise to the image and averaging the resultant artificially noisy

gradients. Note that SmoothGrad is not an independent explanation technique, but

rather a supplement to any gradient-based explanation method.

The following algorithm describes how SmoothGrad operates [75]:

Algorithm 2 SmoothGrade Approach
Generate multiple versions of the image by introducing noise.

Generate pixel attribution maps for all images.

Average the pixel attribution maps.

Rsg(x) = 1
N

n∑
i=1

R(x+ gi) gi ∼ N(0,σ2)

The rationale behind this idea is that the derivative shows significant variations when

observed at a small scale. In the training phase, neural networks prioritize the delivery

of the most accurate prediction for a given task over maintaining smooth gradients. By

averaging over multiple maps, the fluctuations in the gradient are "smoothed out" [22].

There are also some extensions of the Grad-CAM original method presented in papers

[76, 77]
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Layer-Wise Relevance Propagation

Another method in this domain measures is Layer-Wise Relevance Propagation

(LRP) [78]. It is used to interpret the decisions made by the network by assigning

relevance scores to the input features. The LRP technique propagates the relevance

scores all the way back through the network, utilizing a predetermined set of prop-

agation rules. The rules used in this process ensure that the relevance activations

are preserved through the whole process of propagation, maintaining the main condi-

tion that the total relevance at a layer’s input is equal to the total relevance at its output.

The Layer-Wise Relevance Propagation (LRP) method employs several standard propa-

gation rules [78], including:

• The Z+ rule: This rule divides the relevance at the output of a neuron among

its input neurons in proportion to their positive activation values.

• The Z− rule: This rule divides the relevance at the output of a neuron among

its input neurons in proportion to their negative activation values.

• The ϵ rule: This rule adds a small positive constant (ϵ) to all activation values

before dividing the relevance. This prevents division by zero.

• The α − β rule: This rule combines the Z+ and Z− rules by dividing the

relevance among input neurons based on a combination of their positive and

negative activation values.

Mathematically, relevance scores R can be defined as:

Rl
i =

Bl+1∑
k=1

Rl,l+1
i←k =

Bl+1∑
k=1

aliw
l,l+1
i,k

ϵ+
Bl∑
j=1

aliw
l,l+1
j,k

Rl+1
k (2.8)

where i ∈ {1,...,B}, l ∈ {1,...,L − 1}, then B is the number of units(neurons) in the

specific l − th layer and L is the total number of layers. By using this technique, the

end-user can comprehend the input features that played a crucial role in deciding the

model prediction for a given sample.
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2.4 Anomaly Detection

2.4.1 Understanding the domain of Anomaly Detection

Anomaly detection is a process that involves identifying patterns in data that deviate

from expected behavior. These deviant patterns can also be referred to as anomalies,

outliers, discordant observations, exceptions, aberrations, etc. The references usually

depend on the specific application domain, but anomalies and outliers are the two

most commonly used terms in this context and are often used interchangeably. The

importance of anomaly detection lies in its ability to identify and flag unusual patterns

that may indicate a potential threat or problem, allowing for timely intervention and

prevention of negative consequences.[79] So, the anomalous data can provide critical

and actionable information, and examples of such anomalies include cyber-attacks in

network security [80], credit card fraud in the financial industry [81], sensor anomalies in

industrial settings, or anomalies in medical images such as optical coherence tomography

(OCT) [82].

The study of detecting outliers or anomalies in data dates back to the 19th century,

as early as the work of Edgeworth [83] in statistics. Since then, various anomaly

detection techniques have been developed, some of them tailored to specific application

domains while others are more generic.

What is an anomaly?

To begin with, it is imperative to establish a clear understanding of anomalies.

Typically, data that conform to a specific distribution pattern are considered normal.

In light of this, anomalies can be defined as follows:

An outlier is an observation that deviates so substantially from other ob-

servations that it prompts suspicion, that the given observation originated

from a completely different mechanism altogether.

– Hawkins,[84].

In other words, anomalies represent patterns in data that do not adhere to a clearly

defined concept of normal behavior. They frequently indicate serious situations, unusual

events, or failures across a range of domains. Improper handling of anomalies can
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lead to inaccurate conclusions, faulty decision-making, or even to wrong explanations,

underscoring the significance of detecting and addressing them appropriately [79] [85].

Challenges within the anomaly detection domain

At a theoretical level, an anomaly can be described as a pattern that deviates from

the expected normal behavior. An uncomplicated method for detecting anomalies is to

establish a range that represents normal behavior and identify any observation in the

data that falls outside of this range as an anomaly. This seemingly simple approach

to anomaly detection is actually quite challenging due to several factors which were

described in [86]:

• Defining a normal region is difficult because the boundary between normal and

anomalous behavior is not always precise.

• Adversarial samples can make anomalous instances appear normal, thus the

definition of what represents normal behavior gets complicated.

• Normal behavior can change over time, which makes defining normal behavior

challenging.

• The definition of an anomaly varies depending on the domain in which it is being

applied.

• Labeled data for training/validation of models used by anomaly detection tech-

niques are usually limited.

• Noise in the data can be similar to actual anomalies, making it difficult to

distinguish and remove.

Given the information, it is evident that anomaly detection in general is a complex

problem that is not easily solvable. As a result, many existing anomaly detection

techniques are designed to address specific formulations of the problem. Definitions like

this are influenced by several factors such as the origin and characteristics of data or

the types of anomalies to be detected. These factors are typically determined by the

specific application domain in which the anomalies are expected to occur.
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The ability to identify atypical behavior has significant benefits in a variety of

applications. Anomaly detection methodologies can be categorized based on the data

necessary for model training, such as supervised, unsupervised, or semi-supervised

approaches. Given the rarity of anomalous instances in training datasets, unsupervised

and semi-supervised settings are the most commonly used for anomaly detection [87].

Supervised deep anomaly detection

This approach entails the training of a deep supervised binary or multi-class classifier

using labels of normal and anomalous data instances. For example, supervised deep

anomaly detection (DAD) models formulated as multi-class classifiers aid in detecting

rare brands, prohibited drug name mentions, and fraudulent healthcare transactions

[88].

Unsupervised deep anomaly detection

In unsupervised anomaly detection, the training set typically consists of unlabeled

data with infrequent anomalies, which aligns with the inherent nature of data distribu-

tions in real-world scenarios. Since anomalies are rare in actual situations, the one-class

setting is a specific case of the unsupervised setting where all unlabeled training data

are assumed to be normal samples.[86] [87]

Semi-supervised deep anomaly detection

Conversely, in the semi-supervised anomaly detection setting, there is an assumption

of limited labeled normal and abnormal samples, along with a substantial number

of unlabeled samples in the training dataset. Recent research has highlighted the

effectiveness of utilizing a small number of anomalies during training, which can

significantly enhance anomaly detection performance. Collecting anomalies can be

difficult, and thus, a specialized semi-supervised setting called positive-unlabeled learning

has emerged, which enables anomaly detection based on labeled normal and unlabeled

samples. [86] [87]

In this thesis our main focus is on supervised pattern recognition being explainable so,

we also aim for a supervised approach to anomaly detection.
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Types of output for detection techniques

Another crucial factor in anomaly detection methods is the way how the outliers are

highlighted. Typically, such methods produce outputs in the form of anomaly scores or

binary labels. [87]

Labels - Certain techniques may assign a categorical label, designating each data

instance as normal or anomalous. In unsupervised anomaly detection using

autoencoders, the magnitude of the residual vector, or reconstruction error, is

measured to obtain anomaly scores. Subsequently, domain experts rank or threshold

the reconstruction errors to label data instances. [89]

Anomaly scores - indicate the degree of outlierness for each data point. The ranking

of data instances can be determined based on their anomaly scores. A subject matter

expert selects a domain-specific threshold, commonly known as the decision score, to

identify anomalies. Decision scores generally provide more information than binary

labels. For example, in the Deep SVDD approach [90], the decision score represents the

distance between a data point and the center of the sphere. Data points that are

farther away from the center are considered anomalous [91].

Furthermore, Anomaly detection models can be classified into shallow and deep

models, depending on whether complex deep neural networks (DNNs) are utilized. While

anomaly detection has been extensively researched for decades, numerous traditional

machine learning models, i.e., shallow models, have been utilized for detecting anomalies,

including support vector data description (SVDD)[90], and principal component analysis

(PCA)[24] [92] or One-Class Support Vector Machines (OCSVMs)[93], etc... These

models are generally efficient in identifying anomalies in tabular data, but they struggle

with complex data types such as text, image, or graph due to their inability to capture

non-linear relationships among features. In recent years, numerous deep learning models

have been proposed for anomaly detection due to their ability to automatically learn

representations or patterns from various types of data.

Deep and shallow anomaly detection approaches can be broadly classified into four

categories[85][94]:

• Density estimation and probabilistic models identify anomalies by estimat-

ing the distribution of normal data. Both shallow and deep generative models, such
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as Gaussian mixture models (GMMs)[95][96], variational autoencoder (VAE)[97],

and generative adversarial networks (GAN)[98], have been employed for anomaly

detection. Generative models approximate the data distribution based on a

dataset, and deep generative models can model complex and high-dimensional

data more effectively.

• One-class classification models are discriminative approaches to anomaly

detection, which seek to learn a decision boundary based on normal samples. A

classical one-class classification model, such as a one-class support vector machine

(OC-SVM)[93], is commonly used for anomaly detection. Similarly, recently

developed deep one-class classifiers, such as Deep SVDD[90], are employed to

identify anomalies in complex data.

In this thesis, we are mainly focused on a multi-class approach because with the

boundaries of normal samples for each class is possible to achieve more precise

detection in contrast to the one-class approach.

• Reconstruction models are trained to minimize reconstruction errors on stan-

dard samples, enabling the detection of anomalies with large reconstruction errors.

Anomaly detection models based on reconstruction include traditional PCA or

Deep Autoencoder models [99], which are parameterized by a deep neural network

for encoding and decoding data.

• Miscellaneous techniques, have also been developed for anomaly detection.

For instance, methods like Isolation Forest [100]. This approach constructs trees

from unlabeled samples and identifies anomalies in samples located near the

trees’ roots. Local Outlier Factor (LOF)[101] is another unsupervised anomaly

detection method. This method calculates the local density deviation of a given

data point with respect to its neighbors and labels points with lower density than

their neighbors as anomalies [94]

There is also a large number of other miscellaneous DAD techniques and their main

key concepts are shown to be effective and promising.

Clustering-based anomaly detection

In the realm of anomaly detection, clustering has emerged as a promising technique.

Numerous algorithms for detecting anomalies based on clustering have been proposed in
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the literature [102]. By grouping similar patterns based on extracted features, clustering

can effectively detect new anomalies. However, the time and space complexity of

clustering grows linearly with the number of classes to be clustered [103]. As a result,

clustering-based anomaly detection may not be practical for real-time applications.

To address this limitation, feature extraction within the hidden layers of deep neural

networks can reduce the dimensionality of input data and ensure scalability for complex

and high-dimensional datasets. In the deep learning-enabled clustering approach to

anomaly detection, techniques such as word2vec [104] models are used to obtain the

semantical representations of normal data and anomalies, which are then clustered to

detect outliers [105] [87].

Ensemble-based anomaly detection

Deep neural networks have a significant drawback in that they are vulnerable to

noise in input data and typically require a substantial amount of training data to

ensure reliable performance, as observed in paper [106]. To overcome this limitation and

enhance robustness in noisy data, a novel strategy involves introducing random variations

in the connectivity architecture of autoencoders, which has been demonstrated to yield

significantly improved results. Authors behind the paper [107] conducted experiments

using autoencoder ensembles composed of diverse randomly connected autoencoders

and obtained encouraging outcomes on various benchmark datasets. [88]

Deep Reinforcement Learning based anomaly detection

The capacity of Deep Reinforcement Learning (DRL) techniques to acquire complex

behaviors in high-dimensional data space has garnered considerable attention. To

this end, the papers [108] and [109] have proposed approaches for anomaly detection

utilizing deep reinforcement learning. Notably, the DRL-based anomaly detector

operates without relying on preconceived notions regarding the nature of the anomaly.

Rather, it continually enhances its knowledge by leveraging reward signals accumulated

over time, enabling the detector to identify novel anomalies consistently.

To gain a more comprehensive understanding of the anomaly detection domain,

these sources [110] - [114] address the issue of outliers in more depth.
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2.4.2 Anomaly detection using Deep Generative Modeling

While several anomaly detection methods perform well on low-dimensional problems,

there is a significant dearth of effective techniques for high-dimensional spaces like

images. However, in the domain of deep generative modeling, this is not the case.

Generative models are designed to learn the exact data distribution, enabling the

creation of new data points with some degree of variation. Two of the most widely

used and efficient generative approaches are Variational Autoencoders (VAE) [97] and

Generative Adversarial Networks (GAN) [98]. There is also a more customized version

of generative models known as Adversarial autoencoders (AAE) [115]. The ability of

AAEs to learn input distributions has been leveraged in several Generative Adversarial

Networks-based Anomaly Detection (GAN-AD) frameworks [116] - [120]. Nevertheless,

in cases with fewer anomalies, conventional techniques such as K-nearest neighbors

(KNN) have been demonstrated to outperform deep generative models [121].

As previously stated, the interpretability of anomaly detection models is highly

significant. Nevertheless, it’s not the only factor as the comprehensibility of deep

learning as a whole relies on this matter. Because of this, the work aims to introduce

a new approach to anomaly detection by utilizing deep generative modeling. The

fundamental principle of outlier detection using these models involves training a model

to recognize normal behavior and identify anomalous activity if there is any deviation

from normality (same concept across the field). [87] However, in Deep Generative

Modeling (DGM) the majority of models designed for detecting anomalous activity

belong to the encoding-decoding architecture group. The encoder learns to generate

a latent representation of the input data, while the decoder reconstructs the original

input data based on this representation. Although techniques may vary across different

architectures, the primary advantage of these systems is their ability to learn the

underlying distribution of original data samples and highlight anomalous samples based

on the acquired knowledge.[88]

Autoencoder as anomaly detector

Autoencoders are trained to minimize their reconstruction error, which is calculated

by measuring the difference between the original input data and the reconstructed

output sample[94].

Lr(Gm,G̃m) =∥ Gm − G̃m ∥2 (2.9)
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In practice, autoencoders are often used as a dimensionality reduction technique

(like the non-linear PCA). Though pseudo-generative models, like Autoencoders (AEs),

do not produce genuinely generative outputs, they still belong to the category of

generative models. This is attributed to their capability to generate output that bears

resemblance to the input data, although the process involves reconstruction rather than

true generation. They can also be used in the extraction of features from unlabeled

data and image-denoising tasks. It is crucial to understand that the mapping function

of the autoencoder is tailored to the distribution of the training data. As a result,

autoencoders may not be able to reconstruct samples that differ significantly from the

original data with which they were trained (the reconstruction is very poor). This

capability of learning a mapping function that is specific to a particular distribution is

highly advantageous for anomaly detection tasks.

Figure 2.7: Reconstruction of the MNIST images by AE

When applying an AE for anomaly detection, the general approach is to first model

normal behavior and then generate an anomalous evaluation for new data samples. In

order to actually model normal behavior, an unsupervised or semi-supervised learning

approach is used to train the AE on the original data. This enables the model to learn

a mapping function that can successfully reconstruct the training data with a very

small reconstruction error. During the detection-testing phase, the reconstruction error

is used as an anomalous score for different data samples. To identify anomalies, the

reconstruction error is compared to a certain threshold. If the error is greater than

the set threshold, an anomalous sample is detected. The process of identifying an

outlier using an autoencoder is depicted in figure 2.8. If the autoencoder attempts to

reconstruct the outlier, it fails to do so because the data was either not present in the
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training dataset at all (or was represented poorly). As a result, the reconstruction error

surpasses a pre-defined threshold, designating the given data sample as an anomaly.[89]

Figure 2.8: Anomaly detection according to anomaly score(Reconstruction Error)

Different types of autoencoder architecture exist as depicted in Figure 2.9 designed

for anomaly detection applications. The selection of an appropriate architecture depends

on the nature of the data being analyzed, where convolutional networks are typically

employed for image datasets, while models based on long short-term memory (LSTM)

[122] tend to yield satisfactory outcomes for sequential data. Recent studies have

shown that combining convolution and LSTM layers, with a convolutional neural

network (CNN)[59][58] serving as the encoder and a multilayer LSTM network as the

decoder, can effectively detect anomalies within data by reconstructing input images.

The use of hybrid models, such as Gated Recurrent Unit Autoencoders (AE-GRU)

[123], Convolutional Neural Networks Autoencoders (CNN-AE) [124], and Long Short-

Term Memory Autoencoders (LSTM-AE)[125], obviates the need for manual feature

engineering, facilitating the use of raw data with minimal preprocessing in anomaly

detection tasks [87].

Figure 2.9: AE architectures for anomaly detection cause [87]

56



Variational Autoencoder as anomaly detector

The Variational Autoencoder (VAE) [97] is an unsupervised deep learning generative

model that can effectively model the distribution of the training data. This model is

derived from Bayesian inference and comprises three main components: an Encoder,

a latent distribution, and a Decoder. The underlying principle is based on a simple

distribution, such as the Gaussian distribution, with known parameters and superim-

posable characteristics that can be combined with neural networks to theoretically fit

any distribution. Both the Autoencoder and the Variational Autoencoder can capture

the essential features of the data through dimensionality reduction. However, the

VAE is unique in that it is a stochastic generative model that can provide calibrated

probabilities, unlike AE. In contrast, the AE is a deterministic discriminative model

that lacks a probabilistic foundation. Its forward propagation process involves the input

sample X passing through the Encoder to obtain the parameters of the latent space

distribution. Subsequently, the latent variable z is generated by sampling from the

current distribution, and z is utilized to reconstruct a sample via the Decoder[97]. The

loss function of VAE can be expressed as follows [79]:

Lvae(E,D) =∥ X −Xrecon ∥2 +1
2

zdim∑
i=1

[(µ2
i + σ2

i ) − 1 − log(σ2
i )] (2.10)

During the forward propagation stage of a Variational Autoencoder, sampling from

the distribution is a crucial step. However, the act of sampling is non-differentiable,

making it impractical to incorporate into the VAE algorithm. As such, VAE uses a

method known as "re-parameterization" to facilitate the sampling process. By utilizing

the properties of the Gaussian distribution, the resultant samples are equivalent to

those obtained directly from the distribution corresponding to the specific distribution

parameters. [126] In the case of the entire VAE model, the sample derived from

the standard normal distribution can be considered a constant. This constant can

be calculated through a differentiable process, enabling the entire model to perform

standard backpropagation. [79]

ϵ ∼ N(0,1) z = µ+ ϵ ∗ σ −→ z =∼ N(µ,σ) (2.11)

The implementation of a Variational Autoencoder (VAE) as an anomaly detector

involves training the model on a dataset of normal data and subsequently employing it
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to reconstruct new data points. This approach relies on the assumption that the VAE

will perform well in reconstructing normal data, but may encounter difficulties when

processing anomalous data points. By measuring the degree of reconstruction error, it

is possible to evaluate the degree of anomalousness of a given data point.

Adversarial Autoencoders as anomaly detectors

Adversarial Autoencoders (AAE) architectures [115], overcome the main limitation

of VAEs, which is an absence of a closed-form analytical solution for the integral of

the Kullback-Leibler divergence (KLD) term[127]. It is done by utilizing adversarial

learning to learn a wider range of distributions as priors for the latent code.[126]

In this architecture, an adversarial autoencoder comprising of an encoder fϕ and

a decoder gψ is utilized for the training process. To begin, the encoder (generator)

network fϕ(z|Gm) creates a latent representation z which is then used by the decoder to

reconstruct the input Ĝm. The weights of both the encoder fϕ and the decoder gψ are

updated by backpropagating the reconstruction loss between Ĝm and Gm. Following this,

the discriminator is presented with two inputs: z, which is distributed as fϕ(z|Gm), and

z′, which is sampled from the true prior P (z). The discriminator then calculates a score

for each input (D(z) and D(z′)) and minimizes the loss incurred by backpropagating

through the discriminator to update its weights. The loss function for the autoencoder

LE consists of both the reconstruction error and the loss incurred by the discriminator

LD. [115]

LE = 1
M ′

M ′∑
m=1

logD(zm) and LD = − 1
M ′

M ′∑
m=1

[ logD(z′m) + log(1 −D(zm)) ] (2.12)

where z represents latent representation created by Encoder, z′ is sample from the

true prior P (z) and M ′ is the batchsize.

Variational Encoder for Anomaly Detection with Stability Control

The above-mentioned techniques are built upon the generative model concept, which

assesses abnormalities through the comparison of data errors between the original

samples and reconstruction samples. One of the well-known architectures is the VAE.

However, it suffers from the problem of over-generalization. To address this issue, the

Variational Encoder for Anomaly Detection with Stability Control (VESC) [79] model

has been introduced as an unsupervised deep learning anomaly detection method that
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proposes the recursive reconstruction strategy. VESC model adopts the concept of

data compression based on the original model. The recursive reconstruction strategy

improves the accuracy of the model by increasing the count and normality of training

samples. This strategy can be applied to most unsupervised learning methods.

The model comprises four components [79] [97]:

• The encoder and decoder of the original VAE, are primarily employed for dimen-

sionality reduction coding of the original sample to produce a latent vector and

subsequently decode the reconstructed sample.

• The Spatial Constrained Network (SCN), builds upon the knowledge that the

original VAE model has learned the normal data distribution effectively. SCN

extracts the feature representation vector of the latent space through clustering

and then leverages it to reform and re-represent the latent vector.

• The Reformer structure: After the SCN acquires the feature vector, the Reformer

structure maps abnormal samples to normal reconstruction samples. As a result,

the reconstruction error increases, and the abnormality becomes more prominent.

• The Re-Encoder: It has better modeling capabilities for normal data. This

complex architecture can optimize the reconstruction error in both the original

and latent spaces to model the normal samples accurately. Furthermore, it can

calculate the anomaly score in both feature spaces (i.e., the original space and

latent space), resulting in higher accuracy than considering only the original space.

Figure 2.10: The concept of VESC model[79]
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The initial stage of the training process is identical to that of VAE training. The

model is trained using regular samples, allowing it to grasp the distribution of normal

data in the latent space. The Spatial Constrained Network is then employed to learn

the distribution of normal data in the latent space and derive a set of feature vectors Ci.

Subsequently, vector Z is transformed and re-represented as a new vector Z ′ through

a sparse mechanism in the Reformer structure. This transforms all data into "normal

data," which is then decoded by the Decoder into a reconstructed sample X ′ in the

original data space. The model is trained by minimizing the reconstruction error and

updating the loss iteratively.

The cost function is composed of three distinct parts (different loss functions). The

first part is the original VAE loss function, which has been previously described (refer to

Figure 2.10). The second part of the loss function pertains to the Re-Encoder. Building

upon the principles established by the original VAE loss function [97], it has been

devised a loss function specific to the Re-Encoder network, which mirrors the second

term of the original VAE loss function.

LKL_2 = 1
2

z′_dim∑
i=1

[ (µ′2i + σ′
2
i ) − 1 − log(σ′2i ) ] (2.13)

The final part is the error associated with the latent vector. To calculate this error,

the Re-Encoder remaps the generated data to the new latent space and then determines

the L2 distance between the resulting latent vectors [79]:

Llat =∥ Z ′ −Re_Z ′ ∥2 (2.14)

In summary, the overall loss function for the entire model can be described as follows:

LV ESC = Lvae + LKL_2 + Llat (2.15)

Anomaly Detection with Generative Adversarial Network (ADGAN)

Generative Adversarial Networks (GANs) [98] or their slight modification Conditional

GANs [128] are neural networks designed to train a generative model based on the

distribution of input data. In the classical formulation of GAN networks, the generator

learns to model the underlying data distribution of input data x by transforming random

noise z into the distribution of x. For anomaly detection purposes, it is possible to use

again, the intrinsic ability of the Discriminator model. The Discriminator might behave
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as a critic of samples. During training, he learns the data distribution of the training

set as well as the generator does (In fact, the generator uses the feedback from the

discriminator to optimize its output). [129] During the training process, the generator

is instructed to map low-dimensional random samples to a high-dimensional space,

which emulates the target dataset. If the generator has successfully acquired a precise

approximation of the training data’s distribution, it is reasonable to assume that there

exists a corresponding point in the GAN’s latent space for any sample drawn from the

data distribution. Subsequently, by passing this point through the generator network, a

sample closely resembling the original can be generated. If the input sample deviates

from the learned data distribution (could be an authentic fake from the generator or a

completely different sample), the discriminator as a critic highlights the given sample

as an outlier. [89] [130]

It is crucial to comprehend the fact, there is no straightforward way to use this

knowledge for controlled inference similar to the autoencoder process (such as generating

a sample similar to a specific input data sample). Although we can search the latent

space to recover the most representative latent noise vector for a particular sample, this

process is computationally intensive and slow.

Bidirectional Generative Adversarial Network as anomaly detector

A slight modification to the GAN architecture that involves adding an additional

neural network - the encoder - allows for efficient management of adversarial inference,

meaning another approach how to detect outliers. Such a network is called BiGAN and

is proposed in the following paper [131]. During the training phase of a BiGAN network,

the added encoder learns the inverse mapping of the generator - that is, it learns to

generate a fixed vector E(x) from the input data x. This modification also affects the

discriminator network, which takes pairs of data containing both generated and real

data, as well as their respective latent representations, G(z),z and x,E(x). During

training, the encoder is trained alongside the generator. The generator learns the true

distribution of the input data x by generating G(z) samples from the latent noise vector

z, while the encoder learns the true distribution for the latent representations E(x) of

the input data x. [130]

The transformations learned by models during the training process are always

specific to the training data. For instance, if we train a generator on a data set of
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Figure 2.11: Architecture of BiGAN network[131]

cars, the generator will always create an image that looks like a car, regardless of the

input noise vector (latent variables) that we provide to the model. When modeling

normal behavior, we train the network on a training data set. After the learning process

is complete, we have an encoder that can map input samples to a latent vector, a

discriminator that can distinguish real data from generated data, and a generator that

can transform a latent code (noise vector of fixed length) into an authentic sample. To

evaluate data for anomalies, we need to establish a metric for detecting them. To detect

outliers using BiGAN, the encoder initially generates a latent representation E(x) of

the input sample x. The given latent code then passes to the generator, which produces

an image G(E(x)) based on the latent representation. The outlier can be identified

by comparing the reconstruction errors between the input sample x and the generated

sample G(E(x)). Additionally, we can consider the discriminator error, which is the

cross-entropy between the data sample x and G(E(x)).

In the preceding sections, we have discussed various deep anomaly detection tech-

niques, each with its own advantages and limitations. To effectively address an anomaly

detection problem, it is crucial to discern which technique is most suitable for the

specific context. However, it is worth noting that DAD is an area of active research, and

therefore, it is impractical to provide a definitive understanding of the most appropriate

anomaly detection technique for every scenario.
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Chapter 3

Developed Explainable Approach:

Proposal

3.1 Background and Motivation

Explainability is a fundamental requirement for a scientific approach to problem-solving.

The epistemological triangle [132] expresses its basic principle (Figure 3.1). Vertices

of the triangle may have different interpretations (see also the term "semiotic triangle"

[133]). Other variants of the "world - knowledge - model" chain mentioned here are

"thing - logos - states of mind" (Aristotle), "world – cognitive processes – description"

(Foerster), or "object - feature - interpreter" (Pierce).

In simple terms, we extract knowledge from the environment in the form of features

and then use logical reasoning to construct a model of reality. Based on this model, we

make decisions. The accuracy of these decisions depends on the accuracy of the model.

With the advent of machine learning, this process has become more direct, allowing

us to identify model parameters directly from data. However, if the transformation is

non-linear, as in DNNs, the user may not have visibility into how the model makes its

decisions. Replication of human thinking and aligning the neural network’s decision-

making process with the epistemological triangle is imperative. This has been achieved

implicitly in the advancement of DNNs.
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These networks designed for pattern recognition consist of two components:

• Feature extraction.

• Decision generation (e.g. classification)[134].

This division requires the explainability of both, extracted features and classification.

The features may be straightforwardly explicable by domain experts, and in certain

cases, they are obtained by pre-processing the data and utilized as inputs to the neural

network.

Figure 3.1: Epistemological Triangle as the scientific approach

The transformation of knowledge into features is often referred to as feature engi-

neering. An illustration of this could be sound processing, where it is known that due

to the shape of the basilar membrane in the inner ear, a person perceives sound in the

spectral domain. As a result, a spectrogram of the sound is used directly as input to

the neural network. Another possibility is to approximate the features of objects (e.g.,

the age of the person in a face image - face aging [134]). Then, the neural network can

be trained to locate features in a particular part of the latent feature space. If these

features are used for image reconstruction [135], the position of the features influences

the reconstructed image [136]. See [137] for facial aging.

It is not even required to use the features extracted from the input data to generate

patterns; instead, a generative adversarial network (GAN) can be trained to produce

patterns from random coordinates of a feature vector within a defined subspace of the

latent space [138] (e.g., refer to [139] for face aging).
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Practical tools that enable the extraction of features in a manner recognizable to

the end user imply their explainability. However, we aim to leverage the advantages

of non-linear pattern recognition systems, which require acknowledging the extracted

features are unfamiliar to the users and thus not immediately interpretable. The main

idea is that the explainability of the features lies in the knowledge acquired from the

extracted features, a process akin to extracting knowledge from data. Therefore it

follows a similar scientific methodology. The feature extractor obtains features from the

application viewpoint, meaning it can identify features that would otherwise remain

unnoticed due to human biases shaped by past experiences. This process refers to the

search for model parameters through machine learning techniques. However, the design

of the model’s architecture and the selection of its hyperparameters still fall under

human control.

Additionally, there is experience in interpreting the more complex features produced

by linear extractors, such as those obtained through Principal Component Analysis.

Although the features are derived from linear combinations of the input data, resulting

in uncorrelated features. For stationary random processes, the eigenvectors of the

transformation matrix consist of harmonic functions. Hence, the features represent

the power spectrum of the random process. As a result, these spectral features have

become a widely used tool for time series analysis, not only in the case of sound but

also in mechanical and economic systems.

In this context, explainability is not perceived as a fully automated process that

provides explanations to even an uninterested audience (non-experts). Rather, it is

regarded as the process of gaining knowledge from the features generated by a specific

pattern recognition system (as depicted in Figure 3.1). This approach may result in a

narrow specialization, consistent with the trend of specialized scientific disciplines. For

example, AlphaGo’s analysis of a move in the game of Go [140], which was previously

unknown to players but crucial in its victory against Lee Sedol, serves as a demonstration

of this concept. The transformation of features into knowledge allows the user to learn

from the computer. Additionally, by examining the features, we can conclude that while

a feature may have contributed to the recognition of an image, it may not necessarily

have a direct connection to the object being recognized (known as the Clever Hans

effect) [21], [141].
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Thus, the goal for the user is not to identify which features were extracted from

the input data but rather to understand the reasoning behind the classifier’s decision

based on these extracted features. For this reason, we advocate for the replacement or

supplementation of commonly used non-linear classifiers with linear systems or logical

rules. The proposed approach to resolving the explainability problem in this work

involves the utilization of post-hoc support.

Figure 3.2: The concept of explainable machine learning created according to the

principles of the scientific approach
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3.2 Introduction: How to Learn from Computers

In the field of non-linear decision-making systems, it is crucial to separate the system

into two components for the purpose of explainability: feature extraction and prediction

inference. The proposed method aims to examine the explainability of these components

separately, rather than trying to explain the decision system as a whole. The literature on

recognition systems’ explainability highlights two main approaches. The first approach

focuses on preserving explainability by using self-explaining systems, also known as

explainability by design[142] [144]. This approach involves replacing a part of the

network, such as a classifier, with an explainable system, such as a linear system

or a logic function. The second approach, known as post-hoc, involves building an

explainable system in parallel to the existing system, allowing for a possible explanation

of the results achieved, at least locally [145], [146]. The proposed method is based on a

post-hoc approach that focuses on explaining the feature extractor and the inference

system separately. This approach allows us to extract features that are not known

to current science. The subsequent understanding of the extracted features is like

knowledge extraction from data, which must occur in the user’s mind. The explanation

of decisions made from these features can be based on Aristotelian (or fuzzy) logic or

linear systems. Paper [147] investigates the implementation of a classifier using fuzzy

logic. The designed method has a classifier based on fuzzy logic, in parallel to the neural

network classifier, and restricts the description of the solutions to explainability in

forwarding DNNs for pattern recognition since the proposed solution is also of this type.

When explaining the decisions made by a fuzzy logic function, we take into account not

only the value of the features but also the truth values (significance) of these features

for the decision.

In the field of Deep Learning, the overall explainability of the entire system is a common

topic in the literature. However, some papers have also explored the importance of the

input data, such as pixels in an image [78], [148], as well as the internal variables of a

DNN, such as features [149]. Although the methodology and terminology used in these

studies are diverse, including saliency maps [69], [150], attribution maps [151], attention

maps [152], [153], sensitivity maps [154], and Shapley additive explanation [155], they

are fundamentally similar to sensitivity analysis of parametric systems. The results of

pixel-attribution maps can also be replicated in humans using eye-tracking systems.
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Figure 3.3:

(a) Handwritten digit 2 with a left rotation and heavy Gaussian noise,

(b) The eye-tracking record during the digit recognition process.

As an example, figure 3.3 presents the results of the thesis supervisor’s recognition

of the handwritten digit 2. The recognition process is challenging due to the random

positioning, rotation, and heavy Gaussian noise applied to the digits. This results

in a recognition process that requires effort and concentration. For comparison, the

results obtained through the Layer-wise Relevance Propagation (LRP) method are

presented in this source [156] (the parameters used are: LRP Epsilon formula, Long

ReLu model, and Beta value of 1). Figure 3.4a) shows a digit 2 selected from the

MNIST database. In figure3.4b), the shape of digit 2 was replicated, similar to the

eye-tracking experiment shown in figure 3.3. However, since MNIST does not contain

rotated digits, the recognition system misidentified the pattern as digit 4. This serves

as a cautionary example highlighting the importance of including an anomaly detector

to filter out patterns that are distinct from those in the training set before attempting

to explain any incorrect decisions. The explainable pattern recognition system should

also be capable of detecting misrecognition. As stated in [157], the explanation can

be achieved through either an approximation or an example-based approach. In the
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approximation approach, several patterns with similar features to the target pattern

are selected, and a common explainable decision subsystem is derived for them using

linear or logical systems. This approach is often employed during the training phase to

ensure that similar patterns have the same explanation.

Figure 3.4: Heatmaps achieved by demo in [156].

3.3 The concept of the proposed method: Overview

This work introduces a tool designed to enhance the user’s understanding of patterns

and their impact on the recognition of classes. The tool is an explainable classifier in

the form of a fuzzy logic function that provides consistent explanations for a subset

of patterns belonging to a single class. In the example-based approach, we examine

samples with similar features either from the same class or from a different class

(counterfactual) compared to the pattern being explained. This approach is used during

the recognition and explanation phase of a new pattern. When explaining features, the

user can experiment with variations in feature values and observe the impact on both

the decision and the corresponding pattern. This provides a visual representation of

the logic function used for classification explanation, which produces the same result as

a non-linear classifier.
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As an illustration, we have chosen to examine the explainability of handwritten

digit recognition from the MNIST database [158]. The block diagram in figure 3.5a)

displays the structure of the handwritten digit recognition system, which consists of a

feature extractor, a feature explanation interface, and a fuzzy logic function serving as

an explainable component for the non-linear classifier. Figure 3.5b) presents the user

interface.

Figure 3.5: Concept for proposed explainability approach.

a) The block diagram.

b) The inference explanation interface.

The enhanced LeNet-5 neural network performs both feature extraction and classifi-

cation [159]. The gradient of the classifier’s output is backpropagated to the feature

layer, enabling us to calculate the feature importance value, represented as y ∈ RM ,

which serves as a measure of the features’ relevance in the decision-making process [78].

As previously discussed, we contend that it is imperative to maintain the non-

linearity of the feature extractor, even if the features are not immediately explicable and

the explanation process is analogous to discovery through observation of events. Our

perspective aligns with Galileo Galilei’s experimental approach to acquiring knowledge,

as opposed to Plato’s idea of passive observation. For this post-hoc approach, we have

developed a tool, the block diagram of which is depicted in Figure 3.5a) (modification

of [160]). The pattern recognizer, consisting of the feature extractor and the classifier,

is tested. The experiment involves variations in the features and observation of their

impact on the reconstructed image, the classification result, and the relevance of

the features. The decoder model, which reconstructs the image using the extracted
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features, is trained while the compressor (feature extractor part of the classifier) remains

fixed. The graphical interface presents a 2D subspace of the feature space, displaying

the original image and the image with altered features. The classifier’s explanation is

facilitated by shading the sliders that control the relevant features entering the codeword

(refer to equations 3.8, 3.10).

3.4 How to measure the significance of features

In this work, we posit that human knowledge in the cognitive process corresponds

to the extracted features in the machine learning process (see Figure 3.2). In the

preceding subsection, we introduced a method of teaching the user to explain these

extracted features. The following subsections describe two ways to use the features to

explain pattern classification. We investigate two approaches for utilizing the features

fi, i ∈ {1,...,M} in determining the classified class through the inference explainer:

1. Using them directly, as done by the non-linear classifier, where yi = fi.

2. Utilizing the features’ relevance measure, where yi = ρ(fi) = Ri.

Regarding the 2nd point - Utilizing the feature relevance measure we already mentioned

a considerable amount of literature that assesses the significance of variables in neural

networks, which we apply to features. In order to test the proposed method, we

have used two exemplary techniques to calculate feature relevance: a gradient-based

backpropagation approach and a feature-relevance approach [161],[162].

As a representative of the feature-relevance approach, we use Layer-Wise Relevance

Propagation [78]. In this method, the target output value represents its relevance R.

We assume that the classification neural network has L layers (L - number greater than

2) and consists of neurons nli, l ∈ {1, . . . , L}, i ∈ {1, . . . ,Bl}, where Bl is the number of

neurons in the l−th layer. Now, let’s assume wl,l+1
i,k , l ∈ {1, . . . ,L−1}, i ∈ {1, . . . Bl}, k ∈

{1, . . . Bl+1} the weights between neurons nli and nl+1
k , next ali, l ∈ {1, . . . ,L}, i ∈

{1, . . . Bl}, outputs from neurons for the tested pattern (a1
i = yi, B1 = M are the

features), then Rl
i, l ∈ {1, . . . ,L}, i ∈ {1, . . . Bl} is the relevance of outputs from neurons

for the tested pattern, so Rl,l+1
i←k , l ∈ {1, . . . ,L − 1}, i ∈ {1, . . . Bl}, k ∈ {1, . . . Bl+1} is

relevance transfer from neuron nl+1
k to neuron nli. At the output layer, we consider
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only the winning neuron, which determines the confidence of the winning class (i.e.,

Bl = 1, Rl = al1). Backward computing of relevance is defined by:

Rl
i =

Bl+1∑
k=1

Rl,l+1
i←k =

Bl+1∑
k=1

aliw
l,l+1
i,k

ϵ+
Bl∑
j=1

aliw
l,l+1
j,k

Rl+1
k

i ∈ {1, . . . Bl}, l ∈ {1, . . . ,L− 1}

(3.1)

At last, the result is feature relevance R1
i , i ∈ {1, . . . ,M}. As a representative of the

gradient-based approach, we choose the Vanilla Gradient method to display Saliency

Maps [69] because it shows very nicely the general recipe that other methods follow.

Let f = (f1, . . . ,fM), is the feature vector, fi = a0
i , i ∈ {1, . . . ,M} is the input value

to the classifier for the given pattern and aLi , i ∈ {1, . . . ,N} is the output value of the

classifier for the class i (probability that the pattern belongs to the class i). The feature

class score (the saliency) Sji of the feature fi for the specific class j is given as partial

derivation:

Sji =
δaLj
δfi

∣∣∣∣
fi=a0

i

, i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N} (3.2)

In both cases, the raw feature or its computed relevance needs normalizing to a unit

interval to interpret its value as the truth value of the fuzzy logic statement [147]. For

the values, we normalize yi ∈ R, i ∈ {1,...,M}, and use min-max linear normalization:

ỹi = yi − ymin
ymax − ymin

,

ymin = min{y1, . . . ,yM},

ymax = max{y1, . . . ,yM}

(3.3)

There is also an option to normalize features with the use of the Sigmoid function:

ỹi = S(yi) = 1
1 + e−yi

(3.4)

The sigmoid function applies a nonlinear transformation to the features, mapping

them to a range between 0 and 1 based on a curve that asymptotically approaches

these limits. While this method can be effective for some applications it is not the best

approach for fuzzy logic, since it may distort the relationships between the features,

making it difficult to accurately compare the degree of truthfulness of the resulting

output. Although, Min-max normalization rescales the features linearly to the range

between 0 and 1 based on the minimum and maximum values of the input set. This
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method preserves the order and distance between the values of the input set, which is

important for the implemented fuzzy Zadeh function, which applies max, min functions

for disjunction, conjunction (function of truthfulness)[163] [164]. Thus, the min-max

normalization allows for a more flexible and nuanced representation of information,

which can be useful in decision-making.

In the context of fuzzy logic, we employ one important term - the degree of

truthfulness. This term refers to the extent to which a statement is true or false.

In fuzzy logic, a fuzzy proposition or rule is defined by a function of truthfulness,

which assigns a degree of truthfulness to the proposition. The degree of truthfulness

ranges from 0 to 1, where 0 means the proposition is completely false, and 1 means the

proposition is completely true.

3.5 Fuzzy Explanator as a Classifier

In the previous section, we describe how to measure the significance of features and their

subsequent normalization for the Zadeh fuzzy function. Such pre-processing of data is

the first step in our proposed architecture as we can see in Figure 3.6 - Normalization

module.

Figure 3.6: Architecture of Logical Fuzzy Classifier

The next phase involves the relevance filter module, which transforms the features

into corresponding relevance states. Positive relevance refers to the degree to which a
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particular input feature or set of features is important for making accurate predictions

in a deep learning model. These features are considered to be positively correlated

with the model’s predictions and are essential for the model’s performance. Conversely,

negative relevance refers to the degree to which a particular input feature or set of

features is detrimental to the accuracy of predictions. These features are considered

to be negatively correlated with the model’s predictions and can cause the model’s

performance to degrade. Overall, both positive and negative relevance is important for

interpreting and explaining the performance of deep learning models. By understanding

which input features are most relevant (both positively and negatively), we can gain

insights into the inner workings of the model and improve its performance.

So, in the Relevance filter module, we interpret the feature ci, i ∈ {1, . . . ,M} as

positively relevant ci = 1, if its value or weight of relevance ỹi ∈ [0,1] is higher than a

given threshold ỹi > 1
2 + ∆, and as negatively relevant ci = 0 if its value is lower than a

specific threshold ỹi <
1
2 − ∆.

The third scenario is irrelevant feature ci = X if 1
2 − ∆ ≤ ỹi ≤ 1

2 + ∆ :

ci =



1, ỹi >
1
2 + ∆

X, 1
2 − ∆ ≤ ỹi ≤ 1

2 + ∆

0, ỹi <
1
2 − ∆

(3.5)

Thus, we distinguish between the relevance ci ∈ {0,X,1} and value or degree of relevance

ỹi ∈ [0,1], i ∈ [1, . . . ,M ], which we obtain by normalizing eq.(3.3). Note that ∆ needs

to be positive and ỹi = 1
2 ⇒ ci = X.

Next, we derive the truth value (degree of truthfulness) for the relevant features:

t(ỹi = ci) =


1 − ỹi, ci = 0

ỹi, ci = 1
, ci ̸= X, i ∈ {1, . . . ,M}. (3.6)

It is true that if the feature is relevant, then:

t ((ci = 1) ∨ (ci = 0)/ci ̸= X) ∈
[1
2 + ∆, 1

]
, i ∈ {1, . . . ,M}. (3.7)

Based on eq.(3.3) and eq.(3.5), it can be inferred that there are a minimum of two

relevant features with a unit truth value. At least one of which is positively relevant

(t(ci = 1) = 1), and at least one is negatively relevant (t(ci = 0) = 1). We exclude the
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rare scenario where all truth values are identical, and we associate them with the degree

of relevance of the other features. Conversely, multiple features may have a relevance

measure near unity compared to a probability distribution. Thus, the normalization

method determines the relevance coding. Probabilistic normalization (softmax) results

in a one-hot relevance code, while min−max linear normalization produces general

binary relevance codewords (in which at least one value is 1 and one value is 0).

So, we use Zadeh’s fuzzy logic to determine the truth values of more complex

statements[163], [164] for t(A), t(B) ∈ [0,1]:

t(¬A) = 1 − t(A),

t̄(A ∧B) = min(t(A), t(B)),

t(A ∨B) = max(t(A),t(B))

The goal of the fuzzy explanator is to assign to the input pattern x with the vector

of relevance measures ỹ the relevance codeword c̃ (explanation) with the highest degree

of truthfulness. The truth value of the statement that the evaluated codeword c̃ is

equal to the codeword cj is:

t(c̃ = cj) = min
i=1,...,M
cj

i ̸=X

t(c̃i = cji ), j = 1, . . . ,3M (3.8)

while irrelevant features are not considered. Although the potential set of codewords{
cj =

(
cj1, . . . ,c

j
M

)
∈ {0,X,1}M

}
, j = 1, . . . ,3M contains | Cfull |= 3M codewords, due

to linear min−max normalization, a codeword must have at least one 1and one 0, so

the set of generated codewords C will have cardinality of:

| C |= M(M − 1)
M − 2

3

 = M !
6(M − 5)! ,M ≥ 2 (3.9)

Then, the fuzzy model assigns a code word cm̃ with the maximum truth value to

the recognized pattern (classification done by fuzzy model):

m̃ = argmax
cj∈C

t(c̃ = cj) (3.10)

We select the truest codeword from the entire set of admissible codewords C.

Rounding the relevance measure of the relevant features can also give the same result.

The following theorem discusses this property. It is an extension of Theorem 1 in [147]

to the tertiary codespace.
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Theorem 1.

Let
{

cj = (cj1, . . . ,cjM) ∈ {0,X,1}M
}
j = 1, . . . ,3M be the tertiary codespace,

ỹ = (ỹ1, . . . , ỹM) ∈ [0,1]M a normalized output of the neural network,

t(ỹi = cji ) truth-value according to eq.(3.6),

and the winning codeword c̃ be taken according to eq.(3.10).

Then:

• the truth-value c̃ if the winning codeword is higher than the upper limit 1
2 + ∆,

• there is only one codeword with a truth-value higher than the upper limit,

• rounding relevant bits according to eq.(3.5) gives the winning codeword.

The proof of the theorem could be found in the paper [147] for the binary case.

3.5.1 Training Phase of Fuzzy Classifier

The main task of training a fuzzy classifier is to find the relevance (code)words c =

{(c1, . . . ,ci, . . . ,cM )}ci ∈ {0,X,1}, i ∈ {1, . . . ,M} that maximize the probability that the

fuzzy explainer classifies the codeword into the same class as the non-linear classifier.

When aiming to interpret a non-linear classifier, it is reasonable to expect that the

proposed fuzzy model should behave as closely as possible to the classifier.

Figure 3.7: Training Phase (creation of codewords) with proposed Fuzzy model

To train the model, two steps are involved in using a training set of data:

1. In the initial stage, we allocate each pattern in the training set to a corresponding

codeword based on the formula (3.5). We keep track of created codewords and their

respective classes by gathering this information in the statistic table of assigned

classes to a codeword 3.1 During this ’training’, we increment the count of the

76



output codeword for a specific class recognized by the fuzzy model. Information

is then gathered in the statistics table for classes assigned to a specific codeword

(as illustrated in Table 3.1).

Codeword c1 . . . Codeword c|C|

Class1 . . . Class N

n1
1 . . . n1

N

. . .
Class1 . . . Class N

n
|C|
1 . . . n

|C|
N

Table 3.1: Patterns mapping into codewords

C is the set of possible tertiary codewords and | C | is its cardinality. Due to the

previously mentioned min-max normalization, a codeword must have at least one

1 and one 0. So, | C |< 3M ,M ≥ 2, but still it is very high number (see eq.(3.9)).

For instance, if M = 50 features, more than 42 million codewords need to be

considered. To circumvent the issue of high memory consumption for | C | possible

codewords, one viable approach is to generate the codeword solely during the

training process, when there arises a need to modify the given codeword statistics.

The reduction in memory requirements comes at the cost of slower training of

the fuzzy logic function. Hence, it is imperative to give due consideration to both

memory requirements and training time.

2. During the second step, the appropriate codewords (see dominance condition

3.11) are chosen and assigned to their respective classes. This is done the

following way. The value of njk associated with the pattern of class k ∈ {1, . . . ,N}

assigned to codeword cj ∈ {1, . . . ,3M} denotes the ratio of accurate to inaccurate

classifications made by the fuzzy model.

In other words, the value of njk indicates the number of times that the classifier

correctly identified the given class nj
+

k in comparison to the number of incorrect

classifications nj
−

k , i.e., njk = nj
+

k − nj
−

k A codeword cj ∈ {1, . . . ,3M} is deemed

appropriate for a particular class k ∈ {1, . . . ,N} if the following condition is

satisfied:

njk > α
∑
i ̸=k

nji (3.11)

where α ≥ 1 gives the chosen security measure (in this work α = 1). Should a
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codeword be inappropriate for any class, it will not be used in the fuzzy classifier.

Denoting the set of all codewords by C, and the subset of codewords used by the

fuzzy explainer after training as CT ⊂ C, the output of the training process is a

set of suitable codewords CT , each of which is assigned to an appropriate class

m = ψ(c),m ∈ {1, . . . ,N}, c ∈ CT .

3.5.2 Testing Phase of Fuzzy Classifier

In order to get a model prediction of the target pattern x belonging to class

m ∈ {1, . . . , N}, it is fed as input to the black-box recognizer (DNN classifier), where-

upon the feature extractor identifies the salient f for the given pattern.

Subsequently, the classification part utilizes the extracted features f to estimate the

class of the pattern. If the estimation is of class z ∈ {1,. . . , N}, these classes may be

the same z = m, or it may be the wrong class z ̸= m. From the decision of the black

box classifier, we derive the relevance of the features y and feed them to the input of

the explainable classifier. Thus, during the testing phase, we obtain the corresponding

codewords from the inference of test samples. According to the created Codeword Table

(3.1) we find the nearest codeword (discrete vector) that was not discarded during the

training phase.

Figure 3.8: Testing Phase with proposed Fuzzy model
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3.5.3 Evaluation Metrics

Unlike the training phase, during testing, the selection of codewords is limited to the

subset CT ⊂ Cfull generated during training as opposed to the entire set of codewords

Cfull. Since the main goal is to explain the classification of the target pattern m̃

determined by the black box classifier, only the codewords assigned to the same class

CT
m̃ as predicted by the black-box classifier are selected, irrespective of whether the

prediction itself was accurate or not.

explanation c̃ = argmax
j:cj∈CT

˜̃m

t(c̃ = cj) (3.12)

where t(c̃ = cj) is defined in 3.8.

The accuracy of prediction on the black-box model is computed as:

accBBox =
∑n
i=1 δ( ˜̃mi = mi)

n
(3.13)

where ˜̃mi is black-box prediction, mi is true label, and

δ( ˜̃mi = mi) =


1, ˜̃mi = mi

0, ˜̃mi ̸= mi

Then, the accuracy of an explainable classifier can be evaluated in a manner, similar to

the common accuracy metric for a black box classifier 3.13.

accfuzzy ρ =
∑n
i=1 δ(m̃i = mi)

n
(3.14)

where m̃i is the class of test sample xi estimated by the fuzzy classifier with respect to

true labels mi.

Eq.(3.14) basically represents the regular accuracy metric - the proportion of correct

predictions made by the model over the total number of predictions made.

The fidelity metric is just a slight alteration from eq.(3.14) and (3.13).

fidelity ρr =
∑n
i=1 δ(m̃i = ˜̃mi)

n
(3.15)

It is still the proportion of correct predictions made by the model over the total number

of predictions but with respect to a black-box prediction m̃i. Because the explainable

classifier explains the result obtained by the black box classifier, this metric - fidelity of
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explanation eq.(3.15) is the most important.

Another important metric to compute during the testing phase is the stability of

explanations. It refers to the degree to which an explanation remains consistent and

valid over time within the class, despite changes in the surrounding circumstances

or additional information. In order to compute this metric we employ the Hamming

distance [165].

stability H(Ct,Cm) =
n∑
i=1

δ(bti ̸= bmi ) (3.16)

where bti are respective bits in codewords Ct assigned to the pattern during the testing

phase for a specific class.

3.5.4 The contribution of fuzzy logic to the explainability

within the classification domain

• The post-hoc classifier takes the form of a fuzzy logical expression, with a set of

rules (IF, THEN) forming the basis of logic (modus ponens: (P → Q) ∧ P →

Q) applied to indefinite data that has been extended to fuzzy logic. In fuzzy

logic(measures the degree of truthfulness of a statement on a unit interval.).

• Within the classification task, we obtain the degree of truthfulness for a specific

classification. Additionally, it is possible to eliminate irrelevant statements and

determine the degree of truth for crucial statements.

• Since the proposed method is in the role of a post-hoc model, we can determine how

well the explanation approximates the prediction of the black box model(fidelity).

• As a degree of truthfulness of features, we can use the values of the features

themselves or their respective relevance. Then we can compare the effectiveness

of various relevance methods by comparing the fidelity, or the accuracy of the

classification for the explainable classifier.
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• The resulting Fuzzy Logic Function (FLF) is expressed in the format of a Dis-

junctive Normal Form (DNF). Such a function can be converted into a tertiary

decision tree. On top of that, the number of logical operations can be reduced

using the same approach applied in minimizing boolean logic functions.

Figure 3.9: Example of FLF in tertiary decision tree

• We can search for the custom optimal transformation of the features based on

their degree of truthfulness t = µ(f). This way we get rid of the replacement

of the raw feature by their computed relevances - this is an objective for future

research.
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3.6 Interface for Interpretation of Features

The inherent issue of explainability, which persists throughout the entire research

presented in this work, is apparent. The non-linear classifier serves as a black-box

model, where an unknown pattern is introduced at the input, and a classification for

a given pattern is produced at the output. Nevertheless, the challenge lies in the fact

that the computer model is not accountable for the accuracy of the recognition; rather,

it is the responsibility of the end-user. The role of the recognizer is that of aid, and it

is imperative that the end-user not only be informed of the system’s recommendation

but also be provided with a comprehensible explanation as to why. To achieve this,

the first step is to clearly distinguish between the feature extraction and classification

subsystems, as proposed in Section 3.1. If we aim to include non-natural features,

the user must learn to comprehend the extracted features for optimal classification,

which they may not have previously encountered. The crux of the proposed explainable

method is the development of a User-Interface that not only presents the features and

classification outcome for a given input image but also allows the user to modify the

features (model them) and observe the impact of these changes on the pattern presented

and the classification decision.

The User Interface (UI) proposed in this study is just one of several possible implemen-

tations. Its primary objective is to ensure that the end user can easily comprehend the

information provided. However, selecting the most suitable implementation requires

careful consideration of numerous factors, including the problem’s domain, the specific

task, the system architecture, data complexity, and data type, among others.

So, to provide a comprehensive explanation for the specific image sample, it is crucial

to first describe the Explainable User-Interface illustrated in Figure 3.5. Accordingly,

the explanation of user inference is divided into multiple components:

1. The graph located in the upper left corner depicts a 2D feature space that

highlights the relationship between two features chosen by the user. As the values

of these features are altered, the user is presented with graphical feedback on the

updated location of the features within the feature space.

2. The area next to the feature space is designated for image manipulation (explana-

tion objects). The user can choose an image/file to analyze and upload it from
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their local storage to the server. Upon upload, all the features are extracted,

and the original image is presented. If the user modifies any features, the recon-

structed image will be displayed. For the purpose of image reconstruction, we

trained the decoder model as a subsequent part to the already used classifier. So,

extracted features from the classifier are then used not only as an input to the

fuzzy model but also as a latent representation needed for the reconstruction of

the image. In this specific architecture, the classifier and decoder model represents

a fully-convolutional autoencoder. Also, the decoder part is reacting to changes in

features done by the end-user and modifies the reconstructed pattern accordingly.

3. The subsequent section presents a summary of the features extracted from the

uploaded image data. Every feature is assigned an identifier (header) and a value

within the normalized range of [0 − 1]. In this section, all features remain inactive

and are immune to updates in value. However, the user can select any feature

to experiment with and modify its value accordingly. The explainable classifier

also offers the user the option to select feature relevance. The proposed post-hoc

fuzzy model offers three states to convey this information: 1 - denotes positive

relevance, X - signifies irrelevance, and 0 - indicates negative relevance. Hence,

the user can concentrate on elements that make positive or negative contributions

and disregard irrelevant elements.

4. To the left of the feature overview is the section where the user can modify the two

selected features based on their relevance and interest. By limiting the number

of chosen features, the user can experiment by manipulating their values and

gaining a better understanding of their relevance. Upon altering the values, the

pattern reconstruction subsystem generates the new corresponding image, and

the black-box classifier performs a new classification prediction for a generated

image. Moreover, the updated feature relevance is exhibited. This enables the

user to understand the significance of the features by observing how they affect

the image.

5. The final section located at the bottom of the interface portrays the outcome

of the black box model’s prediction (classification). The top row indicates the

available classes of the image data used, while the second row displays the assigned
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probabilities for each class by the non-linear model (SoftMax normalization).

Figure 3.10: The illustration of Explanation User-Interface

Figure 3.10 shows a concept of the interface between the user and the feature

interpreter. In contrast to other feature interpretation methods, the feature UI provides

a unique advantage in teaching end-users to understand the individual symptoms used

by the classifier. The learning process centers around user experimentation with the

pattern recognition process. The interface presents the input pattern, features, and
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predicted class to the user, but also allows active modification of features. Users

can observe how the classification result changes and what input image leads to such

changes. The system provides the ability to determine the most relevant features for a

change in classification and compare differences in the input images leading to different

classifications. This approach will enable experienced users to provide a qualified

recommendation for improving specific non-linear classifiers.

Figure 3.11: Feature interpretation example: an impact of the two positive relevant

features on the shape of the reconstructed image - built with explainable UI

In Figure 3.11 we choose features No.71 and No.2 as these were provided by the Fuzzy

model as the two most positive relevant features in the explanation c̃.
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Chapter 4

Developed Explainable Approach:

Experimental Evaluations

To demonstrate the proposed concept, we begin with less complex datasets such as

MNIST [158], and Fashion-MNIST[166], but also include very complex and large the

benchmark dataset ImageNet[167]. Although these datasets have reduced complexity

(in the case of MNIST and FMNIST - HelloWorld of computer vision), they serve

as reliable references in our research. It is important to note that using less complex

datasets is still informative and can demonstrate the effectiveness of the fuzzy classifier

and our proposed concept of explainability. Also, it is worth mentioning that experiments

with more complex data are also of great interest, but they require significantly more

computational resources and a higher level of customizability, which must be taken into

account. In addition to the aforementioned reasons, using datasets of lesser complexity

like MNIST also offers an advantage in terms of achieving high accuracy in classifying

images, with most state-of-the-art neural network models achieving an accuracy of over

99% on such datasets. This is in contrast to the more complex ImageNet scenario,

where high accuracy may be more challenging to attain.
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It is important to note that while complex heavy data may not have a direct impact on

the proposed post-hoc model, it is still crucial to achieving high accuracy on the black

box classifier for two reasons:

• First, although accurate (true) predictions are not necessary for explainability

cause, they are necessary to ensure that the explanation itself is not worthless

and does not reveal incorrect classifications.

• Second, highly accurate models can extract better or more essential features,

which are highly effective as input for the post-hoc explanation.

The effectiveness of the post-hoc interpretation is dependent on the complexity

of the task at hand, although it can be applied universally. Using datasets that are

less complex, such as MNIST, can help conserve computational resources while also

providing the most accurate classification and thus the best explanation as a conceptual

showcase demonstration.

4.1 Model Evaluation with MNIST and Fashion-

MNIST

4.1.1 General Description

The original LeNet-5 model architecture [159] was utilized for MNIST and Fashion

MNIST. the antiquated architecture of the Lenet5 has no detrimental effect in terms of

explainability aim. However, we had to make several modifications to achieve state-of-

the-art (SOTA) accuracy on these datasets. The deeper and denser network enabled the

model to learn more complex features. As was already mentioned, extracting the most

meaningful features from the data is crucial for the proposed explainability method,

which uses these features as inputs to the post-hoc fuzzy classifier in their raw form or

modified with interpretation methods for deep learning (e.g., gradients, relevance). The

convolutional part of the architecture was doubled with the same hyperparameters, and

the number of filters in the convolutional layers was significantly increased. Consequently,

the number of dense layers (classification head) was also increased to accommodate the

more extensive input resulting from the increase of the previous layers. We performed

87



various optimizations for both MNIST and FMNIST datasets. These optimizations

included regularisation techniques such as batch normalization[168], dropout[169], L2

regularisation [170] and variable learning rate. These techniques helped us achieve

an accuracy of over 99% on MNIST and 92% on FMNIST within just 30 epochs of

training. It is important to note that the features used as input data for the post-hoc

classifier were extracted immediately after the final convolutional layer. When using

interpretation methods, the relevance is computed in reverse to the same layer and then

extracted as a feature vector. This approach is appropriate for focusing on obtaining

the most compelling features. At the end of the convolutional section of the network,

we assume that all essential spatial information is preserved and compressed.

4.1.2 Experimental Results

To attain the best precise results on both datasets, we performed ten training iterations

on the employed model using the abovementioned datasets. We obtained accuracy

metrics from each training and computed the mean and standard deviation to determine

the most precise performance of the model for a given dataset.

Relevance Method Fidelity ρr (%) Accuracy Fuzzy ρ (%) Accuracy BBox(%)

Vanilla Grad 99.47 [0.21] 99.10 [0.22] 99.61 [0.05]

Raw normalized features 99.20 [0.17] 99.06 [0.17] 99.61 [0.05]

LRP relevance 98.35 [3.21] 97.99 [3.20] 99.61 [0.05]

Guided Backprop 99.79 [0.21] 99.42 [0.22] 99.61 [0.05]

DeconvNet 100 [0] 99.61 [0.05] 99.61 [0.05]

Table 4.1: MNIST results on Fuzzy-logical Model with respect to enhanced LeNet5

classifier

In order to obtain a more comprehensive understanding of the overall performance

of the post-hoc model, we have included two additional gradient-based methods in our

comparison: Guided Back-propagation [73] and DeconvNet [72]. As can be seen from

Tables 4.1 and 4.2, the post-hoc explainer has the potential to be just as accurate as the

black box classifier itself. This is yet another compelling reason to strive for the highest

possible accuracy in the black box model. Furthermore, our results confirm the direct
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Relevance Method Fidelity ρr (%) Accuracy Fuzzy ρ (%) Accuracy BBox(%)

Vanilla Grad 98.33 [0.75] 91.28 [0.61] 92.46 [0.25]

Raw normalized features 91.83 [0.51] 88.62 [0.42] 92.46 [0.25]

LRP relevance 93.38 [2.10] 86.96 [2.05] 92.46 [0.25]

Guided Backprop 99.59 [0.66] 92.25 [0.54] 92.46 [0.25]

DeconvNet 100 [0] 92.46 [0.25] 92.46 [0.25]

Table 4.2: FMNIST results on Fuzzy-logical Model with respect to enhanced LeNet5

classifier

correlation between the accuracy of the post-hoc explanation and the relevance of the

input data and extracted features. This implies that utilizing more relevant features

results in an improved ability of the post-hoc model to approximate the non-linear

classifier. Neural networks are trained to converge by calculating gradients with respect

to the loss function and network parameters. The gradient-based method utilizes a

similar approach to extract relevant feature information. It is important to note that

the features perform quite well in this method, as demonstrated in the tables. In

particular, the DeconvNet technique filters out negative gradients, which has an even

more desirable effect in this specific instance. Typically, it is not the positive or negative

values themselves that are important, but rather the magnitude of the gradient. A

pixel is likely unimportant for making a prediction if its associated gradient has a small

magnitude. On the other hand, if the gradient magnitudes are significant, it indicates

that the pixel is essential. Also, it is possible to interpret negative values as a form

of inverse feature detection during the convolutional operation, while positive values

correspond to the positive detection of a specific feature.

Thus, the results presented in Tables 4.1 and 4.2 suggest that the proposed post-hoc

explanation method can be applied universally to computer vision tasks that are easy

to solve by neural networks with exceptionally high prediction accuracy. Additionally,

the choice of feature extraction method has a relatively minor impact on performance,

resulting in only marginal reductions in accuracy across various methods. This approach

is also valid from an explainability perspective. An effective neural network demonstrates

accurate predictions, which are directly associated with the accuracy of the post-hoc
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method and, ultimately, lead to a clear explanation.

4.1.3 Feature reduction for better explainability

The post-hoc model takes a vector with a length of 84 extracted features as input in

the case of LeNet-5 architecture. However, a significant number of these features in the

output explanation are irrelevant, and they do not contribute to the final prediction.

As we scale the method for more complex datasets (ImageNet scenario), the number of

features in the vector increases significantly depending on the architecture and choice

of layer for feature extraction. In such scenarios, the resulting explanations for the

prediction could become noisy and challenging to interpret. Hence, it is imperative that

we perform feature reduction in order to effectively handle complex data. One way to

achieve this is by adjusting the lower and upper thresholds of the Relevance Filter -

part of the post-hoc model design, which can help to expand the irrelevant range (see

equation 3.5).

Table 4.3 and 4.9 present the outcomes of the feature reduction process, wherein we

have widened the irrelevant zone and imposed more stringent conditions for both positive

and negative features. During this reduction process the average count of positive

Npositive and negative Nnegative features is diminishing. Additionally, it is crucial to note

the inevitable trade-off between the performance of the post-hoc model and the feature

reduction process if the initial thresholds of the filter are set too strictly. Imposing such

excessively strict thresholds for positive and negative features may erroneously designate

certain critical features as irrelevant, thereby impacting the model’s performance and

the interpretation of its predictions. It is worth highlighting that the lower and upper

limits of the relevance filter determine the overall bandwidth of the irrelevance range. It

is symmetrically centered around the center of the unit interval, starting at one-third:

LowerLimit = 1
3 − ∆, UpperLimit = 2

3 + ∆ (4.1)

90



LeNet5/MNIST ∆ NPOSITIV E NNEGATIV E Fidelity ρr(%)

Vanilla Grad

0 7.88 9.5 99.24
0.1 3.62 2.73 99.33
0.2 1.39 1.27 99.5
0.3 1.01 1.01 99.63

Raw normalized features

0 15.17 22.55 99.06
0.1 5.8 8.09 96.08
0.2 1.53 1.64 85.54
0.3 1.02 1.02 89.8

LRP

0 2.18 40.4 99.8
0.1 1.39 4.52 99.12
0.2 1.04 1.15 98.63
0.3 1 1 99.06

Guided Backprop

0 4.7 66.27 99.96
0.1 2.83 61.94 99.96
0.2 1.84 57.84 99.99
0.3 1.11 53.91 99.97

DeconvNet

0 6 64.37 100
0.1 4.34 58.49 100
0.2 2.39 52.33 100
0.3 1.39 45.11 100

Table 4.3: Responsiveness of the Feature Reduction Method used on LeNet-5/MNIST

The results were also published in the paper [171].

4.2 Model Evaluation with ImageNet

4.2.1 General Description

In the following section, we included the ImageNet dataset [167] to evaluate the post-hoc

model’s scalability on more complex data. We selected four different neural network

models for this very purpose: VGG16 [150], ResNet-50 [172], DenseNet121 [173], and

InceptionV3 [174]. This time, we did not use any further enhancements or re-training

multiple versions of these architectures. The networks had already been trained with

the highest possible accuracy. Table 4.4 illustrates the overall performance of these

models.
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Architectures Accuracy (%)

VGG 16 64.44

ResNet-50 67.46

DenseNet121 71.20

Inception V3 75.84

Table 4.4: Employed Architectures and their respective Accuracy score on ImageNet

4.2.2 Experimental Results

The results presented in Table 4.5 demonstrate a clear decline in the performance of

the proposed post-hoc model on the ImageNet dataset. However, the overall accuracy of

black box architectures is significantly lower than the 90% threshold (see Table4.4). In

the case of the DenseNet121 and VGG16 models, we were able to achieve a comparable

level of accuracy with the post-hoc explainable model. However, the available methods

for feature extractions now indicate more significant performance gaps.

Table 4.5: ImageNet results on proposed Fuzzy-logical Model with respect to specific

classification Architectures
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Once again, the results of the experiments reinforce the high dependence on black

box architecture in use. The more efficient the architecture is, the more relevant features

are extracted as input for the post-hoc method. If the black box model fails to extract

the necessary features, computing the interpretation methods (rather than just raw

extraction) might improve the overall effectiveness of feature extraction. From Table

4.5 is possible to infer the overall results on ImageNet.

Architectures Total Score (%)

ResNet-50 23.0

VGG 16 64.44

Inception V3 49.9

DenseNet121 71.2

Table 4.6: Overview of best performance in combination Black-box/Fuzzy model

Table 4.6 evaluates the best performance from all employed architectures in terms of

accurate explanations. We consider the explanation to be correct when both Black-box

and Fuzzy models provide an accurate prediction. If we assume independence, it can

be defined as:

Total Score = Accuracy BBox × Fidelity ρr (4.2)

Another, better solution to this issue is to investigate the development of custom

feature extraction methods (Custom Transformation) that are either universal or tailored

to the specific architecture. These methods could help maximize the performance of

the post-hoc model by enhancing the extraction effectiveness if the black box model is

insufficient in extracting features.

The LRP method [78] was only calculated for the VGG16 model as is shown in Table

4.5. The VGG16 architecture is designed more traditionally, with a proper classification

head that allows us to compute the LRP signal backward through multiple fully-

connected layers and to the point of relevance signal extraction (the final convolution

layer). However, the remaining models have convolutional layers throughout their whole

architecture, and just one linear output layer with SoftMax normalization (prediction

layer) immediately follows the final convolution layer. In this case, the LRP is not

meaningful due to its design, as the calculated signal is too shallow.
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The results were also published in the paper [171] (see List of Publications at the end

of work).

We also utilized the stability metric (see 3.16) to assess the similarity between

explanations of instances within each class for a particular architecture. It is crucial to

have stable explanations since a dramatic change in explanation with a small variation

in input can result in mistrust or ambiguity regarding the model’s behavior. A stable

explanation assures that the model is making consistent decisions based on the input

provided.

Architecture /

Codeword Length
Relevance Method Bit Match Stability (%)

VGG16/4096 bits

Raw 2971.28 72.54
Vanilla Grad 3789.96 92.53

Guided Backprop 3937.23 96.12
DeconvNet 4096 100

ResNet50/2048 bits

Raw 2004.03 72.54
Vanilla Grad 2046.44 99.92

Guided Backprop 2046.44 99.92
DeconvNet 2046.44 99.92

Table 4.7: The average stability of explanations within classes for architecture VGG16

and ResNet50

Architecture /

Codeword Length
Relevance Method Bit Match Stability (%)

DenseNet121/1024 bits

Raw 984.12 96.12
Vanilla Grad 1024 100

Guided Backprop 1022.51 99.85
DeconvNet 1024 100

InceptionV3/2048 bits

Raw 1937.14 94.58
Vanilla Grad 2046.67 99.93

Guided Backprop 2046.67 99.93
DeconvNet 2046.67 99.93

Table 4.8: The average stability of explanations within classes for architecture

Inception V3 and DenseNet121

Based on the Stability evaluation presented in Tables 4.7 and 4.8, it is evident that
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the explanations provided by the Fuzzy Logical model exhibit stability. This parameter

holds significant importance as it enables end-users to comprehend the rationale behind

a particular decision, thereby enhancing overall comprehensibility. Moreover, these

explanations can assist in facilitating a smooth transition to feature interpretability by

offering insights into the input features that are pivotal in driving the model’s decisions.

4.2.3 Feature reduction when dealing with ImageNet

When we deal with more complex data like ImageNet the feature reduction method

(chapter 4.1.3) yields even greater benefits. In this particular experiment, we have opted

to employ the DenseNet121 architecture. Table 4.9 displays the average count of positive

and negative features alongside the overall performance of the model under various

threshold levels. Based on the results, we can conclude that the feature reduction (total

amount of NPOSITIV E and NNEGATIV E) was successful, with an explanation fidelity

rate of over 99% maintained.

We have again the lower and upper limits symmetrically centered around the center

of the unit interval, starting at one-third:

LowerLimit = 1
3 − ∆, UpperLimit = 2

3 + ∆ (4.3)

DenseNet121/ImageNet ∆ 0 0.1 0.2 0.3

VanillaGrad/ Guided-

Backprop/DeconvNet

NPOSITIV E 10.59 5.19 2.5 2.04

NNEGATIV E 774.12 275.15 44.28 21.75

Fidelity ρr(%) 100 100 99.78 99.12

Raw normalized

features

NPOSITIV E 4.12 2.44 1.5 1.05

NNEGATIV E 989.03 949.35 856.96 627.17

Fidelity ρr(%) 40.24 40.24 38.61 27.57

Table 4.9: Responsiveness of the Feature Reduction Method used on

DenseNet-121/ImageNet

Also, please not that Table 4.9 indicates that all gradient methods have identical values.

This is once again attributable to the specific structure of the DenseNet121 architecture,

which was also observed in the LRP scenario depicted in Table 4.5. The convolutional

95



section of the network spans the entire architecture, causing the calculated gradients to

be derived immediately prior to the output layer. As a result of this shallow gradient

calculation, all gradient methods returned the same values.

4.2.4 Comparison with conventional method - Decision Tree

Algorithm

To facilitate a comparison between the suggested fuzzy classifier and conventional

approaches, we utilized a decision tree for analysis. It is a highly adaptable machine

learning algorithm that can perform classification, regression, and multi-output tasks

proficiently. Moreover, it is a highly intuitive concept that generates easily explainable

decisions, often known as "white box" models. Given their robustness and capability to

fit complex datasets, decision trees prove to be an ideal choice for conducting a valuable

comparison. Furthermore, decision trees demand minimal data preparation, such as

feature scaling or centering, to operate at an optimal level. The decision trees employed

in this study were generated via the CART[175] algorithm, which creates binary trees,

where split nodes invariably have precisely two children[176][177].

How to choose the optimal depth of the Decision Tree

In a scenario like this determining the optimal depth of a decision tree represents a

complex process as it depends on several factors, including the distribution of the

features, the complexity of the dataset, and the desired evaluation metrics. As a general

rule, it is advisable to set the maximum depth of a decision tree at a level that achieves

a balance between the bias-variance tradeoff. A shallow tree with a low maximum depth

could result in high bias, which oversimplifies the underlying patterns and relationships

within the data. Conversely, a deep tree with a high maximum depth may exhibit

high variance, which overfits the data by capturing noise and variability that are not

necessarily representative of the underlying trends[178].

There are some possibilities and general guidelines that can help determine an appro-

priate maximum depth for a decision tree.

• Our intention is to utilize the decision tree as a post-hoc approach to the pre-

existing black box classifier, aiming to compare its performance with the proposed

Fuzzy model. Given that both models are logical, we can set the maximum depth
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of the decision tree equal to the maximum logical decision made by the Fuzzy

classifier to provide an explanation. One way how to achieve this is to derive the

estimate by calculating the average NPOSITIV E and NNEGATIV E features from

the resulting explanation vectors of the Fuzzy model.

There exist alternative techniques to calculate the maximum number of logical

decisions made by the Fuzzy model. However, further investigation is required in

this domain and therefore it is left for further research.

• Another approach for identifying the appropriate maximum depth for a decision

tree is to leverage cross-validation to assess its performance across varying depths.

This method involves splitting the data into training and validation data folds,

training the model on the training set, and then evaluating its performance on

the validation set. This process is repeated for various maximum depth values,

and the optimal depth is selected based on the desired performance metric, such

as accuracy or precision [178][179].

• Last but not least its possible to apply regularization techniques, such as pruning,

to restrain the complexity of the decision tree and avoid overfitting. Pruning

consists of eliminating branches from the tree that do not enhance the model’s

performance on the validation set [180].

In summary, the optimal depth of a decision tree depends on various factors and can

be determined through experimentation and fine-tuning.

Training and Inference

After the experimental analysis and fine-tuning of decision tree depth, we decide to

proceed with two models. The first tree was trained with a depth node of 786 while the

second implementation is 512 nodes deep. The first parameter was chosen based on the

maximum logical decision made by the Fuzzy classifier, while the second attribute is

the result of cross-validation tuning. Both of the decision trees were trained as post-hoc

models for DenseNet121 architecture. It’s important to note that the optimal maximum

depth may vary depending on the specific dataset and the actual architecture of the

black box since we dealing with a post-hoc concept. Thus, it’s always a good idea to

perform experiments to determine the best hyperparameters for specific use cases.

The results presented in Table 4.10 indicate a lower performance compared to
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Decision

Tree Depth
Relevance Method Fidelity ρr Accuracy DTree ρ Accuracy BBox

786
Deconvnet 74.54 53.07 71.2

Raw features 63.42 45.15 71.2

512
Deconvnet 10.92 9.59 71.2

Raw features 51.13 39.96 71.2

Table 4.10: Performance of post-hoc Decision Tree as a substitute for Fuzzy logical

model used with DenseNet-121/ImageNet

the scenario utilizing a post-hoc fuzzy classifier (see Tables 4.5 and 4.6), implying the

superiority of the Fuzzy model over the deployed Decision trees. However, future research

could explore the possibility of employing decision trees as an absolute substitute for

the Fuzzy model. Similar to the research on Custom Transformation, which replaces

the conventional relevance/saliency method, replacing the Fuzzy model with a Decision

tree could be a viable alternative. These findings suggest that by conducting a thorough

investigation on fine-tuning decision trees in specific application domains, better results

could be achieved with shallower models.
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4.3 Conclusion

Experimental results show that the explainable fuzzy classifier can match its classification

almost identically with the black box classifiers. Performance parity is only achieved

when the classifiers strictly separate the feature extraction process from classification,

and when they can successfully extract meaningful and effective features from input

data (architecture dependent).

The primary step is to use the relevance of the features as input values for the

fuzzy classifier. The best results were obtained by methods that determine feature

relevance using gradient-based methods with back-propagation, and the overall winner

among the tested methods was the DeconvNet. However, it is crucial to think through

the entire process, including available data and architecture, when considering the

implementation of this post-hoc explanation. Although the proposed general concept

remains immutable, the actual implementation must be customized for the specific task

at hand.

Also, it’s worth mentioning that is significantly easier for the user to explain the

classification process with fewer relevant features (due to the fact that modern models

are vast in terms of parameters). Therefore, it is also necessary to experiment with

the irrelevance bandwidth on the unit interval of the truth values of the features. The

test results show that aggressive widening of the irrelevance band negatively affects

the explanation if we use the normalized features as the truth values. When is used

feature relevance, the number of relevant features can be reduced without degrading

the actual relative accuracy between post-hoc and black-box models. Notably, during

the process of reducing the relevant features, a greater number of negatively relevant

features (i.e., those that should not be present) persist compared to positively relevant

ones (i.e., those that should be present).
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Chapter 5

Challenges Posed by Outliers: An

Investigation

The definition of outliers provided in Chapter 2.4 encapsulates the primary approach to

anomaly detection in the current work. Also, in Chapter 2.4, the outlined methods are

characterized by their reliance on comparing the similarity of the tested pattern with

other patterns present in the original dataset. The quotation in question asserts that

the discrepancy may be significant enough to warrant the conclusion that the patterns

were not produced by the same mechanism. Therefore, it is not imperative for us to

have knowledge of the precise creation mechanism of the given pattern, but rather it

suffices to understand the mechanism responsible for generating its image.

According to this, we expect the normal samples in the same class to be created by the

same mechanism. Unfortunately, this mechanism is not known for the training/original

data. However, we do have a mechanism how to generate the samples which can

not be distinguished from the training data during the turning test performed by the

trained neural network - Discriminator. If the generated data are similar to the training

data then we expect the same generation mechanism for both, because we successfully

capture the original data distribution.

While compression algorithms, whether linear or non-linear, facilitate the extraction

of crucial information from images and enable the reconstruction of image patterns based

on such information, unique pattern features are still necessary for object construction.

In Chapter 2.4.2, GAN networks ( but also DGM in general) are presented as a solution

to comprehend the fundamental workings (creation mechanism) that generate synthetic
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objects (such as images) that closely resemble real data.

Assuming that the GAN network’s generator can convert instances of pseudo-random

noise into image patterns that resemble those in the original data, we can infer that the

formation mechanism of the training set’s patterns is analogous to that which generates

the artificially produced patterns. However, while we may understand the process of

converting noise into a synthetic pattern, there still remains uncertainty about the

specific noise source used to generate a given synthetic image. Therefore, the search

for an inverse transformation (i.e., the Disassembler model) is an essential part of the

proposed approaches in this work. The objective of the Disassembler model is to identify

the specific noise source that corresponds to a given pattern. This allows the generator

in a GAN to utilize the identified noise input in order to create a pattern that is highly

similar to the previous one. The Generator-Disassembler pair functions similarly to

the Encoder-Decoder design in Autoencoders, with the key distinction being that the

former transforms input noise into an image before disassembling it back into noise,

whereas the latter compresses an image into information bottleneck and then performs

the reconstruction.

The initial stage of developing the anomaly detector in the proposed methodologies

entails training a standard GAN model to obtain an adversarial generator model (Figure

5.1). This step aligns with the conventional GAN network training procedure. However,

to enhance the generator’s learning, we opted for the use of conditional GAN (cGAN).

This type of network affords greater control over image generation for all available

classes and promotes improved convergence during model optimization

Figure 5.1: cGAN - training phase (simplified)

The second step involves training the Disassembler model that can convert the
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generated adversarial image back into noise that is comparable to the original source of

the adversarial image.

The generator model takes a one-hot encoded vector c (using one-hot coding) that

specifies the image’s class, along with a vector n containing pseudo-random numbers

from a designated probability distribution (detailed in chapter 5.1), as its input. The

output of the trained generator is an adversarial image x̃ that bears a resemblance to the

patterns in the original set x. We then fetch the generated synthetic fake to the input

of the Disassembler model, which ideally produces a vector comprising an estimation

of the class c̃ and an estimation of the pseudo-random number vector ñ (it depends

on the final cost function). With the one-hot coding for classification, we can utilize

the softmax function to train this segment. For the second part, we can use the Mean

Squared Error (MSE) as the loss function to train the pseudo-random numbers. Once

the Disassembler model has been trained, and we achieve a low ∥n− ñ∥ value while also

ensuring that the components of the n vector originate from the specified probability

distribution, the components of the ñ vector will also belong to the same probability

distribution. In this regard, applying an adversarial pattern to the Disassembler’s input

would produce pseudo-random numbers that originate from the original probability

distribution.

Nowadays, the study of pseudo-random number generators is essential in cryp-

tography, as the use of a poor-quality generator can result in easy code-breaking.

Pseudo-random number generators with a uniform distribution form the basis, and well-

established tests exist for their uniformity and independence. For the proposed method,

a generator of pseudo-random numbers with a uniform distribution is also considered

(see Chapter 5.1 for more details). While the reconstruction of noise belonging to the

uniform distribution demonstrates the quality of the Disassembler’s training, we cannot

determine the cost function’s gradient. Therefore, for training the Disassembler, we are

limited to adversarial patterns only, for which we know the original and reconstructed

realization of the noise, and the MSE can serve as the primary loss function (Figure

5.2).

The fundamental assumption of the proposed method is that any anomalous patterns

fed into the Disassembler will be converted into non-uniform noise (Figure 5.3).

The next question to explore is whether the Disassembler, which is trained to convert
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Figure 5.2: Inverse Transformation - training phase with adversarial images

Figure 5.3: Inverse Transformation - inference for outliers

adversarial patterns into uniform noise, can also transform the patterns of the training

set (true images) into white noise. We speculate that it may not, and it will be necessary

to train the Disassembler using samples from the training set (Figure 5.4).

However, in the case of original images, the source noise of their creation is unknown.

Therefore, we cannot utilize the mean squared error between the source and reconstructed

noise as a loss function for the Disassembler. One potential solution is to input the

reconstructed noise to the trained generator, which should output an image resembling

the image at the input of the Disassembler. This idea can be applied not only to

Figure 5.4: Inverse Transformation - inference for original images
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Figure 5.5: Inverse Transformation - training phase with original images

Figure 5.6: Using Discriminator to test noise uniformity

generate adversarial images but also to images from the training set. Thus, the third

step of the Disassembler’s training phase could potentially follow this approach, Figure

5.5).

An alternative approach to evaluating the properties of the reconstructed noise,

rather than relying on MSE between the original and reconstructed noise, involves

the training of a GAN-Discriminator specifically, for this very task. By doing so, the

discriminator model serves as a form of noise critic (Figure 5.6).

When the Discriminator is trained to distinguish between the initial noise at the

Generator’s input and the noise after being processed by the Disassembler, and simulta-

neously the Disassembler is trained to make sure that the Discriminator cannot perceive

any difference, the result will be a Disassembler capable of converting adversarial

patterns into uniform noise and a Discriminator able to distinguish the reconstructed

noise from known adversarial patterns and other images.
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5.1 Generator utilizing uniform noise

GANs utilize pseudo-random values drawn from a standardized normal probability

distribution to generate adversarial patterns. As previously discussed, the proposed

anomaly detection approach operates on the principle that the inverse transformation

of the test image generates patterns from a uniform distribution. Hence, the Generator

network must be explicitly designed to produce adversarial patterns from a uniform

distribution. In Chapter 6.3, the initial attempt to use a uniform distribution on the

interval [0, 1] did not yield satisfactory results. The generated adversarial patterns

exhibited low variability not only for different realizations of the vector of pseudo-random

numbers but also for different classes. It was concluded that the variability of the

generated patterns is linked to the variability of the used pseudo-random numbers. The

variability of the generated images can be determined by the entropy of the distribution

from which the patterns are generated. To provide a point of reference, we will use a

random variable R with a normal distribution having a mean value of E(R) = a and

variance of D(R) = σ2, with a corresponding probability distribution density:

fR(x) = 1
σ

√
2π
e−

(x−a)2

2σ2 (5.1)

While the entropy of a continuous random variable increases to infinity, certain

distributions have a bounded definite integral, which can be directly interpreted as

entropy. The normal distribution is an example of such a distribution [181].

H(R) = −
∫ ∞
−∞

fR(x) ln fR(x)dx = −
∫ ∞
−∞

1
σ

√
2π
e−

(x−a)2

2σ2 ln 1
σ

√
2π
e−

(x−a)2

2σ2 dx = ln σ
√

2πe

(5.2)

For the sake of simplicity, we utilize the natural logarithm to express entropy in

[nat] units. It is worth noting that entropy is not dependent on the mean value, but

rather solely on the variance (or standard deviation - σ), as illustrated in figure 5.7.

It is worth noting that, unlike the entropy of discrete random variables, the entropy

defined like this may not be non-negative σ < 1√
2πe . Additionally, we can determine the

entropy of a random variable Q with a uniform distribution having a mean value of m

and an interval width of h, i.e., with the probability distribution density:
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Figure 5.7: The entropy of a random variable following a normal distribution, with the

standard deviation σ.

fQ(X) =


1/h, x ∈ [m− h/2,m+ h/2]

0, x /∈ ⌈m− h/2,m+ h/2⌉
(5.3)

H(Q) = −
∫ ∞
−∞

fQ(x) ln fQ(x)dx = −
∫ m+h/2

m−h/2

1
h

ln 1
h
dx = ln h (5.4)

It should be noted that the value of the integral outside the interval

x ∈ [m− h/2,m+ h/2] is zero. Furthermore, as with the previous example, the entropy

value for h < 1 may also be negative (Figure 5.8).

Figure 5.8: The entropy of a random variable with a uniform distribution, having an

interval of length h.

The difference of random variables can be expressed by calculating the difference between

their respective entropies:
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H(Q) −H(R) = ln h− ln σ
√

2πe = ln h

σ
√

2πe
(5.5)

The determining factor is the ratio x = h/σ, as depicted in Figure 5.9.

Figure 5.9: The difference of random variables with uniform and normal distribution

expressed by the difference of Shannon entropies

One possible approach to selecting a uniform distribution is to ensure that both

distributions have the same mean (m = a) and entropy (H(Q) = H(R)):

ln h = ln σ
√

2πe ⇒ h = σ
√

2πe (5.6)

For σ = 1, the interval’s width is h =
√

2πe ∼= 4,13273. It is important to note that

expressing the difference between random variables in terms of the difference between

Shannon entropies does not impact the difference in their respective mean values.

It is a reasonable expectation that the degree of dissimilarity in variability between

generated numbers should not be negative. This requirement is grounded in the notion

that any measure of dissimilarity should be a non-negative quantity. This requirement

can be fulfilled by Rényi information [182], which is also referred to as relative entropy

(differential entropy, Kullback-Leibler divergence, often used in Variational AE [127]).

H(Q ∥ R) =
∫ ∞
−∞

fQ(x) ln fQ(x)
fR(x)dx

fR(x) = ∅ ≈ hQ∥R(x) = ∅
(5.7)

The relative entropy in NAT s of the assessed random variable Q, which follows a

uniform distribution, with respect to the reference random variable R, can be expressed
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as:

H(Q ∥ R) =
∫ ∞
−∞

fQ(x) ln fQ(x)
fR(x)dx =

∫ m+h/2

m−h/2

1
h

ln
1
h

1
σ
√

2πe

(x−a)2
2σ2

dx (5.8)

H(Q ∥ R) = 1
2

(
m− a

σ

)2
+ 1

24

(
h

σ

)2

+ ln σ
√

2π
h

[nat] (5.9)

Entropy in „Shannon“ (binary logarithm):

H(Q ∥ R) =
1

2

(
(m− a)

σ

)2

+ 1
24

(
h

σ

)2

+ ln σ
√

2π
h

 log2 e [Sh] (5.10)

• Note 1:

lim
h
σ
→0
H(Q ∥ R) = lim

h
σ
→∞

H(Q ∥ R) = lim
m−a

σ
→∞

H(Q ∥ R) = ∞

• Note 2: relative entropy is not symmetrical, i.e.

fQ(x) ̸= fR(x) ⇒ H(Q ∥ R) ̸= H(R ∥ Q)

Up until now, a considerable amount of experience has been gained in working with GAN

networks that employ a normal distribution. However, for the proposed scenario, it is

important to utilize a uniform distribution. This brings up an interesting question about

when the relative entropy of a random variable that follows a uniform distribution will

be minimal compared to a reference random variable that follows a normal distribution.

The answer is given by the following statement:

The Theorem:

If a random variable Q follows a uniform distribution on an interval of length h and

has a mean of E(Q) = m, with respect to a reference random variable R that follows a

normal distribution with mean E(R) = a and variance E(R) = σ2, then the relative

entropy between them is minimal when both distributions have identical mean and

variance:

m = a,h = σ2
√

3

Proof. : Calculate the minimum relative entropy:

∂H(Q ∥ R)
∂m

= 0 → m = a

∂H(Q ∥ R)
∂h

= ∂

∂h

 1
24

(
h

σ

)2

+ ln σ
√

2π
h

 = 0 → h

σ
= 2

√
3
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The variance of a random variable with a uniform distribution on an interval of length

h is:

D(Q) =
∫ m+h/2

m−h/2

1
h

(x−m)2dx =
∫ h/2

−h/2

1
h
x2dx = h2

12

The uniform distribution with the lowest relative entropy with respect to the normal

distribution with variance D(R) = σ2 has an interval length of h = σ2
√

3 and a

variance of D(Q) = (σ2
√

3)2

12 = σ2 = D(R)

The minimum relative entropy magnitude is:

H(Q ∥ R)min = 1
2

(
1 + ln π6

)
∼= 0,1764852 [nat]

H(Q ∥ R)min = 1
2

(
1 + ln π6

)
log2 e

∼= 0,2546143348 [Sh]

The following is the relative entropy for the unit interval of the uniform distribution

x ∈ [0,1] with respect to the standardized normal distribution:

m = 1
2 , h = 1 → H = ln

√
2π + 1

4 + 1
24

∼= 1,2106[nat]

The equation 5.9 shows that uniform distributions with two different interval lengths have

the same relative entropy with respect to the normal distribution. For instance, centered

uniform distributions with two different interval lengths h1 ∼= 0,95808;h2 ∼= 6,966506.

have relative entropy H = 1[nat] with respect to the normalized normal distribution.

The following figures (Fig. 5.10, Fig. 5.11) depict the magnitude of relative entropy

using substitution:

x = m− a

σ
, y = h

σ
(5.11)

In the case of relative entropy with respect to the normalized normal distribution

(a = 0,σ = 1), the substitution variables directly indicate the parameters of the uniform

distribution x = m, y = h.
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Figure 5.10: Relative entropy of a random variable with a uniform distribution with

respect to a normal distribution

Figure 5.11: Relative entropy of a random variable with a uniform centered

distribution with respect to the normalized normal distribution

In order to comprehend the relationship between the variability of the created adversarial

patterns and the relative entropy of the reference and test noise, we assess the relative

entropy for the following combinations:

• 1. reference noise R has a normalized normal distribution, test noise Q has a

general uniform distribution.

H(Q ∥ R) =
∫ ∞
−∞

fQ(x) ln fQ(x)
fR(x)dx =

∫ m+h/2

m−h/2

1
h

ln
1
h

1√
2πe
−x2

2

dx, (5.12)

H(Q ∥ R) = m2

2 + h2

24 + ln
√

2π
h

, [nat]. (5.13)

• 2. reference noise R has a normalized normal distribution, test noise Q has a
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normal distribution

H(Q ∥ R) =
∫ ∞
−∞

fQ(x) ln fQ(x)
fR(x)dx =

∫ ∞
−∞

1
σ

√
2π
e−

(x−a)2

2σ2 ln
1

σ
√

2πe
− (x−a)2

2σ2

1√
2πe
−x2

2

dx,

(5.14)

H(Q ∥ R) = 1
2(a2 + σ2 − 1) + 2

(
a

σ

)2
+ ln 1

σ
, [nat]. (5.15)

• 3. reference noise R has a uniform distribution with zero mean and standard

deviation equal to one, test noise Q has a uniform distribution

H(Q ∥ R) =
∫ ∞
−∞

fQ(x) ln fQ(x)
fR(x)dx =

∫ r+

r−

1
h

ln
1
h
1

2
√

3
dx (5.16)

r+ = min(m+ h/2,
√

3), r− = max(m− h/2,
√

−3),

H(Q ∥ R) =


∆
h

ln 2
√

3
h
,∆ > 0

0, ∆ ≤ 0
, [nat],∆ = r+ − r− (5.17)

For uniform distributions, the relative entropy is zero when the distributions are identical,

but also when the intervals with non-zero values do not intersect. This general rule

applies to the probability distribution’s densities, the test or reference that generates

the random variables, which acquire non-zero values at finite intervals or unification of

finite sub-intervals.

Tables 5.1, 5.2, and 5.3 show calculated relative entropy between different data

distributions. They provide examples of how we can control the variability of the

produced adversarial patterns since changing the input data distribution to any other

than training has a direct impact on image fidelity and diversity. It is done by modifying

the mean value E(Q) and standard deviation σ. Sampling the input noise vectors from

two different distributions that have a relative entropy close to zero produces images of

similar quality (see Figure 6.6)
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E(Q)|σ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

10 5 051,13 1 300,50 605,75 362,54 250 188,93 152,18 128,43 112,26 100,81

5 1 263,63 325,50 151,58 90,67 62,5 47,26 38,15 32,34 28,46 25,81

0 1,129 0,496 0,191 0,043 0 0,038 0,144 0,310 0,532 0,807

-5 1 263,63 325,50 151,58 90,67 62,5 47,26 38,15 32,34 28,46 25,81

-10 5 051,13 1 300,50 605,75 362,54 250 188,93 152,18 128,43 112,26 100,81

Table 5.1: Relative entropy between the generalized normal distribution and the

normalized normal distribution

E(Q)|σ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

10 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 -0,020

0 1,609 0,916 0,511 0,223 0 -0,152 -0,240 -0,294 -0,327 -0,347

-5 0 0 0 0 0 0 0 0 0 -0,020

-10 0 0 0 0 0 0 0 0 0 0

Table 5.2: Relative entropy between the uniform distribution and the test uniform

distribution

E(Q)|σ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

10 51,31 50,67 50,37 50,22 50,18 50,21 50,32 50,49 50,71 50,98

5 13,81 13,17 12,87 12,72 12,68 12,71 12,82 12,99 13,21 13,48

0 1,31 0,67 0,37 0,22 0,18 0,21 0,32 0,49 0,71 0,98

-5 13,81 13,17 12,87 12,72 12,68 12,71 12,82 12,99 13,21 13,48

-10 51,31 50,67 50,37 50,22 50,18 50,21 50,32 50,49 50,71 50,98

Table 5.3: Relative entropy between the normalized normal distribution and the test

uniform distribution
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Table 5.1 presents the relative entropy values between the generalized normal

distribution and the normalized normal distribution. Meanwhile, Table 5.2 illustrates

the symmetry of the distributions in relation to the mean value E(Q). We emphasize

that the same variability does not necessarily translate to identical patterns in the

generated images. Table 5.3 highlights the variable correctness by indicating zero

entropy for identical distributions.

5.2 Through controllable generation to anomaly de-

tection

As previously mentioned, the generator model has a different objective from the

discriminator, which functions as a classifier or critic. The primary goal of the generator

is to represent various classes in general, rather than just distinguish between them. In

terms of probabilities, the generator aims to determine p(x|y), which is the likelihood

that a generated sample (y = class) results in the corresponding image x. However,

the output space for each possible class is extensive, making the generator model

particularly challenging. This task can be much more challenging than discrimination,

particularly given the increasing complexity of training data. It is straightforward to

differentiate between two potential classes, but comprehending all the characteristics

of every potential variation of the class is an entirely different task. However, if a

generator model can achieve its objective after training, it is feasible to start producing

data samples of the possible classes included in the training dataset.

5.2.1 Truncation trick in GANs as inspiration

The noise vector z plays a crucial role in ensuring that the generated images from the

same class y are diverse, akin to a random seed. This vector is randomly generated,

typically by sampling random numbers from a uniform distribution between 0 and 1 or

from a normal distribution, denoted as z ∼ N(0,1). Here, the value 0 represents the

mean of the normal distribution, while 1 denotes its variance. In practice, the vector z

is usually larger than a single value to allow for more combinations, and there is no

predetermined optimal size. However, a common practice is to set its dimension to at

least 100. Some implementations may use powers of 2, such as 128 or 512, but the
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choice is arbitrary and primarily depends on the requirement for a large number of

possibilities.

During our experiments with different noise vectors and distributions, we propose a

new method for training inverse transformations based on a well-known concept used

to fine-tune the output of a generator network. This concept is called the truncation

trick, and it’s essential to understand it as a way to balance the quality and diversity

of image samples. The truncation trick works by controlling the distribution of the

noise vector randomly sampled by the generator network. Instead of using a standard

normal distribution, we use a truncated normal distribution. The truncation threshold

parameter determines the range of values accepted in the distribution. A lower truncation

threshold results in more diverse but lower-quality generated samples, whereas a higher

truncation threshold results in higher-quality but less diverse samples. It’s important to

note that during training, the model becomes more familiar with noise vectors within a

standard deviation from the mean of the normal distribution. Therefore, it’s likely to

model these areas more accurately, resulting in realistic but less diverse image samples.

This is the trade-off between fidelity and diversity. In other words, by adjusting the

truncation threshold, we can control the balance between the quality and variety of the

generated image samples.

Figure 5.12: Example of truncated normal distribution [183]

Based on the so far theory of GANs and according to the truncation trick, modeling

the input distribution has a direct impact on the output prediction (generated image).

In order to generate both altered adversarial images and realistic ones, it is possible to

broaden the concept of the truncation trick as a truncation and extension throughout
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the data distribution. Thus, this approach allows generating of synthetic anomalies or

authentic fakes from original data based on input data. More specifically, with the aid

of the cGAN model (used in this work), it is feasible to purposefully create a highly

varied set of altered anomalous images or to produce realistic samples from the training

data distribution space.

As the input noise vector z is generated from a normal distribution, the model

is more likely to encounter z values within one standard deviation from the mean

compared to those at the tails of the distribution. This phenomenon occurs during the

network’s training process. It is important to note that the model does not encounter

any samples of z outside the distribution. Consequently, during training, the model

becomes familiar with certain noise vectors and tends to generate more realistic results

in those areas. However, as the model approaches the outskirts of the distribution, the

realism of the images begins to decline, and the diversity of images increases.

In the event that an end-user inputs a noise vector sampled from a data distribution

that is considerably distant from the training distribution, the network will generate

adversarial images that differ greatly from what the user intended. This occurs because

the model was not trained on this type of distribution. When the input noise is sampled

significantly far from the training distribution, the resulting images appear as skewed

artifacts without any discernible pattern. As the samples move closer to the training

distribution, the output images take on better-defined shapes. At the tails of the training

distribution, exists a threshold event whereby realistic images degrade to anomalies that

lack clear interpretation and vice versa. However, this is not a straightforward boundary

per se. There are different approaches to how is possible to set these boundaries within

the data. The experimental approach based on the classification results from humans

and Neural nets is proposed in this paper [184]. Another approach is to treat the

training data distribution as a unit hypersphere. The Gaussian distribution is also

called a spherical normal and denoted as z ∼ N(0, I) where the I represents the identity

matrix and it means the variance is 1 in all dimensions.

The idea of detecting anomalies by placing the original data inside a unit hypersphere

while anomalies are outside this hypersphere is based on the concept of distance-based

anomaly detection. The main argument behind this approach is that in many cases,

normal data points are expected to be tightly clustered around a central point or region,
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while anomalies are expected to be far away from this central region. By placing the

normal data points inside a unit hypersphere, we can define a boundary beyond which

any data point is considered an anomaly.

Figure 5.13: Illustration of data distribution space

The main argument behind this approach is that in many cases, normal data points

are expected to be tightly clustered around a central point or region, while anomalies

are expected to be far away from this central region. By placing the normal data points

inside a unit hypersphere, we can define a boundary beyond which any data point is

considered an anomaly.

This approach has several advantages, including:

• The method can be applied to a wide range of data types and can be easily

adapted to different dimensionalities.

• The boundary of the unit hypersphere provides a clear and intuitive interpretation

of what is considered normal or anomalous.

However, there are also some limitations to this approach. For example, the

hypersphere method may not work well with data that does not exhibit a clear central

region, or in cases where the anomalies are not well separated from the normal data.

Additionally, the method assumes that the normal data points are distributed uniformly

within the hypersphere, which may not always be the case in practice. In the specific
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scenario of synthetically created data by the generator model, the last problem is the

most important.

5.2.2 Probability distribution of Radius

If the distribution of points in the hypersphere is to be uniform throughout the entire

volume, there must be the same probability of a point falling into each intermediate

sphere in which the inner sphere has a radius r and the outer sphere r+dr. The volume

of the intermediate sphere is

∆Vn(r) = Sn(r)dr = cnr
n−1dr (5.18)

where Sn(r) is the surface of an n-dimensional hypersphere with radius r and:

cn = nπ
n
2

Γ(n2 + 1) (5.19)

Let φ(r) be the density distribution of the probability of the appearance of a radius

with the value r ∈ [0,1]. If the guide acquires a value from the interval ρ ∈ [r,r + dr],

then the point falls into an intermediate area of volume S(r)dr. Since these phenomena

occur simultaneously (the first phenomenon implies the second), the probabilities of

their occurrence are proportional, i.e. φ(r)dr = kSn(r)dr, i.e. φ(r) = kSn(r), where k

is the normalization constant based on the condition:

ϖ(r) = kSn(r) = n

cn
cnr

n−1 = nrn−1,r ∈ [0,1] (5.20)

Figure 5.14: Density distribution of radius for a)m=3 and b) m=52

Figure 5.14 points out the consequence of the curse of dimensionality. To achieve

uniform distribution, the vast majority of points are generated at the outer rim of the
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hypersphere. Therefore, the requirement of equal distribution is unrealizable. (This

domain needs further analysis and investigation in order to overcome this problem.)

However, there is an option to sample the data from the unit hypersphere by slicing

from this region, not to sample from the entire space. It is possible to do this by using

a uniform distribution with an interval close to the training distribution (the relative

entropy between these distributions is the lowest - see Chapter 5.1). Given the ability to

manipulate the generative process of anomalies and authentic fakes, it becomes feasible

to train an inverse transformation - a Disassembler model, to reconstruct the noise

from images based on their origin, representing either the inner or outer space of the

hypersphere. (see Figure 5.15)

Figure 5.15: The Training phase of Inverse Transformation with the use of trained

Generator model from GAN

Figure 5.16: The phase of testing the inverse transformation with diverse data types.

Upon successful completion of the training, the inverse transformation must have
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the capability to reconstruct the noise from the input image in order to represent its

origin. The location of the reconstructed image, whether it is situated inside or outside

of the hypersphere, can be used to differentiate between the anomalies and the original

images. If the input image is sourced from a dissimilar dataset or is greatly distorted,

the distance from the center of the hypersphere should be greater compared to an image

that bears a closer resemblance to the original.
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Chapter 6

Deep Generative Detection:

Experimental Evaluations

In the initial stages of anomaly detection research, our focus was primarily on verifying

the practical use of generative models for detecting anomalies using conventional meth-

ods. For the majority of our deep learning experiments, we used the MNIST[158] and

Cifar10[185] database, which is well-suited for testing various research techniques and

methods on real-world data with minimal pre-processing and formatting requirements.

It is crucial to be able to assess the quality of generated data with ease when employing

generative models.

6.1 Autoencoder-based anomaly detection

The initial experiments in the realm of anomaly detection utilizing Deep Generative

Models (DGM) involved the application of Autoencoders (AE) to identify anomalous

data samples within a test data input. AE’s anomaly detection mechanism is founded

on the principle of utilizing the reconstruction error generated by the AE as a metric

for detection. Specifically, we trained an Autoencoder using the MNIST dataset.

Upon completing the training process, we proceeded to introduce three different data

sources into the AE model. Among these sources, we designated two as anomalous and

then closely monitored the resulting impact on the computed reconstruction error. The

fundamental assumption was that the original database would produce a comparatively

smaller reconstruction error, owing to the fact that it had been used for training
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purposes. The CIFAR-10 and Fashion-MNIST databases were chosen as our sources of

anomalous data, given that we anticipated a higher level of AE reconstruction error due

to the fact that the model had not been previously exposed to this data. As it turned

out, our assumption was indeed validated. Figure 6.1 illustrates the differences in the

reconstruction error generated from the anomalous CIFAR-10 and Fashion-MNIST

databases as compared to the original data. Notably, the reconstruction error for the

anomalous data sources is found to be significantly greater. Furthermore, the range of

these errors is noticeably larger, which enabled us to successfully distinguish anomalous

samples from genuine ones. This outcome has confirmed the validity of our initial

assumption.

Figure 6.1: Test phase - Histogram of reconstruction errors during outlier detection /

MNIST

We have conducted this experiment two more times with a slight variation, wherein

we trained the AE model on the data sourced from CIFAR10 and Fashion-MNIST, both

of which were previously designated as anomalous. In doing so, we were able to observe

how the process of anomaly detection operates with data of varying complexity.

Based on the obtained histograms (Fig. 6.2), it is evident that the efficacy of anomaly

detection is contingent on the complexity of the original image and the anomalous input.

For instance, when the AE model is trained using the most complex CIFAR10 database,

detecting less-complex outliers can be challenging, although we can still establish a clear

boundary between the original and anomalous data. A similar outcome is observed
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Figure 6.2: Test phase - Histograms of reconstruction errors during outlier detection /

CIFAR-10(right) and F-MNIST(left)

when using the AE model trained on the F-MNIST database. In this instance, while

the reconstruction error for original data is still the lowest, distinguishing between

originals and anomalies is more difficult, particularly when compared to the MNIST

database which we designated as the anomalous set in this instance. As the complexity

of the original data exceeds that of the anomalous input, the AE model faces increasing

difficulty in distinguishing between original and anomalous data. When the model is

capable of reconstructing complex images with a high degree of accuracy, it is reasonable

to expect that relatively simpler images can also be reconstructed with minimal errors,

even if they were not seen during the training phase. Conversely, reliable anomaly

detection is observed when the anomalous input is more complex than the original data.

These results were also published in the paper [89] (see List of Publications at

the end of work). The article focused on the topic of anomaly detection using deep

generative models.

6.2 GAN-based anomaly detection

We conducted similar experiments with Generative Adversarial Networks, using a

discriminator to differentiate between genuine and anomalous data. Once again, the

datasets consisted of MNIST, F-MNIST, and Cifar10, and we trained the GAN network

separately for each database. This allowed us to assess the effect of image complexity

on anomaly detection, just as we did with the Autoencoder.

Our hypothesis was that a well-trained GAN network generator would produce
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authentic fake images, which the discriminator would classify in the same way as genuine

data. Any other data that the GAN network did not encounter during training would

be automatically identified by the discriminator as fake or anomalous. As shown in

Figure 6.3, our assumption proved to be correct. The GAN network can distinguish

between genuine and anomalous data, particularly with less complex data such as the

MNIST database.

Figure 6.3: Histogram of the MNIST-trained Discriminator evaluation across various

image datasets

If we replicate the experiments and use Cifar10 or F-MNIST as training sets, the

results are less dependable. As seen in Figure 6.4, it becomes increasingly difficult

to distinguish between a complex training set and simpler anomalous data as their

relative complexity levels become more disparate. It is worth noting that various GAN

types are available, and they may yield better results in outlier detection by utilizing

this conventional approach (employing the trained Discriminator’s intrinsic ability)

compared to the base ’vanilla’ GAN version.

These results were also published in the paper [89] where the article focused on the

topic of anomaly detection using deep generative models.
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Figure 6.4: Test phase - Cifar10 trained Discriminator(right)/FMNIST trained

Discriminator(left) for outlier detection

6.3 Controllable Generation:

Experiments and Discussion

We conducted additional experiments in the field of anomaly detection to validate our

previous assumptions and proposed a detection architecture that would not rely on data

complexity for its efficiency. Our focus was on comparing individual data characteristics

and utilizing significant differences between anomalous and genuine data characteristics

as a metric for detecting anomalies. The proposed architecture is described in more

detail in Chapter 5.

The basis of this concept lies in Hawking’s definition of outliers [84]. Assuming

that the counterfeit samples bear a resemblance to the original ones, and we possess

knowledge of the fabrication process for the forged images, then it is impossible for the

anomalies to have originated from the same process. Naturally, testing every possible

input seed for the generator to confirm similarity with the test image is unfeasible.

Instead, we assess the input-output pairs in reverse. To achieve this, we train the

inverse function to the generator - Inverse Transformation model.

6.3.1 Generator model based on Uniformity

The training of GANs involves leveraging a normal distribution that benefits from

a non-uniform distribution of the seed radius. In this case, seeds with smaller radii

are employed more frequently during training, resulting in generated images that are

more closely aligned with the training images. As a consequence, there may be a fuzzy
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boundary between anomalous and authentic images. To address this issue, we discuss

the proper training of the GAN network using uniform noise in Chapter 5.

Our goal was to achieve comparable training effectiveness with the use of a normalized

normal distribution. To validate our theory, we conducted the following experiments.

We trained a GAN network with uniform noise sampled from a unit interval [0,1]. Upon

successful training, we observed that the generated fakes exhibited low variability, not

only across different implementations of the vector of pseudorandom elements but also

across different classes (Figure 6.5).

Figure 6.5: GAN model trained on Uniform distribution - Images generated from the

uniform distribution with the interval [0; 1]

Because of this, we opted to use uniform noise with the same parameters as the

normalized normal distribution - that is, with zero mean and standard deviation of

one - which is commonly used in GAN training. Our experiments revealed that by

manipulating the mean value and interval length of the uniform distribution, we could

affect the variability of the generated patterns. Specifically, we could generate patterns

that closely resembled the training set, as well as patterns that deviated significantly

from the original data yet remained recognizable to human observers. By adjusting
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the mean value and interval length of the uniform distribution, we could train a GAN

network as effectively as we could with the normal normalized distribution, with similar

results in terms of image quality. The best results were achieved when the relative

entropy between a standardized normal distribution and employed training uniform

distribution was close to zero (see Figure 6.6). The initial input noise from the uniform

distribution on the unit interval [0,1] contained minimal information, which resulted

in patterns with low variability. By changing the interval length of uniform noise

we expand the information content, and we trained the GAN network to perform

comparably to a model that used Gaussian noise during training.

Figure 6.6: GAN model trained on Uniform distribution a) Images generated from the

standard normal distribution z ∼ N(0,1)

b) Image generated from the uniform distribution with the interval [−
√

3;
√

3]

Figure 6.6 displays the images generated by the GAN network that was trained

using a customized uniform distribution but images were generated during inference

from both types of input noise (Figure 6.6 a) and b)). Also, it provides examples of

how we can control the variability of the produced adversarial patterns by changing the

length of the uniform distribution interval. This ranges from patterns that resemble

126



the training set patterns to patterns that greatly differ from the training set patterns

but are still recognizable to humans(depending on relative entropy between training

and testing distributions).

Although we used the term "image similarity", its quantitative assessment is an open

question with numerous approaches. The application of relative entropy (Chapter 5.1)

is one of them. As an alternative, we also suggest utilizing the recognition system’s

confidence - Discriminator (see Chapter 6.3.2) in identifying the adversarial pattern to

evaluate its similarity with the training set patterns. This means, such a system needs

to be trained on original data. Overall the uniformity noise test experimentation did not

deliver futile results (Chapter 6.3.2) in terms of accurate detection of outliers. Therefore

we devised a different approach based on the gathered experiments and experiences

with input noise manipulation. This approach is investigated in Chapter 5.2 and the

main idea is about changing the way how we train the Inverse Transformation model.

6.3.2 Uniformity as anomaly indicator

The main idea behind these uniformity tests was that if the genuine fake images

are created from independent uniformly distributed pseudorandom seed then genuine

fake images at the input of inverse transformation must give independent uniformly

distributed random numbers.

The experiment was carried out in two steps. Initially, we trained the GAN network

using the MNIST training data. After successful training, we used the Generator model

from GAN in the next design (see Figure 6.7) with the proposed Inverse Transformation

- the Disassembler (as outlined in Chapter 5). The training of the inverse transformation

was evaluated using the mean squared error (MSE) between the input noise and its

reconstructed counterpart (Disassembler output).

Following training, the Disassembler model was able to accurately decompose the

fake images into an output noise vector that was almost similar to the input noise

for the given pattern. However, for original images, the reconstructed output noise

vector cannot be compared to the input noise since we lack such information (origin

of fabrication unknown). This is in line with the idea mentioned in Chapter 5. Our

working hypothesis was that if we understand the mechanism of creating fake images

from uniform noise, and we also comprehend the process of reconstructing uniform
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Figure 6.7: Generator-Inverse Transformation design for outlier detection

noise from fakes, then even for original images that closely resemble fakes, the same

degeneration process would lead to uniform noise.

The crux of the matter is statistical tests that aim to determine whether the

reconstructed noise consists of independent random variables with a uniform distribution.

Hence, our primary interest was in the characteristics of the output noise, as mentioned

above, and whether they were comparable to the characteristic of input noise.

We employed the Chi-squared test for testing the uniformity of noise vectors. This

statistical test is specifically designed to determine whether a given sample of data is

derived from a specified distribution, such as a uniform distribution. When testing for

uniformity of noise vectors, the null hypothesis would posit that the noise vectors are

uniformly distributed, while the alternative hypothesis would suggest otherwise. The

test statistic, H, is calculated and then compared to the critical value of the chi-squared

distribution. If the test statistic is greater than the critical value, the null hypothesis H0

is rejected, indicating that the noise vectors are not uniformly distributed, indicating

outliers.

H =
k∑
j=1

(Xj − npj)2

npj
∼ χ2(k − 1) (6.1)

where k is the number of classes, pj is theoretical probability 0.1, n is the number of

elements in the tested data sample, and H test statistic.

The null hypothesis under consideration can be formulated as follows:

H0 - the reconstructed noise vectors (data) originate from a uniform

distribution, thus data are not anomalous in nature.
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The critical value of the chi-squared distribution χ2 is 16.9.

In every test case, the test statistic H is compared against the critical value of the

chi-squared distribution to evaluate whether the reconstructed noise vectors exhibit

anomalies.

Figure 6.8: The statistical test results for uniformity: the input noise on the left and

the reconstructed noise on the right.

After training the Disassembler, statistical tests were conducted, which revealed that

the reconstructed noises from the generated fake patterns did not pass the uniformity

test. Therefore, the Disassembler was not effectively trained to learn and preserve the

characteristics of the input noise, as depicted in Figure 6.8. In addition, Figure 6.9

shows that the Disassembler trained in this way could not correctly decompose the

original images into the output noise that would pass uniformity tests. These results

indicate that the inverse transformation should not be trained solely on fakes created

by the generator, but also on original data, as explained in Chapter 5. Moreover, the

loss function MSE is not sufficient to accurately capture the data distribution during

training, especially on the tails of the distribution, because the error is averaged and

the training focuses more on average values than on individual ones.
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Figure 6.9: The statistical test results for decomposed original data are shown on the

left, while the results for the adversarial fakes are on the right.

Scenarios Test Statistic H Decision

1. Input Noise 1.337 Accept null hypothesis

2. Authentic FMNIST fakes 68 Reject null hypothesis

3. Original FMNIST images 484 Reject null hypothesis

4. Anomalous MNIST images 432 Reject null hypothesis

Table 6.1: The statistical analysis for hypothesis H0 - inference of FMNIST trained

Inverse Transformation

Based on the summary presented in Table 6.1, it can be observed that the test

statistics for Scenarios 2, 3, and 4 are higher than the threshold value H. This finding is

significant as it indicates that the reconstructed noise vectors in these scenarios exhibit

anomalies. However, only the 4th scenario was real anomalous input. At last, scenario

No.1 passed the test which confirm that we used the truly uniform noise during training

the inverse transformation.

Discriminator as a critic to assess the image similarity

As described in Chapter 5, training the Inverse Transformation on original data re-

quires an alternative architecture, as the original noise vector that created the data is

unknown, rendering the MSE loss unusable. To address this issue, we proposed a new

architecture with a Discriminator, which is trained to distinguish between the original
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noise input and the noise output from the Disassembler. The Disassembler is then

trained to produce output noise that is indistinguishable by the Discriminator. The

objective is to achieve a trained Disassembler that can transform both adversarial and

original data into uniform noise, while the Discriminator can distinguish between the

reconstructed noise from adversarial patterns and other images. Unfortunately, our

hypothesis was not confirmed in this experiment. The binary cross-entropy was used

as the cost function, but the implemented function takes the output values directly

from the Discriminator (single output value) rather than the probability distribution.

As a result, during training, the Disassembler pushed the output noises to the values

of 0 and 1 with a probability of 0.5, which hindered the correct reconstruction of the noise.

Disadvantages of Uniform distribution

During our experiments, we faced challenges while training GAN networks, which is

a crucial step in the proposed detection process. Training GAN networks is generally

unstable and difficult because it requires solving the Nash equilibrium (stable equilibrium

between the generator and discriminator). Moreover, the complexity of the task affects

the level of training difficulty. In the above-mentioned case, we trained the GAN

network using uniform noise, which is not commonly used for GAN training. During

training, we encounter the usual issues like a mode collapse problem ( more about in

paper [186]) but also problems specific to using uniform noise - low diversity in the

results.

To address this, we proposed an improved network architecture with two discrimina-

tors. We added an extra output with a resolution of 14x14 to the generator, which was

combined with the original output with a size of 28x28. Each discriminator evaluated

one output of the generator, and the training process continued as usual. Additionally,

we created a secondary copy of the original training database with a resolution of 14x14

to provide auxiliary information at a lower resolution for the second Discriminator,

which helped the model to train more effectively. With this modification, we achieved

satisfactory results in training the GAN network. There are also other possibilities like

the adoption of some of the established methods for enhancing training stability, as

detailed in this paper [187].

Our experimentation focused on uniform noise due to its distinctive characteristics,
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which allowed us to effectively assess the data as outliers or originals. Moreover, the

n-dimensional uniform distribution is notable for its representation of the hypercube,

which possesses clear boundaries between anomalous and original data. These findings

were derived from a series of experiments exploring various data distributions as part

of the fabrication process for images. In order to employ the GAN network trained on

the normalized normal distribution, which is more convenient and effective for training

purposes, it would be more appropriate to use the concept of a hypersphere. While it

is possible to train the model on a normal distribution and subsequently use a uniform

distribution with a relative entropy close to zero for image fabrication during inference,

this approach has limitations. In rare cases, the generation of samples from the corners

of the hypercube may result in heavily distorted images, although they should still be

considered non-anomalous, because of hypercube boundaries (see Figure 6.10).

Figure 6.10: Simplified scenario of generating an anomalous image of class 1 still in the

region of hypercube

Figure 6.10 represents the above-mentioned scenario where the combination of x1

and x2 results in an adversarial image that should be considered anomalous. Therefore,

the hypersphere boundaries are better suitable for distance-based anomaly detection.
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6.3.3 Hypersphere Distance-based Anomaly Detection

Given our previous assumption that the counterfeit samples bear a resemblance to

the original images, and that we possess knowledge of the fabrication process used to

create the forged images, it is clear that any anomalies could not have originated from

the same process. Again, by training the Inverse Transformation model, which is the

inverse function of the generator, we can detect these outliers that have been produced

through different fabrication processes.

It is important to note that if the reconstructed responses for the training samples

have their spheric coordinates within the unit hypersphere, any seeds obtained from

anomalous samples must be located outside of it. With this aim, we train the inverse

transformation model (see Chapter 5.2).

Metrics Inverse Transformation

Detection Accuracy (%) 41.73

Reconstruction MSE metric 1.0859

Table 6.2: Evaluation of Inverse Transformation based on hypersphere distance

The anomaly detection experiments were conducted using the MNIST dataset.

The latest findings of the inverse transformation training (refer to Table 6.2)) exhibit

some advancements over the uniformity concept stated in Chapters 6.3.1 and 6.3.2.

Nonetheless, the results lack reliability in detecting anomalies, and this may be attributed

to the inadequacy of MSE loss as a sole loss function in this particular situation. A

suitable substitute for the loss function could be the Chebyshev distance. Additionally,

it is possible to implement the recursive reconstruction strategy to enhance the Inverse

Transformation training. It could be done by the incorporation of a discriminator model

acting as a critic based on the classification of images forged from reconstructed noise

vectors generated by the Inverse transformation model.

Another problem that may arise when replicating this approach on more complex

datasets. It could pose a challenge in training GAN, particularly in the aspect of

hyperparameter tuning. To address this scalability concern, it is viable to modify the

generative source by replacing the GAN’s generator model with a diffusion model [188].

These models are more robust and exhibit superior performance in handling complex
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data.

Diffusion models are constructed using basic image-denoising networks that minimize

a convex regression loss (like L1). Unlike in the GAN setup, there is no minimax

involved. Furthermore, GANs must generate a complete image in the forward pass,

and in a way, they lack the capacity for image refinement during the generation

process. In contrast, diffusion is a gradual and iterative approach that converts noise

into an image incrementally. Therefore diffusion models have superior mechanisms

for directing the image toward the desired outcome [189]. Similarly, we can adopt

this process in our inverse transformation and iteratively reconstruct the input noise,

which offers more control over the fabrication process, yielding potential benefits. To

implement this concept, we take an iterative approach during image fabrication, which

involves incorporating a U-net-like architecture between the generator model and inverse

transformation (disassembler). This approach allows us to simulate this process to a

certain extent within the architecture. Nonetheless, the domains of GAN and diffusion

detection require more in-depth investigation thus, it is the area for further research.

6.4 Conclusion

The field of anomaly detection has been subjected to extensive research. Nevertheless,

we do not consider the achieved results to be sufficient.

We conducted initial experiments in the field of anomaly detection using DGM,

including the Autoencoder model and the GAN network. Our objective was to identify

anomalous data samples in the data. In anomaly detection using AE, we evaluated the

reconstruction error of the tested pattern as a metric for detection. The reconstruction

error compared the input and reconstructed samples against each other, with the

assumption that the original images would yield a smaller reconstruction error due

to the AE’s training on this data. Conversely, for GAN networks, we assumed that

a well-trained generator would generate authentic fakes that the discriminator would

classify similarly to the original data. Any data samples that were not available to the

GAN network during training would be automatically evaluated by the discriminator as

fakes, or anomalies. Our assumption was partially confirmed. However, the effectiveness

of anomaly detection using standard DGM models, such as AE and GAN, depends on
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the complexity of the original data and anomalies. The more complex the original data

and the simpler the anomalous counterparts, the more difficult it is for DGM models to

distinguish between these data.

For our next research, we have decided to focus on comparing the mechanisms

of individual image data formation to detect anomalies by considering a significant

difference in the noise used to create anomalous data from the characteristics of the

original data as a metric. This approach is aimed at avoiding the problem of unstable

anomaly detection that may arise due to data complexity. Our experiments consisted of

two steps. First, we trained the GAN network on the training data, and upon successful

training, we used the GAN network generator along with the Disassembler to reverse

the decomposition of images into noise. We then compared the input and output noise

based on Mean Squared Error (MSE) for training the Disassembler. We tested for

anomaly patterns using statistical tests to determine whether the reconstructed noise

consists of independent random variables with a uniform distribution. The experiments

did not yield satisfactory results.

Lastly, during our experiments on relative entropy between uniform and normal

distribution, we trained the GAN not only with normal distribution but also the uniform

noise as an input. We observed poor convergence, and we could not achieve the same

quality of results as with normal normalized noise. Therefore, we introduced a cascade

(ladder) network architecture with two discriminators and two outputs for the generator

model. Each discriminator evaluated one output of the generator, adding auxiliary

information at a lower resolution, which facilitated model training. This modification led

to better results, but they were still not comparable to those obtained with normal noise.

Hence, we focused on training the GAN network with uniform noise to achieve effective

training as with the normal normalized distribution. We verified the hypothesis that the

variability of generated images is linked to the variability of generating noise. We used

uniform noise with the same parameters as the normal distribution (with an interval

corresponding to normalized normal distribution parameters - zero mean and unit

standard deviation) and managed to influence the variability of the generated patterns

by adjusting the mean value and width of the interval of the uniform distribution.
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Chapter 7

Conclusion and Contribution

The main objective of this thesis was to contribute to the explainability of the deep

learning systems domain. The non-linear recognition systems have demonstrated the

ability to produce precise predictions, exceeding even human performance. Nonetheless,

due to its intricate non-linear structure, the system is perceived as an inscrutable "black

box" by the user, who is unable to gain knowledge from it. This manuscript contends

that to facilitate user learning, an artificial recognition system must emulate the human

cognitive approach to recognition.

This approach primarily explains the epistemological triangle, which deconstructs the

recognition process into three components: acquisition of knowledge from data, model

building, and evaluation of decisions. Thus, it is necessary to relinquish the primary

advantage of machine learning, which involves building models directly from observed

data. The architecture of these non-linear classifiers should be divided into a feature

extractor and a classifier parts. The features represent the necessary data knowledge

for building a robust model. However, explaining the features is a complicated process,

much like mining knowledge from the observed data, and is essentially scientific in

nature. While this process is reinforced by numerous scientific tools, it is necessary to

develop those that streamline the interpretation of features. The proposed methods in

this work detail the conception of an experimental tool intended for this very purpose.

The process of inferring decisions from actual data, based on acquired knowledge, is a

rigorously logical procedure. This is due to the fact that the current prevalent tool for

constructing models, the digital computer, is founded upon the principles of two-valued

logic. Therefore, even an explainable classifier must be able to form decisions in the
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form of a logical expression. However, since we recognize diverse images in a single

class, we used fuzzy logic for classification. In the result, the user learns which features

are relevant (represented by a tertiary codeword) and to what extent they contribute

to the degree of truthfulness of the classification.

In summary, post-hoc explainability enables users to acquire knowledge from non-

linear recognizers and extract novel insights from the features uncovered by neural

networks through deep learning. The concept of this work is divided into explainability

of classification and interpretability of features, because mining of input data may result

in new features that lack direct interpretability within the relevant application domain.

The supplementary objective of the thesis was a contribution to the anomaly detection

domain. Based on an evaluation of the current state of the field, we have determined

that the explainability mechanism fails to consider the possibility of inputs that deviate

significantly from the training dataset. Consequently, the explanation methods may

attempt to provide explanations for the outliers, without informing users of the incorrect

usage of recognizers, which is a classification of anomaly. To address this issue and

protect users, we decide to incorporate an anomaly detector as an integral component

of the explainability system.

In the last concept, we changed the training approach for the proposed inverse

transformation - the Disassembler, instead of the uniformity test we used the concept

of unit hypersphere where the original data lies inside the sphere while the outliers are

further away from the center - outside of it. With the use of a generator model from

the GAN network we generate anomalies or authentic fakes in a controllable fashion

- by sampling directly from the region of the hypersphere or outside of it. Then the

Disassembler model was trained to reconstruct the created images as close as possible to

their original counterparts (input noise vectors). By training the inverse transformation

learns the underlying concept of distance between different types of images. Thus,

during the test phase, the original images and authentic fakes should be reconstructed

near the center of the hypersphere and vice versa.

Furthermore, we encountered difficulties when training GAN networks due to their

unstable nature. The experiments on anomaly detection were performed on a simple

MNIST dataset. Replicating this concept on more complex datasets like ImageNet
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could be a problem in terms of training GAN on such datasets, more specifically in

terms of hyperparameter tuning. To resolve this scalability issue, it is possible to change

the generative source, i.e. replace the generator model from GAN with a diffusion

model. These models are more stable and have better performance on complex data.

In summary, the main findings of the thesis are:

1. Explainable decision-making must follow the human mode of decision-making as

given by the epistemological triangle.

2. According to point 1, the recognition system must be divided into feature extrac-

tion and classification parts.

3. The explanation of extracted features is a process of exploration in which people

acquire knowledge about features in the same way that science acquires knowledge

about nature. This process must be supported by appropriate tools.

4. The explanation of the classification must be based on logic (binary or fuzzy).

5. Zadeh’s fuzzy logic with features dividing into positive relevant, negative relevant,

and irrelevant values gives a proper frame for the explanation of the obtained

classification.

6. Features ’fuzzification’(transforming) affects the fitting of explainable classes with

black-box predictions. Applying feature relevancies as a basis for nonlinearly

transforming feature values into their truth values, the DecovnNet approach

achieved 100% fidelity on the ImageNet database.

7. The first experiments indicate that the classifier in the form of fuzzy logic function

can outperform the decision tree models.
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8. The anomaly detector as a filter to avoid anomalies explanation is needed.

Hawkins’s definition [84] of the outlier as a sample with a different way of

generation, provides guidance on applying the DGM for the outlier detection. We

applied this idea in two ways:

• If the generator seeds are independent pseudo-random variables with uniform

distribution, the inverse transform of the tested image must give the same

property for its outputs. The first results of this idea verification are not

satisfactory. The reason seems to be the generation of seeds from a hypercube.

• If the generator seeds are pseudo-random variables from the hypersphere

with uniform distribution of the radius, the inverse transformation of the

tested image must give the coordinates within the hypersphere. Due to the

complexity of the inverse transformation training, this approach was left for

further research.
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