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Abstract

The thesis explores innovative methods for diagnosing blood-related disorders using
a combination of machine learning techniques and simulations, particularly focusing
on the analysis of red blood cells through the ESPResSo simulation module. This
approach enables a deep dive into understanding red blood cell behavior under various
physiological conditions by generating numerical outputs from simulations. The goal
is to employ machine learning models, notably neural networks and random forests,
to analyze these outputs for classifying RBCs based on changes in their elasticity,
which can indicate the presence of blood disorders. This novel methodology seeks
to bridge the gap between traditional diagnostic techniques and the vast potential of
computational analysis, offering a more precise and efficient diagnostic tool.

The thesis’s core goal is to extend beyond numerical data analysis by transforming
the simulation outputs into dynamic visual representations. This involves generating
videos to capture the behaviors of red blood cells in blood flow, further processed by
machine learning models for classification purposes. This dual approach, encompassing
both numerical and visual data, aims to enhance the diagnostic process by providing a
comprehensive view of RBC dynamics. By leveraging advanced machine learning tech-
niques, the research promises to significantly improve the accuracy of blood diagnostics,
facilitating early detection and treatment of disorders.

The final goal of the thesis revolves around designing and training a machine learn-
ing model capable of classifying red blood cells with high efficiency, using video data
derived from simulations. This involves employing deep learning strategies to teach the
model to recognize complex patterns in red blood cell behavior, laying the groundwork
for developing a robust diagnostic framework. Through this innovative integration of
computational simulations, visual analysis, and artificial intelligence, the thesis con-
tributes to the advancement of blood diagnostics, opening the door for more personal-

ized and precise healthcare solutions in treating blood-related disorders.

Keywords: neural networks, simulations, red blood cell elasticity



Abstrakt

Praca skiima inovativne metody diagnostiky portch sivisiacich s krvou pomocou kom-
binacie technik strojového ucenia a simulécii, najmé so zameranim na analyzu cer-
venych krviniek prostrednictvom simulacného modulu ESPResSo. Tento pristup umoznuje
hlboky ponor do pochopenia spréavania ¢ervenych krviniek za roéznych fyziologickych
podmienok generovanim numerickych vystupov zo simuléacii. Cielom je vyuZzit modely
strojového ucenia, najméa neurénové siete a ndhodné lesy, na analyzu tychto vystupov
na klasifikaciu ¢ervenych krviniek na zaklade zmien v ich elasticite, ¢o moze naznaco-
vat pritomnost portich krvi. Téato nova metodologia sa snazi preklenit priepast medzi
tradicnymi diagnostickymi technikami a obrovskym potenciadlom vypoctovej analyzy a
pontka presnejsi a efektivnejsi diagnosticky néstroj.

Hlavnym ciefom préace je presahovat ramec numerickej analyzy udajov transfor-
maciou vystupov simulécie do dynamickych vizualnych reprezentacii. Zahina to gen-
erovanie videi na zachytenie spravania cervenych krviniek v toku krvi, ktoré sa dalej
spracivaji modelmi strojového ucCenia na ucely klasifikicie. Tento dudlny pristup,
ktory zahffia numerické aj vizualne tdaje, méa za ciel zlep8it diagnosticky proces
poskytnutim komplexného pohladu na dynamiku ¢ervenych krviniek. Vyuzitim pokro¢ilych
technik strojového ucenia vyskum slubuje vyrazné zlepSenie presnosti krvnej diagnos-
tiky, ulahc¢enie véasnej detekcie a liecby portuch.

Konec¢ny ciel prace je navrh a trénovanie modelu strojového uc¢enia schopného klasi-
fikovat cervené krvinky s vysokou tcéinnostou pomocou video tidajov odvodenych zo
simulacii. To zahinha pouzitie stratégii hlbokého ucenia, aby sa model naucil rozpozna-
vat zlozité vzorce spravania ¢ervenych krviniek, ¢im sa polozili zaklady pre vyvoj ro-
bustného diagnostického rdmca. Prostrednictvom tejto inovativnej integréicie vypoc-
tovych simulacii, vizualnej analyzy a umelej inteligencie praca prispieva k pokroku v
diagnostike krvi a otvara dvere pre personalizovanejSie a presnejSie rieSenia zdravotnej

starostlivosti pri liecbe portch suvisiacich s krvou.

Krluacoveé slova: neurénové siete, simulécie, elasticita Gervenych krviniek



Contents

1 Introduction 1
1.1 Microfluidics . . . . . . . . .. 1

1.2 Motivation . . . . . . ... 2
1.3 Thesisgoal . . . . . . .. 3
1.4 Thesis overview . . . . . . . . . .. 4

2 Biological Rationale for Blood Analysis 7
2.1 Hereditary Disorders . . . . . . . . .. ... ... 8
2.2 Metabolic Disorders . . . . . . . . . .. ... 8
2.3  Membrane Changes and Oxidative Stress . . . . . . . .. ... .. ... 8
2.4 Paroxysmal Nocturnal Hemoglobinuria . . . . . .. ... ... .. ... 9
2.5 Sickle Cell Disease . . . . . . . . . . ... 9
2.5.1 Variants of Sickle Cell . . . . . .. ... ... 0. 10

2.5.2  Future Directions . . . . . . . . ... ... L 11

3 State-of-the-Art Review 12
3.1 Utilizing Neural Networks for Blood Diagnostics . . . . . . .. ... .. 12
3.2 Learning with Physical Information . . . . . .. ... .. ... ... .. 14
3.2.1 Principles of Physics-Informed Learning . . . . ... .. .. .. 15

3.3 Previous Research of RBC Using Simulations and Neural Networks . . 16
3.4 Segment Anything Model . . . . . . . ... ..o 16

4 Simuations Using Computational Fluid Dynamics 18
4.1 Fundamentals of Computational Fluid Dynamics. . . . . . . .. . ... 19
4.2 Components of Computational Fluid Dynamics Simulations . . . . . . 19
4.3 Applications of Computational Fluid Dynamics in Blood Flow Simulations 21
4.3.1 Modeling Red Blood Cells Properties . . . . . . . ... ... .. 22

4.4 ESPResSo Simulation Tool . . . . . . . . .. ... ... .. ... 22
4.4.1 Applications in Patient-Specific Simulations . . . . . .. .. .. 23

4.5 General Description of the Current Model . . . . . . . . ... ... .. 23
4.6 Using Simulation Model in Thesis . . . . . . . .. ... ... .. .... 26

vi



CONTENTS vii

5 Neural networks for sequential data 27
5.1 Neural Networks . . . . . . . . . . .. ... ... 27
5.1.1 Neural Network Components and Architecture . . . . . . . . .. 27
5.1.2 Learning and Training Process . . . . . . .. .. ... ... ... 28
5.1.3 Depth and Complexity . . . . . . .. . ... .. ... ... ... 28
5.1.4 Applications of Neural Networks . . . . . . . ... ... ... .. 29
5.2 Recurrent Neural Networks . . . . . .. . .. .. ... ... .. ..... 30
5.2.1 Fundamental Characteristics of RNNs. . . . . .. .. ... ... 30
5.2.2  Challenges and Progressin RNNs . . . . .. .. ... ... ... 31
5.2.3 Long Short-Term Memory . . . . . . .. ... ... ... .... 31
5.3 Convolutional Neural Networks . . . . . . ... ... ... ... .. .. 32
5.3.1 Key Components and Characteristics of CNNs . . . . . . .. .. 32
5.3.2 Applications of CNNs . . . . . . ... ... ... 34
5.3.3 Layers Utilized in Constructing CNNs . . . . . . .. .. .. .. 34
5.4 Combination of RNN and CNN . . . . .. ... ... ... ..... .. 36
5.4.1 Image Captioning . . . . . . . . . . . .. ... 36
5.4.2 Video Analysis . . . . . .. ... 37
5.4.3 Neural Networks for Video Classification . . . . . . . .. .. .. 37
5.4.4 Strengths and Significance . . . . .. ... .00 38
545 ResNet . . . . . . o 38
5.4.6 EfficientNet . . . . . . . ... ... 40
5.5 Random forest . . . . . . . . . ... .. 40
5.5.1 Algorithm: Sequential Steps . . . . . . . .. .. ... ... ... 42
5.5.2 The Advantages of Random Forest . . . . ... ... ... ... 43
5.5.3 Applications and Utility Across Domains . . . . . . . .. .. .. 44
5.5.4 Random Forests vs. Neural Networks . . . . . . .. ... .. .. 44
6 Determination of elasticity in straight canal 46
6.1 Simulation Input Settings . . . . . .. ... ... oL 47
6.2 Description of Obtained Simulation Data . . . . . . . .. ... ... .. 48
6.2.1 Data Preprocessing and Augmentation . . . . ... .. ... .. ol
6.2.2 Types of Neural Network Architectures Tested . . . . . . . . .. 52

6.3 Result Examples of Using CNN-LSTM Networks for Simulating Three
RBC Types . . . . . o 53
6.4 Using a Regression Neural Network to Classify Red Blood Cell Elasticity 55
6.5 Validation of Models on Different Simulations . . . . .. ... ... .. 56
7 Determination of elasticity in obstacle canal 66
7.1 Simulation Experiments for RBC Health Classification . . . . .. . .. 67



CONTENTS

7.2 CNN-based Red Blood Cell Classification . . . . . . .. ...
7.2.1 Adding Physical Information . . . . . . .. ... ...
7.2.2  Up-Scaling of the Healthy Examples . . . . .. . ..
7.2.3 Four-Class to Two-Class Classification . . . . . . ..

7.3 Applying Random Forest Model . . . . . . . ... ... ...
7.3.1 Utilized Indicators - Featurization . . . . . . . . . ..
7.3.2 Used Models. . . . ... ... ... ... ... ...
7.3.3 Data preparation . . . ... ... ... ... .. ...
7.3.4 Results of Random Forest Approach . . . ... ...
7.3.5 Summary of Random Forest Approach . . . . . . ..

7.4 Statistical analysis of elasticity based on surface optimization
8 Summary

Appendix - LSTM Principles

Viil

69
73
75
76
78
78
79
80
80
82
84

89

105



List of Figures

2.1

3.1

4.1

0.1
5.2
2.3
5.4
2.9
2.6

6.1

6.2

6.3

6.4

6.5

6.6

Examples of eryptotic red blood cells (RBCs) in inflammation. (A)
Healthy RBCs with a platelet; (B) Type 2 diabetes; (C, D) Parkinson’s
disease; (E) Rheumatoid arthritis; (F) healthy whole blood exposed to
interleukin-8 [60] . . . . .. ...

Various situations that occur during the training of a physics-informed

models. (Figure adapted from [58]) . . . . ... ... ... ... ... .

Schematic representation of the cell membrane. Each individual cell
is modeled by a spring network of boundary points bound by elastic

INteractions. . . . . . . . ..

Simple NN schema. . . . . . . . . ... .. ... ... ...
LSTM block at timestamp ¢ . . . . . . . .. .. ... ... .. .. ...
Simple CNN kernel. . . . . . .. .. ...
Simple CNN architecture . . . . . . . . . ... ... ... ... . ....
Architecture of ResNet50 [1].. . . . . . . ... o oo

Random forest architecture. . . . . . . . . . . . ... ...,

3D RBC covering cube from the simulation and two 2D RBC covering
rectangles from the video. . . . . . . .. ... oL
Diagrams of the neural network architectures used in the experiments. .
Comparison of training MAPE for each combination of w, data subset,
and NN model type. . . . . . . . . ...
MAPE boxplots for each RBC elasticity type for the CNN-LSTM Conv2D
architecture, zyz data subset used with w = 3 without (up) and with
outliers (down) . . . . ... L
MAPE boxplots for each RBC elasticity type for the CNN-LSTM Conv2D
architecture, ry xz data subset used with w = 5 without (up) and with
outliers (down) . . . . . ...
Highest average MAPE for elasticity 0.03 and 0.1 for architecture CNN-
LSTM Conv2D, used data subset xyz withw=3.. .. ... ... ...

X

10

15

25

29
32
33
36
39
43

49

o8

59

60

61



LIST OF FIGURES

6.7

6.8

6.9

6.10

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Highest average MAPE for elasticity 0.03 and 0.1 for architecture CNN-
LSTM Conv2D, used data subset xy xz withw =5. . .. .. .. ..
Distribution of predicted k, values for different data subsets and elastic-
ity values. . . . . . L
RBC classification confusion matrices for RegToClass (up) and Classifi-
cation (down) zz neural networks. . . . . .. ...
Confusion matrices classification RBC for RegToClass (up) and Classi-

fication (dow) zyz neural networks. . . . . .. ...

Scheme of the simulation microfluidic channel with cylindrical obstacles.

One pass of a RBC through the simulated channel. . . . . . .. .. ..
Diagram of the network architecture . . . . . ... .. ... ... ...
The confusion matrix of 4 classes classification. . . . . . . . .. .. ..
The confusion matrix of 2 classes classification. . . . . . . . .. .. ..
Classification to 4 classes. . . . . . . . . . . . ... ... ...
Classification to 2 classes. . . . . . . . . . . ... ... ... ... ..
Classification to 4 classes. . . . . . . . . . . . ... ... ... ...,
Classification to 2 classes. . . . . . . . . . . . ... ... ... ...,
Feature importance for 6th set. . . . . . .. ... ... ... .. ... ..
Feature importance for 4th set. . . . . . . ... .. ... ... .....
Graphs of values of SA:V for different statistics. . . . . . ... ... ..

Graf of Kolmogorov-Smirnov test values of SA:V for different statistics.

62

63

64

65

67
68
70
72
73
81
82
83
84
85
85
87
88



List of Tables

5.1
0.2

6.1
6.2
6.3
6.4

6.5

7.1
7.2

7.3
7.4

7.5

EfficientNet v2 BO architecture [119]. . . . . . . ... . ... ... ...

Characteristics of Random Forest and Neural Network models . . . . .

Overview of used simulation parameters. . . . . . . .. ... ... ...
Overview of ks values in each simulation. . . . . . . . . . . . ... ...
Overview of used data sets. . . . . . . . .. ... ... ... ......
MAPE values by architecture, subset of data used for training, and
hyperparameter w values. The lowest (best) value for each data subset
is highlighted. . . . . . . . . ...
Comparison of classification accuracy of RegToClass and Classification

neural networks. . . . .. L

Hyperparamters optimized for Adam and SGD. . . . ... ... .. ..
Validation accuracies for the models with 4 classes using optimized hy-
perparameters. . . . . ... Lo oL oL
The best set of hyperparameters from Adam optimizer. . . . . . . . ..
The validation accuracies were assessed for six distinct classes of models
with optimized hyperparameters. . . . . .. . ... ... ... .. ...

The validation accuracies of three models with identical architecture.

X1

41

71

74
76



Chapter 1

Introduction

1.1 Microfluidics

Microfluidics studies the behavior of fluids within small channels and the peculiar fab-
rication of microfluidic devices. These devices, ranging from chambers to pathways,
facilitate the controlled flow of fluids [73]. This technology has left an indelible mark
on molecular biology influencing areas such as enzymatic analysis [79], DNA research
[139], chemical synthesis [38], and protein study [128]. Beyond the limits of laborato-
ries, microfluidic devices have found applications in clinical pathology, swiftly diagnos-
ing diseases and measuring their severity [28]. Notably, they’ve been instrumental in
assessing antibiotic resistance by monitoring microorganism growth rates [98].

Moreover, microfluidics has emerged as a cornerstone in the point-of-care diagnos-
tics. Portable microfluidic devices enable rapid and decentralized testing, enhancing
healthcare accessibility in resource-limited settings [105]. This portability, coupled
with the ability to process small sample volumes, positions microfluidic technologies
as invaluable tools in the fight against infectious diseases, offering timely and accurate
diagnostic outcomes.

Microchips, the building blocks of this technology, provide a heterogeneous envi-
ronment conducive to the success of microorganisms. This application extends beyond
biomedicine, where microfluidics takes on a pivotal role in continuous air and water
quality monitoring. Serving as an early warning system for toxins, microfluidic de-
vices contribute to environmental safety [96]. The versatility of microfluidics makes it
a transformative force, merging into diverse scientific domains and offering solutions
that transcend traditional boundaries.

Furthermore, the impact of microfluidics extends to drug discovery and develop-
ment. Microfluidic platforms play a crucial role in miniaturized tests for drug screening,
allowing for more efficient and cost-effective testing of various compounds [7]. Addi-

tionally, the controlled microenvironments provided by microfluidic systems enable
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precise studies of cell behavior and responses to different drugs, anabling advance-
ments in personalized medicine [23]. As the field of microfluidics continues to evolve,
its interdisciplinary applications across medicine, environmental monitoring, and phar-
maceuticals highlight its significance in advancing scientific research and technological

mnovation.

1.2 Motivation

In the vast realm of microfluidics, Cell in Fluid, Biomolecular Modeling & Computa-
tional Group (CIF) [2], a dedicated research team situated within the Department of
Software Technologies at Zilina University’s Faculty of Management and Informatics,
studies microfluidic devices designed for the capture and sorting of cancer cells from
blood samples. Their focus resides in the transformative potential of these devices,
particularly in the context of early cancer diagnosis through a straightforward blood
sample. The big challenge of metastatic disease in oncology, where tumors seemlessly
spread through blood-borne routes, underscores the urgency of their research |75].

Micro-metastatic disease, characterized by the presence of minuscule cancerous cells
in critical sites like bone marrow, blood, or lymph nodes, impacts a substantial por-
tion—around 30% to 40%—of solid tumor patients. Herein lies the potential signifi-
cance of circulating tumor cells (CTCs), tiny entities that may hold the key to unlocking
early detection strategies and consequently improving treatment outcomes [66]. The
CIF research team’s efforts are directed towards the development and optimization of
microfluidic devices precisely tailored to capture and analyze these elusive CTCs.

Beyond the singular focus on cancer cell capture, the CIF team dives into the
broader exploration of microfluidic phenomena. Their research extends into under-
standing the complicated impact of microfluidic channels on red blood cells, an essen-
tial consideration in the design of efficient and biocompatible devices [62]|. Additionally,
the collective behavior of cells within the dynamic flow of blood becomes a subject of
investigation, offering insights into the complex interplay of cells in these microenviron-
ments. This multifaceted approach positions CIF’s efforts not only at the forefront of
cancer diagnostics but also as contributors to the broader understanding of microfluidic
dynamics within the context of blood-based applications.

In the microfluidic device development, testing physical prototypes presents hard
challenges, both in terms of financial investment and time consumption. Recognizing
these problems, researchers increasingly turn to numerical models as a pragmatic al-
ternative. Numerical models excel at simulating fluid flow within microfluidic devices,
offering a cost-effective means to understand cell behavior under diverse conditions
[126].
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The computational approach brings notable advantages. It allows for the assessment
of device functionality without the significant costs associated with physical prototypes
[39]. By employing mathematical representations and algorithms, researchers can em-
ulate complex fluid dynamics within these devices, exploring cell interactions, sorting
mechanisms, and other critical functionalities.

However, it’s important to acknowledge the challenges inherent in numerical sim-
ulations. The computational demands can be substantial due to the complex nature
of microfluidic devices and the vast number of modeled cells. Simulating extended
experiment durations significantly increases the computational workload, often leaving
a big portion of the data untapped.

To unlock the full potential of numerical simulation data, researchers are turning to
machine learning. Machine learning algorithms excel at processing extensive datasets,
proving invaluable given the huge volume of data generated during preprocessing and
simulation. These algorithms not only extract deeper insights from existing data but
also accelerate simulations by employing more efficient models. Furthermore, machine
learning reveals the limitations of current numerical models, essential for refining sim-
ulation accuracy and reliability [5].

The fusion of numerical simulations and machine learning represents a synergistic
approach to address microfluidic device design complexity and analyze cell behavior.
It optimizes devices by leveraging the advantages of both computational modeling and
data-driven artificial intelligence, reducing the financial and temporal costs associated
with physical fabrication and experimentation. This integrated approach not only
promises cost-efficiency but also unlocks insights from the abundant data generated

during the research process.

1.3 Thesis goal

The primary objective of this thesis is to employ the ESPResSo simulation module
to model the complex dynamics of red blood cells (RBCs) within the bloodstream.
By utilizing sophisticated computational simulations, we aim to gain a comprehensive
understanding of the behavior of RBCs under flow conditions. This simulation-based
approach will generate numerical outputs that contains information about the cells’
responses to different physiological conditions, allowing us to perform machine learning
analyses.

The first major goal is to develop and implement machine learning models to classify
RBCs based only on the numerical outputs obtained from the ESPResSo simulations
which implicitly contain physical information to confirm the hypothesis that elasticity

changes can be observed in simulations. Through this phase, we aim to create a
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classifier that can recognize small variations in red blood cell behavior, contributing
to the development of diagnostic tools for blood-related disorders. This initial stage
serves as a critical stepping stone, providing insights into the efficiency of numerical
data in distinguishing between normal and sick RBC dynamics.

Performing in-depth analyses on the numerical outputs obtained from the ESPResSo
simulations is our next goal. This aims to extract hidden patterns and relation-
ships within the numerical data, providing a complementary perspective to the neural
network-based classification. !

Based on numerical analysis, the subsequent goal involves transforming the simu-
lation outputs into dynamic visual representations. Through video generation, we aim
to capture the behavioral patterns exhibited by RBCs in the flow of blood. The follow-
ing step is the development of a machine learning model capable of classifying RBCs
based on their observed behavior in these videos. This approach seeks to enhance the
diagnostic capabilities, as it incorporates both numerical and visual information for
more comprehensive analysis.

The final goal of the thesis is to design and train a machine learning model capable of
effectively classifying red blood cells using video data. Using deep learning techniques,
we try to teach the model to recognize complex patterns within the dynamic behavior of
red blood cells. This phase is critical to creating a diagnostic framework that harnesses
the power of numerical simulations and visual cues, contributing to the advancement

of blood diagnostics.

1.4 Thesis overview
This thesis is structured as follows:

e In Chapter 2 we provide a biological overview of red blood cell functionalities and
disorders which underscore their significance in human microcirculation, with a
focus on their deformability, crucial for oxygen delivery. The study explores tech-
niques like microcapillary flow, microfluidics, and ektacytometry to characterize
RBC biomechanical properties. Specific disorders affecting RBCs, such as heredi-
tary and metabolic disorders, are discussed, highlighting tools like ektacytometry
and AFM for assessment. Membrane changes and oxidative stress are explored.
This chapter underscorse the significance of blood research and justify the whole

thesis.

!By combining the strengths of multiple machine learning models, we aim to enhance the robustness
and interpretability of our diagnostic framework for blood-related disorders, ultimately contributing

to the evolution of precision medicine.
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e Chapter 3 explores state-of-the-art in red blod cell research and it serves as an
overview of the problematic. The impact of neural networks in medical diagnos-
tics, focusing on their application in red blood cell classification using numerical
data from flow cytometry and information extracted from video sequences is dis-
cussed. We also talk about challenges in incorporating noisy data into machine
learning algorithms for simulating physical problems. The principles of Physics-
Informed Learning are outlined, involving observational, inductive, and learning
influences to guide the learning process toward identifying physically consistent
solutions. The chapter concludes with related work, highlighting experiments
with Physics-Informed Neural Networks in solving differential equations for a
class of problems and a differentiable simulation approach, demonstrating promis-

ing results. All of this knowledge is then later used within next chapters.

e Chapter 4 looks into the dynamics of blood flow, introducing the fundamentals
of Computational Fluid Dynamics (CDF), describing the mathematical models,
geometric modeling, discretization, and numerical methods used to simulate fluid
behavior.The applications of CFD in blood flow simulations are sampled, show-
ing its potential in patient-specific simulations, treatment planning, and clinical
applications. The chapter discusses the challenges in CFD simulations, such as
model validation, computational resource demands, and the modeling of elastic

properties of red blood cells.
The ESPResSo Simulation Tool, a software designed for simulating blood flow

dynamics, is introduced, emphasizing its role in personalized medicine and treat-
ment planning. The chapter provides a detailed overview of the general de-
scription of the current model, explaining the Lattice-Boltzmann method, RBC
modeling, and interactions between fluid and solid components. Model valida-
tion and optimization are also discussed. This chapter is particularly important
since in the thesis we use simulation data for the analyses and for the training of

machine learning models.

e As we use Neural Networks and Random Forest machine learning models, both
are described in Chapter 5, emphasizing their foundational role in machine learn-
ing and artificial intelligence. It dives into NN components, architecture, learning
processes, depth, complexity, and applications. Furthermore, it introduces Recur-
rent Neural Networks for sequential data processing, Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) architectures, Convolutional Neural
Networks (CNNs), specialized for grid-like data, detailing their key components,
characteristics, applications. The combination of Recurrent Neural Networks and
Convolutional Neural Networks in hybrid models enables a complex understand-

ing of data, particularly valuable in image captioning and video analysis.
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e Chapter 6 research the determination of red blood cell elasticity through the ap-
plication of neural networks and numerical data derived from simulations. This
chapter contains a detailed description of the utilized data, followed by an eval-

uation of the classification model with respect to various metrics.

The study evaluates the predictive ability of LSTM and CNN-LSTM networks for
RBC elasticity, highlighting the superior performance of networks utilizing full 3D
information compared to 2D projections. The CNN-LSTM architecture, employ-
ing 2D convolutional layers, emerges as the top-performing model, showcasing its
effectiveness in elasticity prediction and recommending the use of devices cap-
turing progress in linearly independent planes for accurate video recording in

biological experiments.

e Chapter 7 details the machine learning models designed for the classification of
red blood cells in canal with obsticles. Similar to the previous chapter, it includes
a description of the employed data, various models with their parameters, and

an assessment of the classification outcomes.

We explored the classification of red blood cells elasticity through video recordings
and CNNs, overcoming limited blood flow data availability by utilizing computer
simulations based on a numerical model. The simulation model effectively repli-
cated the behavior of RBCs as elastic entities in fluid flow, producing sample
training data for CNN-based classification. Employing various CNN architec-
tures, namely ResNet and EfficientNet, we conducted a classification of RBC

elasticity based on the geometric features extracted from video recordings.

Subsequently, we applied statistical analyses and Random Forest model to the

raw numerical output data from simulations.

By adopting this organizational framework, we aim to systematically present our
research methodology, numerical models, and the outcomes of our investigations in the

domain of red blood cell characterization and classification.



Chapter 2

Biological Rationale for Blood
Analysis

Red blood cells (RBCs) play a critical role in human microcirculation, exhibiting a
unique ability to deform and navigate through narrow capillaries. They serve as carriers
of gases between blood and tissues. Changes in RBC deformability are linked to various
diseases, underscoring the importance of measuring RBC biomechanical properties. In
the work by Tomaiuolo et al. [121], specific focus is placed on pathological conditions
affecting RBCs, such as hereditary disorders, metabolic disorders, and oxidative stress.
The study highlights challenges in expressing pathological changes using well-defined
cell membrane parameters like elasticity and viscosity. Moreover, it emphasizes the
potential of RBC deformability as a biomarker for specific clinical conditions.

The key biomechanical property of healthy RBCs is their deformability, crucial for
delivering oxygen to tissues [125]. RBC deformability arises from factors like the cell’s
biconcave disc shape, intracellular fluid viscosity dominated by hemoglobin, and the
viscoelastic properties of the cell membrane. Membrane behavior is described through
parameters like shear elastic modulus, area compressibility modulus, and bending mod-
ulus.

Traditional methods for assessing membrane properties affecting RBC deformabil-
ity are limited in terms of throughput and are static in nature. This may not accurately
replicate the mechanical stresses that RBCs experience during microcirculation. How-
ever, microcapillary flow techniques and microfluidic devices have been developed to
overcome these limitations, allowing for high-throughput analysis under flow conditions
that are physiologically relevant. By integrating automated image analysis, microflu-
idic devices enable point-of-care applications, offering insights into cell deformation
under various conditions.

Different techniques yield different results, emphasizing the nonlinear mechanical

response of RBCs. This review categorizes eight techniques for measuring RBC biome-
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chanical properties, including micropipette aspiration, flickering analysis, viscometry,
microcapillary flow/microfluidics, ektacytometry, atomic force microscopy (AFM), op-
tical tweezers, and others. These techniques include innovative approaches like reflec-
tion interference contrast micrograph and microscopic holography, providing a compre-

hensive overview of methods used for biomechanical characterization.

2.1 Hereditary Disorders

Hereditary disorders impacting the erythrocyte membrane, like spherocytosis and ellip-
tocytosis, significantly contribute to inherited hemolytic anemias. These disorders re-
sult from deficiencies or dysfunctions in various erythrocyte membrane proteins. Ekta-
cytometry, a common tool for evaluating RBC membrane properties, indicates reduced
membrane deformability in hereditary disorders, leading to shifts in the deformability
index curve relative to control. Advanced techniques, such as AFM, reveal changes in
mechanical properties, providing insights into cytoskeletal alterations. Osmotic gradi-
ent ektacytometry remains crucial for diagnosis, offering insights into membrane moduli

and deformability.

2.2 Metabolic Disorders

Metabolic disorders, such as diabetes and hypercholesterolemia, significantly impact
cellular metabolism, causing disruptions in essential biochemical reactions. Diabetes,
characterized by hyperglycemia, exhibits associations with altered blood viscosity and
abnormal RBC membrane architecture, leading to impaired deformability. Recent
advancements in microfluidic devices and ektacytometry confirm impaired RBC de-
formability in diabetic patients, emphasizing critical implications for tissue perfusion
and complications like microvascular disease. Hypercholesterolemia and obesity also
show varying results in RBC deformability studies, warranting further investigation

into their correlations with cardiovascular risk factors.

2.3 Membrane Changes and Oxidative Stress

Oxidative stress poses challenges to RBCs due to continuous exposure to reactive oxy-
gen molecules. Under normal conditions, RBCs employ antioxidants to counteract
oxidative stress. Abnormal responses can lead to peroxide and free radical produc-
tion, resulting in damages to the RBC skeleton. Techniques like ektacytometry and
microfluidic approaches have been employed to measure impaired RBC deformability

in the presence of oxidative stress. These advancements provide insights into changes
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induced by oxidative stress, offering a cost-effective and high-throughput method for

assessment.

2.4 Paroxysmal Nocturnal Hemoglobinuria

Paroxysmal Nocturnal Hemoglobinuria (PHN), a rare acquired clonal disorder, is char-
acterized by a mutation leading to the absence of protective proteins on the RBC
membrane. Despite the importance of membrane viscoelastic properties in RBC sur-
vival, limited studies have explored RBC membrane properties in PNH. Micropipette
techniques have been utilized to measure the mechanical properties of RBCs affected
by PNH, revealing impaired mechanical properties compared to normal cells. Further
research into the membrane properties of PNH erythrocytes could provide valuable
insights into complement-mediated hemolysis mechanisms, contributing to a better

understanding of this rare disorder.

2.5 Sickle Cell Disease

Sickle cell disease (SCD) encompasses a collection of hereditary blood disorders that
impact the structure and functionality of RBCs. Ordinarily, RBCs possess a pliable and
disc-like form, enabling them to effortlessly navigate narrow blood vessels and distribute
oxygen across the entire body. Nevertheless, in the case of SCD, a genetic mutation
in a specific gene known as hemoglobin brings about alterations in the composition of
RBCs.

Consequently, this mutation causes the RBCs to adopt a rigid and sickle-shaped
configuration, resembling the agricultural instrument known as a sickle. These sickle-

shaped cells possess various drawbacks:

1. Reduced Flexibility: Their rigidity makes it difficult for them to navigate
narrow blood vessels. This can lead to blockages that restrict blood flow and

oxygen delivery to tissues.

2. Shorter Lifespan: Sickle-shaped cells are more fragile and break down prema-
turely. This decrease in healthy RBCs can lead to anemia, a condition charac-

terized by fatigue, weakness, and shortness of breath.

3. Painful Episodes: When blockages occur, they can cause excruciating pain, a
main symptom of SCD. These episodes can last for hours or even days and often

require medical intervention.

4. The Root Cause: Genetics and Inheritance
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Figure 2.1: Examples of eryptotic red blood cells (RBCs) in inflammation. (A) Healthy
RBCs with a platelet; (B) Type 2 diabetes; (C, D) Parkinson’s disease; (E) Rheumatoid
arthritis; (F) healthy whole blood exposed to interleukin-8 [60]

SCD is an inherited condition. This means that a child inherits two abnormal copies
of the hemoglobin gene, one from each parent. If a child inherits only one abnormal
copy (from one parent) and one normal copy (from the other parent), they carry the
sickle cell trait but typically don’t experience symptoms. The trait carriers can still

pass the abnormal gene on to their children.

2.5.1 Variants of Sickle Cell

There are various types of SCD, each exhibiting different levels of severity depending
on the specific mutations in the hemoglobin gene. Certain types of SCD present with
milder symptoms, while others are more severe. Hemoglobin, the protein responsible

for carrying oxygen in red blood cells, can be affected by different mutations that alter
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its structure and function. Consequently, distinct types of SCD arise, each with its
own unique characteristics and clinical manifestations.

One of the most prevalent forms of SCD is sickle cell anemia, which occurs when
an individual inherits two copies of the hemoglobin S gene, one from each parent. This
particular form typically leads to the most severe symptoms, including frequent pain
crises, anemia, organ damage, and increased vulnerability to infections. Individuals
with sickle cell anemia often require regular medical care and interventions to manage
their symptoms and prevent complications.

Other types of SCD include hemoglobin SC disease and sickle beta thalassemia,
which result from inheriting one copy of the hemoglobin S gene along with another
abnormal hemoglobin gene variant. These forms of SCD may exhibit a less severe
clinical course compared to sickle cell anemia, but individuals with these conditions
can still face significant health challenges, such as pain episodes, anemia, and organ
damage.

In addition to these well-known forms of SCD, there are also rare variants and
combinations of hemoglobin mutations that can lead to different clinical presentations.
Some individuals may experience fewer symptoms and complications, while others may
have more severe disease manifestations. Factors such as the presence of additional
genetic modifiers, environmental influences, and access to healthcare can also impact

the severity and progression of SCD.

2.5.2 Future Directions

While there’s currently no cure for SCD, researchers are actively exploring potential
gene therapies that could permanently alter the abnormal gene and allow for the pro-
duction of healthy RBCs. Additionally, continuous research aims to improve existing
treatment options and management strategies to help people with SCD live longer and
healthier lives.

SCD is the main motivator for the research carried out in this thesis.



Chapter 3

State-of-the-Art Review

3.1 Utilizing Neural Networks for Blood Diagnostics

The integration of NNs in medical diagnostics has started a transformative era in
healthcare and their benefits and advantages are studied in [13]. Leveraging the power
of deep learning, NNs analyze complex medical data, ranging from diagnostic im-
ages to patient records, with a remarkable capacity to identify compolex patterns and
anomalies. In the medical diagnostics, NNs play a pivotal role in tasks such as im-
age classification, disease detection, and risk prediction. Furthermore, NNs can be
trained on diverse datasets to recognize subtle variations of various medical conditions,
offering healthcare professionals valuable insights for early detection and personalized
treatment strategies.

In recent years, the integration of artificial intelligence and machine learning, par-
ticularly NNs, has opened new doors for automating RBC classification [30]. The
application of NNs in the classification of RBCs using numerical data obtained from
flow cytometry and information extracted from video sequences is actual hot topic to

study.

Numerical Data from Flow Cytometry

Flow cytometry [107] is a widely used technique for characterizing RBCs based on
their size, shape, and optical properties. Numerical data, including size distribution,
hemoglobin content, and fluorescence intensity, are collected from these analyses. NN,
such as CNN, has been employed to process this data, making it possible to classify
RBCs into various subtypes. By training on a large dataset of annotated RBC samples,
CNNS5s can learn to recognize distinctive patterns in the numerical data, enabling high-

accuracy classification and providing valuable insights into the RBC population.

12
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Visual Sequencies for Dynamic Analysis

In addition to numerical data, the analysis of RBCs can be enhanced by considering
their dynamic behavior captured in video sequences. Microscopic video recordings
enable the tracking of individual RBCs’ motion, deformation, and interaction with
other blood components, used in the paper [47]. Recurrent NNs (RNNs) and long
short-term memory networks (LSTMs) have been employed to process video data.
These networks can learn temporal dependencies in RBC behavior and classify them
based on parameters like velocity, deformability, or agglomeration, which can provide

insights into conditions like sickle cell disease or malaria.

Combining Numerical and Video Data

An integrative approach harnessing both numerical data and video sequences offers a
comprehensive perspective on RBC classification. By combining CNNs for numerical
data and RNNs for video data, hybrid networks can identify RBC subtypes with higher
precision. This synergy allows for the assessment of RBCs based on both their static
and dynamic characteristics, providing a more complete diagnostic framework and
facilitating the detection of abnormalities that might be missed by using either data

type alone.

Challenges

The application of NNs for RBC classification has shown significant promise, butit
is not without challenges. Data preprocessing, the acquisition of high-quality video
sequences, and the creation of diverse and comprehensive datasets for training and
validation remain important issues to address. Future research might also focus on
improving the interpretability of NNs for better clinical adoption. Additionally, there
is potential for real-time RBC analysis, allowing for immediate feedback in clinical
settings, which could revolutionize the field of hematology.

The utilization of NNs for RBC classification from numerical data obtained through
flow cytometry and video sequences offers a powerful tool for medical diagnostics.
These techniques can enhance the precision of RBC analysis and improve our under-
standing of various hematological conditions. As technology and machine learning
algorithms continue to advance, the potential for more accurate RBC classification be-

comes increasingly promising, ultimately benefiting patient care and medical research.
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3.2 Learning with Physical Information

Despite significant progress in simulating physical problems using numerical discretiza-
tion of partial differential equations (PDEs), incorporating noisy data into existing
machine learning algorithms remains a challenge which is detailly described in [27].
Moreover, solving complex physical problems is often computationally expensive and
requires various formulations and sophisticated computer programs due to missing or
noisy physical conditions.

Machine learning has emerged as a promising alternative because it can identify
multidimensional correlations and handle ill-defined problems. In [80] authors show
that they are superior for inverse problems that cannot even be solved with standard
techniques. Deep learning approaches naturally provide tools for automatically ex-
tracting features from vast amounts of observational data. They can also help connect
these features with existing approximate models and leverage them in creating new
prediction tools.

However, training deep NNs requires a large amount of data. Despite the volume,
speed, and diversity of available (collected or generated) data streams, it is still chal-
lenging in many real cases to integrate data into existing physical models. The ability
to collect and create observational data far exceeds the ability to sensibly collect them,
and current machine learning approaches cannot extract interpretable information and
insights from this flood of data. There are two possible solutions to this problem.

First one is the integration of fundamental physical laws and domain knowledge
into machine learning models, which can provide added information in the form of
strong theoretical constraints. For this purpose, physics-informed learning of the spe-
cific physical process is necessary. Previous knowledge derived from observational,
empirical, physical, or mathematical understanding of the world can be used to im-
prove the performance of the learning algorithm. The main motivation for developing
these algorithms is that such added information or constraints can yield more inter-
pretable machine learning methods that remain robust even when using imperfect data
(such as missing or noisy values, outliers, etc.) and can provide accurate and physically
consistent predictions.

In the second approach, a sufficient amount of data for training a machine learning
model is obtained through physically accurate simulations. If these simulations are
physically accurate, the information about physics is implicitly embedded within the
data. !

Figure 3.1 schematically depicts three possible categories of physical problems and

the associated scope of available data. In the case of a small amount of data, it is

'But, data-only models may have high accuracy for observations, but their predictions can be

physically inconsistent, leading to poor generalization.
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Small data Some data Big data

Data

Physics

Lots of physics Some physics No physics

Figure 3.1: Various situations that occur during the training of a physics-informed

models. (Figure adapted from [58])

assumed that we know the entire physics, and data is provided for initial and boundary
conditions, as well as coefficients of the partial differential equation. The middle option
represents the most common case in applications where we know some data and some
physics, or we are missing some parameter values or even an entire term in the partial
differential equation. Finally, there is the case with a large amount of data, where
we may not know any physics, and a data-driven approach may be the most effective.
Physics-informed machine learning can integrate data and governing physical laws,

including models with partially missing physics, in a unified manner.

3.2.1 Principles of Physics-Informed Learning

Creating a physics-based learning algorithm involves introducing suitable observational,
inductive, or instructional influences that can guide the learning process towards iden-
tifying physically consistent solutions.

e Observational Influence is incorporated through data representing the funda-
mental physics. Training a machine learning system on such data allows it to learn
functions, vector fields, and operators that reflect the physical structure of the data. A
large amount of data is required, and the cost of obtaining a sufficient amount of data
must be considered.

e Inductive Influence comprises assumptions that can be incorporated into the
model architecture so that the desired predictions implicitly satisfy a set of physical
laws, usually expressed as certain mathematical conditions.

e Learning Influence is manifested through the choice of an appropriate loss func-
tion, conditions, and inference algorithms that influence the training of the model to
explicitly encourage convergence towards solutions that adhere to fundamental physics.
By applying such mild constraints, basic physical laws can be approximately satisfied,
allowing us to introduce a wide range of physical influences. In practice, this involves
adding penalties based on physical conditions to the loss function.

The ways to influence the learning algorithm towards physically consistent solutions
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are not mutually exclusive and can be combined. Various hybrid learning approaches
have been proposed, as seen in [45]. The authors combine the influence of observations
and learning using a large number of simulated data and a NN with a conditional
training method to create a Navier-Stokes model for turbulent fluid flow.

Physics-informed learning can easily combine physical information and noisy data,
even when both are imperfect, and still find meaningful solutions, as demonstrated in
[100].

3.3 Previous Research of RBC Using Simulations and

Neural Networks

Advancements in the scientific understanding of RBC classification have been marked
by notable progress in computational modeling and data analysis. Researchers have
turned to computer simulations to simulate and study the behavior and elasticity of
RBCs in blood flow. The integration of these simulations with advanced data analysis
techniques has led to more accurate classification of RBC properties.

The classification of healthy and diseased blood cells in blood flow is discussed
in [31], emphasizing the loss of elasticity in diseased cells, leading to displacement by
healthy cells towards the canal’s edge. This behavior is observed in microfluidic devices
as well. Authors present tests of various NN models for classification accuracy. The
models learn based on the temporal sequence of cell positions to identify the type of
blood cell. Models incorporating information about extreme cell positions obtained
from simulations. The most powerful NN model in terms of accuracy and learning
speed is identified, and evaluated for its generalization ability to various input data
types.

Machine learning analysis of simulation outputs exposes certain disadvanteges in
the simulation model, such as periodic channel issues, providing insights for potential
improvements. A significant difference in the classification accuracy of healthy and
diseased cells (approximately 10 %) highlights the importance of considering extreme

cell positions.

3.4 Segment Anything Model

The field of image segmentation has traditionally relied on complex algorithms and
significant manual effort for accurate object identification and isolation. Meta’s Seg-
ment Anything Model (SAM) [64] presents a novel approach, offering a user-friendly
and powerful tool for this task.

SAM leverages deep learning, a subfield of artificial intelligence inspired by the
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structure and function of the human brain. This approach enables the model to learn
from vast quantities of labeled image data, establishing relationships between specific
objects and corresponding pixel patterns. Consequently, SAM can accurately segment
intricate scenes based on user instructions provided through points, bounding boxes,
or even user gaze within an augmented reality environment.

The key to SAM’s efficiency lies in its ability to analyze extensive datasets of labeled
images. Through this process, the model learns to differentiate between objects and
their backgrounds, allowing for precise segmentation. This functionality translates into
valuable applications across various fields.

Within the realm of biological research, SAM offers significant potential for an-
alyzing microscopic images of cells and tissues. For RBC, SAM can quickly segment
individual RBCs from a complex image, enabling researchers to efficiently analyze their
size, shape, and other features. This capability holds particular significance in studying
diseases that affect RBC morphology, such as sickle cell disease.

Furthermore, SAM’s capabilities extend beyond static images, encompassing video
recordings as well. Consider a video depicting traffic on a busy street. SAM can
segment individual vehicles within the video, aiding researchers in analyzing traffic
flow patterns or assisting autonomous vehicle developers in identifying obstacles. As
research progresses, we can anticipate even more innovative applications for SAM,

further expanding its impact on various disciplines.



Chapter 4

Simuations Using Computational

Fluid Dynamics

This research utilizes a simulation tool to generate data for training machine learning
models. The tool allows us to simulate complex phenomena, resulting in a large amount
of data for training neural networks. By creating and studying various scenarios, we
gain insights into how systems behave under different conditions. The details of the
simulation tool are described in this chapter.

The simulated data serves as a valuable resource for training NNs. By exposing
them to this diverse range of scenarios, we enable NNs to learn and make predictions
more accurately. This approach has two benefits: it improves our understanding of
complex systems, and it allows NNs to solve real-world problems by leveraging the
knowledge gained from the simulations.

The simulations of bloodflow are enabling us to research hemodynamics, the study
of blood flow within the vascular system. This dynamic process ensures continuous
circulation of oxygen, nutrients, and waste products throughout the body. We can
visualize the vascular system as a complex transportation network, where RBCs)act as
carriers for this vital fluid. The heart, functioning as the central pump, propels blood
through the network, creating a never-ending cycle of delivery and return.

Understanding the intricate details of blood flow within the network is crucial for di-
agnosing and treating cardiovascular diseases. Computational Fluid Dynamics (CFD)
[32] offers a sophisticated approach to studying hemodynamics. CFD uses numerical
methods and algorithms to create digital simulations of fluid flow. This functions as a
digital laboratory, allowing researchers to explore the complexities of blood circulation
without the need for complex mathematical models. By simulating various scenarios,
CFD provides valuable insights into the behavior of blood flow within our vascular

system.

18
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4.1 Fundamentals of Computational Fluid Dynamics

The core of CFD lies in mathematical models capturing fluid dynamics principles, with
the Navier-Stokes equations forming the theoretical foundation [136]. These equations
describe the conservation of mass and momentum in fluids, providing the mathematical
basis for CFD simulations. In simpler terms, they explain how fluids behave and
interact.

Geometric modeling translates the complex world of RBCs into a digital one. Med-
ical imaging data (MRIs, CT scans) are used to represent RBC shapes and branching
patterns. Imagine creating a digital landscape mirroring the intricate details of the
human vascular system. This geometric modeling provides the virtual canvas for CFD
simulations.

Fluid dynamics, governed by continuous mathematical equations, undergoes a trans-
formation in CFD through discretization. This involves breaking down smooth curves
into manageable segments. Meshing, or creating a grid over the geometric model,
facilitates this process. Discretization translates the continuous language of fluid dy-
namics into a series of calculable steps, allowing computers to perform mathematical
computations.

CFD relies on numerical methods like finite difference, finite volume, and finite el-
ement methods to convert mathematical abstractions into tangible simulations. Each
method offers a unique approach to approximating solutions to the discretized equa-
tions. Essentially, these methods enable computers to understand and simulate com-
plex fluid phenomena.

Simulating blood flow in the digital domain requires setting the stage with boundary
conditions. These define the rules for how simulated blood flow interacts with virtual
RBC walls. Parameters like blood velocity, pressure distributions, and RBC wall prop-
erties act as guiding principles. This section explores how these boundary conditions
are established, influencing the behavior of the simulated fluid and reflecting real-world

interactions within RBCs.

4.2 Components of Computational Fluid Dynamics

Simulations

Well-defined boundary conditions are essential for accurate CFD simulations [44].
These conditions specify the interaction between simulated blood flow and the virtual
walls representing red blood cells (RBCs). Parameters like blood velocity, pressure dis-
tributions, and RBC wall properties guide the behavior of the simulated fluid, reflecting

real-world interactions within the vascular system.
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CFD simulations generate a wealth of hemodynamic parameters that provide in-

sights into blood flow behavior. These parameters include:

e Blood velocity: quantifies the speed of blood flow.

e Pressure distributions: visualize pressure variations within the simulated blood

flow.

e Shear stress: represents the force experienced by RBCs due to blood flow.

By analyzing these parameters, researchers gain a comprehensive understanding of
how blood interacts with RBC walls and the forces exerted on them. This section ex-
plores the significance of these hemodynamic parameters in unraveling the complexities
of blood circulation.

CFD simulations extend beyond simulating healthy blood flow. They allow re-
searchers to create digital models of cardiovascular diseases like atherosclerosis, steno-
sis, and aneurysms [113]. These can be incorporated into the virtual laboratory, trans-
forming it into a diagnostic tool. By introducing pathologies into a digital represen-
tation, researchers can analyze their impact on blood flow dynamics. This section ex-
plores how CFD simulations act as a virtual microscope, offering insights into deviations
from normal blood flow patterns and providing a diagnostic lens into cardiovascular
diseases.

Advancements in medical imaging and computational techniques enable patient-
specific CFD simulations. These simulations are no longer limited to generic models;
they can now incorporate individual anatomical and physiological variations. This
allows for simulations tailored to the unique characteristics of a specific patient. This
section delves into the evolution towards personalized medicine, exploring how patient-
specific simulations enhance our understanding of individual variations in blood flow
dynamics and pave the way for tailored medical interventions.

CFD simulations can act as a virtual treatment planner, offering insights into poten-
tial outcomes of medical interventions like stent placements and bypass surgeries [108|.
This section navigates the role of CFD simulations in treatment planning, elucidating
how they contribute to decision-making processes in clinical settings. By predicting
the hemodynamic consequences of interventions, CFD becomes an invaluable tool for
clinicians, aiding in devising personalized and effective treatment strategies.

Beyond research, CFD simulations are finding their way into practical clinical ap-
plications. Doctors can potentially access virtual dashboards that provide insights into
a patient’s unique blood flow dynamics. CFD is transcending its research origins and
offering tangible benefits in diagnosis support and disease management. By bridging

the gap between theoretical knowledge and real-world applications, CFD emerges as a
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transformative force in the clinical landscape, enhancing our ability to understand and

address cardiovascular challenges.

4.3 Applications of Computational Fluid Dynamics

in Blood Flow Simulations

CFD simulations in blood flow analysis offer valuable insights for personalized medicine.
These simulations move beyond generic models by incorporating a patient’s unique
anatomy using medical imaging data like MRI or CT scans [29, 35|. By creating a
tailored digital representation of the patient’s vasculature, CFD provides clinicians with
a nuanced understanding of blood flow patterns, facilitating more precise treatment
planning.

In treatment planning for cardiovascular diseases, CFD simulations act as a pow-
erful tool for predicting outcomes of interventions like stent placements and bypass
surgeries. Clinicians can virtually rehearse these procedures, gaining insights into po-
tential hemodynamic consequences. This allows for tailored interventions based on a
patient’s specific hemodynamic profile.

The integration of CFD from research to clinical applications is transformative. It
offers real-time insights into a patient’s blood flow dynamics, supporting diagnosis and
disease management. As CFD becomes an useful tool in clinical workflows, it enhances
diagnostic accuracy and facilitates the development of personalized treatment strategies
for cardiovascular challenges [103].

The applications of CFD in blood flow simulations open exciting possibilities for
future research. The evolution of personalized medicine, driven by patient-specific
simulations, fosters further exploration. Researchers are investigating the integration
of CFD with emerging technologies like artificial intelligence and machine learning to
enhance predictive capabilities. However, challenges like model validation and compu-
tational resource demands remain at the forefront of research. As CFD continues to
evolve, its role in shaping the future of cardiovascular research and clinical practice be-
comes increasingly vital, offering a dynamic landscape for exploration and innovation.

Model validation is crucial for ensuring the reliability of CFD simulations [134].
Experimental data, obtained through techniques like Doppler ultrasound or MRI, serves
as the benchmark for comparing simulation results. This iterative process of validation
ensures that virtual representations align with physical reality, instilling confidence in
the accuracy and predictive capability of CFD simulations.

The pursuit of high-fidelity simulations presents a challenge in terms of computa-
tional resources. Increased simulation accuracy demands greater computational power.

Researchers are continuously seeking to optimize algorithmic efficiency and parallel pro-
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cessing techniques to navigate the delicate balance between simulation accuracy and

the feasibility of computational resources.

4.3.1 Modeling Red Blood Cells Properties

Blood flow interacts with the mechanical properties of red blood cell (RBC) walls,
introducing complexity known as fluid-structure interaction (FSI) [51]. Modeling this
interaction accurately presents a significant challenge. RBCs are not rigid; they exhibit
elasticity and deform in response to fluid forces. Capturing this two-way influence
between blood flow and RBC walls necessitates sophisticated modeling techniques [42].
FSI simulations aim to harmonize the fluid dynamics of blood with the structural
mechanics of RBCs, contributing to a comprehensive understanding of cardiovascular
dynamics.

A defining characteristic of RBCs is their elasticity, which influences their response
to varying pressures and blood flows. Incorporating this elasticity into CF'D simulations
increases complexity. Accurate representation of RBC properties requires understand-
ing how they deform under the pulsatile nature of blood flow. This challenge involves
not only modeling elasticity but also integrating it seamlessly into simulations. Re-
searchers strive for a balance between computational efficiency and capturing realistic
RBC elasticity, a crucial consideration for precise hemodynamic simulations.

Modeling RBC elasticity presents challenges. Balancing computational efficiency
with capturing realistic behavior is a key consideration. Simulations need to accurately
represent how RBCs deform under pulsatile blood flow while remaining computation-

ally feasible.

4.4 ESPResSo Simulation Tool

The ESPResSo Simulation Tool [46] is a software designed for simulating blood flow
dynamics within the human cardiovascular system. Developed as a computational
tool, it employs advanced numerical methods to simulate and analyze the behavior of
blood within RBCs. This tool plays a crucial role in enhancing our understanding of
hemodynamics, providing insights into the complexities of blood circulation.

The primary purpose of the ESPResSo Simulation Tool is to contribute to the
field of CFD with a specific focus on blood flow. It is significant for its ability to
virtually model and simulate the movement of blood, allowing researchers and medical
professionals to gain valuable insights without resorting to traditional, more invasive
methods.

This simulation tool is equipped with features that enable accurate representation

of RBCs and their dynamics. It can consider factors like fluid-structure interaction,
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capturing how RBCs deform under the influence of blood flow. The tool also accounts
for the elasticity of RBCs, an essential characteristic in understanding their response

to varying pressures and flows.

4.4.1 Applications in Patient-Specific Simulations

A notable application of the ESPResSo Simulation Tool is its capacity for patient-
specific simulations [93|. By incorporating individualized anatomical and physiological
data from medical imaging, the tool can create simulations tailored to a specific patient.
This personalized approach is valuable for clinicians in devising treatment strategies
that consider the unique characteristics of each individual.

In treatment planning, the ESPResSo Simulation Tool becomes a virtual laboratory,
allowing practitioners to predict the outcomes of medical interventions. Whether it’s
stent placements or bypass surgeries, the tool facilitates a digital rehearsal, offering
insights into how these procedures might impact blood flow. This predictive capability
aids clinicians in making informed decisions about the most suitable interventions for
their patients.

Despite its advantages, the ESPResSo Simulation Tool faces challenges. Model
validation is crucial, emphasizing the need for comparison with experimental data
to ensure the accuracy of simulations. Additionally, the demand for computational
resources, especially in high-fidelity simulations, and the consideration of fluid-structure
interaction and vessel elasticity present ongoing challenges that researchers aim to
address for further improvements.

The ESPResSo Simulation Tool represents an important step in the evolution of
blood flow simulations. Future directions may involve the integration of artificial intel-
ligence and machine learning to enhance predictive capabilities. Researchers continue
to explore ways how to validate and optimize the model, ensuring that the tool evolves
to meet the increasing demands of precision medicine and contributes to advancements

in cardiovascular research and clinical practice.

4.5 General Description of the Current Model

In fluid dynamics simulations, ESPResSo employs a Lattice-Boltzmann method [9] to
model the behavior of fluids. In this method, the fluid is represented using a fixed
Eulerian grid, where the movement of the fluid is computed as a flow at each point
within this Eulerian grid. Objects immersed within the fluid are represented using a
Lagrangian grid, which moves in tandem with the simulated fluid. The fluid exerts
forces on the immersed objects, represented by the Lagrangian grid points, originating

from the Eulerian grid, and these forces are calculated as averages of the Eulerian
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grid points. The interaction between immersed objects and the fluid is bidirectional,
meaning that the forces acting on the immersed objects by the fluid are evaluated in a
similar manner to the forces exerted by the immersed objects on the fluid [34].

A critical component of the ESPResSo model involves the modeling of red blood
cells (RBCs). RBCs constitute approximately 45% of the volume fraction, making
their accurate representation crucial for the model’s proper functioning.

Within the ESPResSo framework, RBCs are modeled as a membrane filled with
fluid. The membrane itself is represented as a triangulation of points interconnected
by elastic bonds. The elasticity of these bonds is defined by experimentally obtained
elastic coefficients.

The surface and volume properties of RBCs incorporated into the model are com-
plemented by parameters that define the interaction between macroscopic objects im-
mersed in the fluid. There are two primary types of interactions at play. First, there
is a repulsive potential between two bodies, which prevents overlap of the grids of two
immersed bodies during collisions and compels them to bounce off each other. The
second type is adhesion, representing the ability to form bonds between two objects in
the bloodstream - either between two RBCs or between a RBC and another immersed
object.

In the context of this research, ESPResSo, an open-source software for molecular
dynamics simulations primarily used in the fields of chemistry, physics, and molec-
ular biology, serves as the numerical model. The research group CIF has extended
ESPResSo with a module for modeling elastic objects. The core computations are
carried out in C++, while the user interface for simulation execution is programmed
in Python.

Blood is represented as a suspension of fluid with embedded solid particles. The flow
of blood in microfluidic devices is simulated using the Lattice-Boltzmann method [114],
with the continuous fluid discretized into discrete points located on a fine Eulerian grid.
This approach offers the advantage of relatively low computational demand. Embedded
objects are depicted using a Lagrangian grid that moves along with the modeled object,
and interactions between the fluid and embedded objects are taken into account. This
means that the forces exerted by an embedded object on the fluid are evaluated in a
similar manner to the forces exerted by the fluid on the embedded object.

Research in the domain of modeling elastic objects in blood has primarily focused
on RBCs, which constitute the largest solid component of blood, approximately 45%
[67]. The RBC model is discrete, involving the triangulation of the object’s surface
(RBCs). The elastic properties of RBC are determined by five elastic moduli: the elas-
tic modulus, bending modulus, local area preservation modulus, global area preserva-
tion modulus, and volume preservation modulus, each with its specific stiffness values,

calibrated through a stretching experiment.
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The numerical model also encompasses settings for various interactions, including
the interaction between cells and the channel surface, self-interaction of embedded
objects, and interactions between embedded objects. The details of the interaction of
solid objects are elaborated in the relevant research work.

Additionally, a model of a cell with a nucleus, containing cancer cells, is currently
in the development and validation process.

In the simulation experiments utilized, the microfluidic device is represented as a
rectangular channel, with blood flowing from left to right along the horizontal x-axis. In
this direction, the channels are periodic, meaning that once a cell exits the simulation
channel, it re-enters from the other side.

Various experiments require different configurations of the numerical model depend-
ing on the studied properties and phenomena. The basic parameter settings for RBC
and the fluid in each NN model are provided in the section describing the dataset.

All simulation experiments are executed through the open-source software ESPREesSo
[14], employing its Lattice-Boltzmann and Object-in-fluid [CIF] modules. Blood flow
simulations typically encompass two core components: the fluid and the cell membrane.
These elements are interrelated and interact via forces.

The Lattice-Boltzmann method governs the fluid component, while the cell mem-
brane is modeled using a spring network, with their connection maintained through
a dissipative version of the Immersed Boundary Method (IBM). A schematic repre-
sentation of the RBC model and the individual elastic forces are depicted in Figure
4.1.

Elastic forces
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Figure 4.1: Schematic representation of the cell membrane. Each individual cell is

modeled by a spring network of boundary points bound by elastic interactions.

The red blood cells were represented as a surface mesh with 374 nodes. In their
relaxed state, they assumed the typical biconcave shape with dimensions of 7.82 x
7.82 x 2.58 um and a volume of 90.75 um3. These cells were filled with the same fluid
as their surroundings. To model the elastic properties of the cell membrane, five distinct
types of elastic forces were employed, each corresponding to one modulus of elasticity

and its corresponding parameter: modulus of elasticity (preservation of edge length),
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modulus of bending (preservation of angles between adjacent triangles), local modulus
of area preservation, global modulus of area preservation, and volume preservation
modulus. A schematic representation of the RBC model and the individual elastic
forces is illustrated in Figure 4.1. The calibration of elastic coefficients for healthy and
well-deformable RBCs and their subsequent validation are detailed in [56].

The simulation model utilized the lattice-Boltzmann method to represent the fluid,
a spring network model to simulate the cell membrane, and a dissipative version of the
Immersed Boundary Method (IBM) to connect them. In addition to the fluid force,
elastic forces were exerted on the cell mesh points, evaluated from the deformation
of the cell. The resulting force F’tot acted as the driving force, governed by Newton’s

equation:

02T (t)
ot?

where m represents the mass of the mesh points. The sources of these forces in-

m = Fiot,

cluded the elasto-mechanical properties of the cell membrane, fluid-cell interaction, and

possibly other external stimuli.

4.6 Using Simulation Model in Thesis

Unfortunately, there is a shortage of available blood flow recordings, and the limited
video quantity is insufficient for effective NN training, even with data augmentation
methods. An alternative approach is to employ computational simulations based on a
numerical model tailored to the experimental requisites, including desired blood flow
characteristics and structure - ESPREsSo. Computational simulations provide a more
comprehensive understanding of the behavior of the examined blood flow compared to
restricted video recordings. Consequently, the incorporation of computational simula-
tions into the study of hemodynamics and the advancement of novel diagnostic tech-
niques holds substantial significance. The simulation model employed in this research
extends ESPResSo, representing blood cells as deformable entities within a fluid flow.
The model’s validity is consistently assessed by comparing simulation results with lab-
oratory experiments |70]. Utilizing simulations enables the generation of a substantial
dataset for NN training, particularly from video analyses of such experiments which
we laverage in Chapters 6 and 7.

Despite being a simulation, this model allows us to mimic real experiments and
even adjust computational outputs to match simple image recordings from in vitro

experiments.



Chapter 5

Neural networks for sequential data

5.1 Neural Networks

Neural Networks (NNs) are a foundational paradigm within machine learning and ar-
tificial intelligence [112]. They are inspired from the complicated architecture and
functioning of the human brain, making them versatile tools capable of addressing a
wide array of complex tasks. At their core, Ns consist of interconnected artificial neu-
rons, each serving as an information processor and transformer. The versatility and
applicability of NNs extend across diverse domains, including image and speech recog-
nition, natural language processing, and reinforcement learning, thereby establishing
their central role in modern technological landscapes.

In our investigation, by employing NNs, we aim to predict and class. Our research
focused on comparing the capabilities of models with 3D information and its 2D pro-
jections based on video recordings view.

To leverage the power of NNs, in our research we use Tensorflow library [3] in

Python as a main tool to implement our NN models.

5.1.1 Neural Network Components and Architecture

The fundamental unit of a NN is the artificial neuron, designed to emulate the basic
functionality of biological neurons. These neurons receive input, perform mathematical
operations, and generate outputs. A NN is structured hierarchically into layers, each
with its distinct function:

Serving as the network’s initial point of interaction, the input layer is responsible
for receiving and processing raw input data. Each neuron in this layer represents a
specific feature or attribute of the input data, acting as the sensory gateway to the
network’s processing.

NNs typically incorporate one or more hidden layers, positioned between the input

and output layers. These hidden layers play a critical role in enabling the network to
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learn and model complex relationships within the data. The term "hidden" signifies
that the outputs of these layers remain hidden and serve as intermediary constructs in
the network’s information processing cascade.

The ultimate layer in the hierarchy is the output layer, where the NN produces
its final predictions or classifications. The number of neurons within the output layer

adapts to the specific requirements of the task at hand.

5.1.2 Learning and Training Process

The NN functionality revolves around its capacity to adapt and enhance its perfor-
mance through the process of learning [127]. During the training phase, NNs undergo
a critical process known as backpropagation. The training process unfolds through
several steps.

The training process begins with the initialization of the parameters of each neuron,
including weights and biases. These parameters are set to random values.

With the parameters initialized, data traverses the network in the forward direction.
Neurons within each layer execute a weighted summation of their inputs, followed by
the application of an activation function. The output from each neuron proceeds to
the subsequent layer, facilitating the cascade of information processing.

The network’s final output is compared to the actual target values, enabling the
computation of an error or loss. This error serves as a quantifiable measure of the
disparity between the network’s predictions and the ground truth.

Subsequently, the error is propagated backward through the network, leading to the
adjustment of the weights and biases of each neuron. This iterative process is designed
to minimize the error and improve the network’s predictive accuracy. Optimization
algorithms, such as gradient descent, are commonly employed to drive this weight
adjustment process.

The training continues until the network’s performance, as indicated by the error,
reaches an acceptable level or converges to a minimum. This convergence signifies that

the network has effectively learned the underlying patterns in the data.

5.1.3 Depth and Complexity

NNs exhibit varying levels of depth, with deep networks being commonly referred to as
Deep Neural Networks (DNNs). The depth of a network is determined by the number
of hidden layers it incorporates. Deep networks are capable of modeling complicated
and nonlinear relationships within data, making them particularly suitable for tasks

requiring complex feature extraction and abstraction.
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Input Layer Hidden Layers Output Layer

Figure 5.1: Simple NN schema.

5.1.4 Applications of Neural Networks

The versatility of NNs is vividly manifested in their widespread applications [4, 12]:

NNs, particularly deep learning models, exhibit remarkable proficiency in discov-
ering complex patterns and features embedded within images. This capability roots
from the natural hierarchical structure of NNs, where layers of interconnected neurons
progressively extract and abstract information. In the context of image recognition
and classification tasks, NNs excel at hard complex details, shapes, and contextual
relationships within visual data. The convolutional layers of CNN, for instance, are
designed to automatically learn hierarchical representations of visual features, start-
ing from simple edges and textures and progressing to more complex object parts and
configurations. This hierarchical feature extraction allows NNs to not only identify
individual objects in images but also to grasp the broader context and relationships
among different elements. This adaptability makes NNs a powerful tool in various
domains, from computer vision applications like facial recognition and autonomous ve-
hicles to medical imaging for diagnosing diseases based on visual data. The capacity of
NNs to excel in image analysis underscores their versatility and effitiency in addressing
diverse challenges related to object identification and pattern recognition within the
visual domain.

In natural language processing (NLP), NNs are instrumental in a multitude of
tasks, including language modeling, text generation, sentiment analysis, and machine
translation. They exhibit an unparalleled ability to capture the contextual nuances of
words and sentences, rendering them invaluable in the understanding and generation

of human language.
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NNs play a pivotal role in converting spoken language into text, enabling voice
assistants, transcription services, and numerous other applications. Their adeptness
lies in their capacity to navigate the intricacies of sequential audio data. This area is
called speech recognition.

In the domain of reinforcement learning, NNs form the foundation for training in-
telligent agents to make sequential decisions. This underpins significant advancements
in robotics, autonomous systems, and game playing.

NNs represent the cornerstone of current machine learning and artificial intelligence,
mirroring the neural processes of the human brain. Their hierarchical architecture, the
intricacies of the training process, and their ability to handle depth render them useful

tools in the modern technological world.

5.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [135] form a specialized and dynamic category
purpose-built for the complex processing of sequential data. In contrast to the tradi-
tional feedforward NNs, RNNs introduce a transformative element through the incor-
poration of recurrent connections. These looped connections anaible RNNs the unique
capability to maintain a form of memory or state, making them performing very well
in an array of tasks, particularly the analysis of sequential data. This extends to do-
mains as diverse as natural language processing, time series prediction, and speech

recognition.

5.2.1 Fundamental Characteristics of RNNs

RNNs demonstrate an proficiency in handling sequential data, wherein the order of data
points is of primary significance. Such sequences encompass a wide spectrum, spanning
sentences in natural language, time series data, and audio signals. RNNs stand as
versatile instruments for analyses the temporal evolution of information natural to
these data forms.

The characterisric feature of RNNs is their recurrent connections. These intercon-
nections provide a channel through which information can flow from one time step
in the sequence to the next. This cyclical data flow mechanism enriches RNNs with
the invaluable ability to maintain a state or memory of prior inputs, allowing them to
establish temporal contextual quality necessary in the analysis of sequential data.

RNNs are designed to reveal the complex dependencies embedded within data.
They are focused on recognizing patterns and relationships that evolve and develop
over time — a fundamental characteristic critical to solving a variety of real-world

problems, from sentiment analysis to stock market forecasting.
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5.2.2 Challenges and Progress in RNNs

Despite their effectiveness, RNNs face challenges, as discussed in [10], with a notable
hurdle known as the vanishing gradient problem. This challenge becomes evident when
training RNNs on lengthy sequences, leading to excessively small gradients during
backpropagation for weight updates. The consequence is a hindered learning process,
making it tough for the network to grasp long-range dependencies within the data.

To address this issue, advanced RNN architectures have been introduced, including
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU).

LSTMs are equipped with specialized mechanisms designed to manage information
over extended time periods. They incorporate three essential gates—the input gate,
output gate, and forget gate—that work together to control information flow within
the network. LSTMs excel in capturing long-term dependencies, gaining recognition
in various applications such as machine translation and speech recognition.

GRUs present a more streamlined rendition of the LSTM, engineered to deliver
comparable results while conserving network parameters. They incorporate reset and
update gates, playing a pivotal role in governing information flow. GRUs are particu-
larly well-suited for applications requiring a delicate balance between memory capacity

and computational efficiency.

5.2.3 Long Short-Term Memory

LSTM, which stands for Long Short-Term Memory [115], is a complex NN architecture
designed to overcome the limitations of traditional RNNs when dealing with sequential
data. Understanding LSTM can be challenging, especially for the concept of gates and
cell state. This discussion aims to shed light on LSTM and its essential components.

Various issues that RNNs encounter are solved by LSTM, notably the challenges of
long-term dependencies and the vanishing or exploding gradient problems. At the core
of LSTM lies its unique cell state, which acts as a form of memory for the network,
enabling it to retain important information from the past.

The fundamental structure of LSTM includes three crucial gates:

e Input Gate: This gate controls what new information will be stored in the cell
state (4.1).

e Forget Gate: The forget gate determines what information should be discarded
from the cell state (4.2).

e Output Gate: The output gate regulates the activation for the final output of
the LSTM block at a given timestamp (4.3).
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These gates in LSTM employ sigmoid activation functions, which output values
between 0 and 1. In most cases, these values are either 0 or 1. The choice of the sigmoid
function for gates is strategic because it ensures that the gates yield only positive values,
offering a clear decision regarding whether to retain or discard a particular feature. In
this context, "0" means the gates block everything, while "1" signifies that the gates
allow everything to pass through. The equations and explanation of LSTM is described
in 8:

The whole proces can be graphically seen in Figure 5.2
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Figure 5.2: LSTM block at timestamp ¢

In Chapter 6, RNNs are employed to take advantage of their capability to cap-
ture long-term dependencies in sequential data. This choice allows us to leverage the
strength of RNNs in preserving information over time, making them effective tools for

analyzing and predicting patterns in sequences of data.

5.3 Convolutional Neural Networks

In NNs, CNNs [74] are a specialized tool tailored for the processing of grid-like data,
with images and videos standing as its most prominent use cases. These networks
represent a profound innovation deeply ingrained in their exceptional ability for image

recognition, object detection, and a vast spectrum of computer vision tasks.

5.3.1 Key Components and Characteristics of CNNs

The fundamental advantage of CNNs resides in the application of convolutional layers, a

transformative mechanism responsible for automatic feature learning from input data.
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These layers engage in convolution operations, a process that entails the systematic
deployment of filters, also known as kernels 5.3, across the input data. This strate-
gic deployment of kernels is instrumental in revealing complex patterns, structures,
and distinctive features embedded within the data. By orchestrating these convolu-
tion operations, CNNs progressively assemble a hierarchical representation of the data,

progressively transitioning from basic features to increasingly complex and abstract

structures.
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Figure 5.3: Simple CNN kernel.

CNNs have the capability to create a hierarchical representation of input data.
The lower layers, positioned at the beginning of the network, specialize in the capture
of low-level features such as edges, corners, and textures. These basic components
constitute the building blocks of more complex visual constructs. Subsequently, the
higher layers synthesize these low-level features, fusing them into more advanced and
abstract structures. The hierarchical nature of CNNs mirrors the human visual pro-
cessing system, where elemental visual components evolve into coherent and complex
percepts.

In their architecture, CNNs often incorporate pooling layers, a strategic compo-
nent engineered to downsample the feature maps produced by the convolutional layers.
Pooling operations involve selecting the most characteristic information while system-
atically discarding redundant or less relevant details. This process holds profound
implications for computational efficiency, as it trims the computational load, rendering
the network more manageable while still retaining the important information necessary
for accurate analysis.

The culmination of the CNN architecture is manifested through the deployment of
fully connected layers. These layers receive the extracted feature representations ac-
quired through the network’s previous layers. Their role assumes particular significance
when it comes to tasks such as classification, regression, or any form of decision-making
grounded in the knowledge encapsulated within the learned features. These layers es-

sentially synthesize the acquired knowledge into actionable decisions, be it classifying
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an image into predefined categories or making predictions based on the collected in-

sights.

5.3.2 Applications of CNNs

The versatility of CNNs finds expression in a wide-range of applications [41], due to
their efficiency in processing grid-like data.

At the image recognition, CNNs stand as the foundation upon which systems for
identifying and classifying objects, patterns, and structures within images are built.
They have emerged as the base of computer vision, revolutionizing image processing.

In image classification tasks, CNNs seamlessly segregate images into predefined
categories. Applications ranging from species differentiation in the natural world to
product classification in the retail sector benefit significantly from their categorical
power.

The capability of CNNs to detect and localize objects within images or video frames
is a game-changer. This technology has expanded across domains such as autonomous
vehicles, surveillance systems, and robotics, significantly enhancing object tracking and
recognition.

CNNs exhibit remarkable utility in the complex domain of image segmentation, a
process aimed at partitioning an image into distinct regions or segments. This tech-
nology is of primary importance in the fields of medical imaging, scene understanding,
and image manipulation, offering unprecedented capabilities for image analysis and
annotation.

The dynamic ability of CNNs extends to video analysis, particularly in tracking
objects, recognizing actions, and comprehending events within video sequences. This
multifaceted capacity empowers video surveillance systems, content summarization al-
gorithms, and video indexing technology.

Natural capability of CNNs to automatically extract hierarchical features from grid-
like data forms the foundatio upon which applications such as image recognition and
object detection rest. The enduring evolution of CNN architectures and techniques
promises to further accentuate their utility, forging new frontiers of application across
diverse domains and industries. These networks are a will to the enduring symbiosis

of science, engineering, and creativity in artificial intelligence and machine learning.

5.3.3 Layers Utilized in Constructing CNNs

CNN architecture, comprises a sequence of layers, with each layer effecting a transfor-
mation from one volume to another through a differentiable function. These layers,

which can be categorized into distinct types, are integral components in the construc-
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tion of CNN (Figure 5.4). To illustrate their functionality, consider running a CNNS
on an image with dimensions h * w * d.

Input Layer: Serving as the initial point where input is fed into the model, this
layer typically receives images or sequences of images. It takes in the raw input, such
as an image with a width of w, a height of h, and a depth of d.

Convolutional Layers: These layers are responsible for feature extraction from
the input dataset. They apply learnable filters, known as kernels, to the input images.
These kernels are typically smaller matrices, such as 2x2, 3x3, or 5x5 in size. The
filters traverse the input image data, computing the dot product between kernel weights
and the corresponding input image patch. The result of this process is referred to as
feature maps.

Activation Layer: By introducing an activation function to the output of the
preceding layer, activation layers introduce nonlinearity to the network. These lay-
ers apply element-wise activation functions to the output of the convolution layer.
Common activation functions include Rectified Linear Unit (RELU): max(0, x), Tanh,
Leaky RELU, and more.

Pooling Layer: Periodically incorporated within CNNs, pooling layers serve to
reduce the volume size, leading to faster computations, reduced memory usage, and
the prevention of overfitting. Two prevalent types of pooling layers are max pooling
and average pooling.

Flattening: Following the convolution and pooling layers, the resultant feature
maps are flattened into a one-dimensional vector. This transformation enables them
to be forwarded to a fully connected layer for classification or regression tasks.

Fully Connected Layers: These layers receive input from the preceding layer
and are responsible for computing the final outcome for the classification or regression
task at hand.

Output Layer: The output from the fully connected layers is subsequently sub-
jected to a logistic function, such as sigmoid or softmax. This conversion process
assigns probability scores to each class, serving classification tasks by determining the
likelihood of the input belonging to a specific class.

In Chapter 6, we use CNN due to their remarkable capability to recognize and
understand diverse features and patterns present in image data. This choice allows us
to harness the power of CNNs to enhance our understanding and interpretation of the

details within the images under consideration.
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Figure 5.4: Simple CNN architecture

5.4 Combination of RNN and CNN

The synthesis of RNN and CNN [55] represents a potent architectural paradigm poised
at the confluence of advanced deep learning techniques. This synergistic fusion of
NNs combined with the respective strengths of RNNs and CNNs, creating a dynamic
framework capable of effectively addressing the multifaceted challenges characteristic

in processing a diverse array of data types.

5.4.1 Image Captioning

One of the most important applications of CNN-RNN hybrids is image captioning.
Within this area, a CNN takes center stage as it undertakes the formidable task of
image analysis. The CNN performs an complex examination of the image, extracting
and encoding its visual features. These features, constituting the visual essence of the
image, are then seamlessly propagated to a RNN architecture.

The RNN, equipped with its complex capacity for sequential data processing, subse-
quently assumes the role of generating textual descriptions of the image. This dynamic
generative process is inspired by the contextual understanding of the image and its
components. The utilization of an RNN in this context eceeds the mere act of labeling
an image and ventures into the domain of automated image annotation, where the
interplay between the visual and textual domains enriches the interpretation of im-
ages. This innovation finds applications in content-based retrieval systems, adaptive

educational tools, and aids for the visually corrupt.
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5.4.2 Video Analysis

In the complex landscape of video analysis, CNN-RNN hybrids rise to the occasion to
use their capacity to seamlessly combine spatial and temporal analysis. This harmo-
nious combination of CNNs and RNNs is especially characteristic in the domains of
action recognition and video captioning.

The CNN component of the hybrid model assumes the role of a spatial feature
extractor, parsing each individual video frame to uncover complex patterns and struc-
tural information. These spatial features encompass objects, scenes, and contextual
elements within the frame. This spatial understanding serves as a critical foundation
for the subsequent temporal analysis.

The RNBN component excels at capturing temporal dependencies within the video
sequence. It processes the spatial features, sequentially modeling their evolution across
time. As a result, the hybrid model not only recognizes actions and events within the
video but is also well-poised to generate descriptive and contextually relevant captions
for the video sequences.

This innovation bears profound significance in the domains of video surveillance,
automated content summarization, and content indexing. It enables the automation of
the cumbersome task of video annotation and indexing, providing insights into actions,

events, and scenes without human intervention.

5.4.3 Neural Networks for Video Classification

Video classification entails attributing one or more labels to a video based on its content.
The use of NNs for video classification [59] has gained prominence owing to their
capacity to distinguish complex data patterns. CNNs prove particularly apt for video
classification tasks, as they effectively capture both spatial and temporal features.
CNNs comprise multiple layers of neurons trained to extract relevant features from
images or video frames.

Traditionally, video classification NNs undergo training on an extensive dataset of
labeled videos. These videos are divided into training and validation sets to measure
model performance. Diversifying the training data is achieved by applying various data
augmentation methods, such as flipping, rotation, and scaling. Furthermore, transfer
learning accelerates the training process by leveraging pre-trained models previously
trained on distinct datasets.

However, video classification poses challenges due to variations in lighting condi-
tions, camera perspectives, and object appearances. Domain adaptation techniques
address these issues by transferring knowledge from a source domain to a target do-
main.

video classification with NNs spans across various domains, including surveillance,
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entertainment, and healthcare. In the healthcare sector, video classification aids in
the analysis of medical videos, such as endoscopic videos, assisting in the detection of
anomalies and diagnosis. Assessing the performance of video classification using NNs
can be measured through metrics like accuracy, precision, and recall. The selection
of evaluation metrics hinges on the specific application and the relative importance of
different types of errors. Video classification using NNs is a dynamically evolving field
full with promising applications and associated challenges, spanning domains such as

surveillance, entertainment, and healthcare.

5.4.4 Strengths and Significance

The integration of RNNs and CNNs within the CNN-RNN hybrid framework is an
embodiment of the concept of synergy and complementarity. The strengths of CNNs
in spatial feature extraction are harmonized with the RNN’s ability to model temporal
dependencies, leading to a holistic understanding of data that is invaluable in diverse
applications.

This synergy allows hybrid models to develop a holistic understanding of data
by fusing spatial features and temporal context. This facilitates a deeper and more
context-aware analysis of complex information, especially in applications involving se-
quential and spatial data.

The cross-modal capabilities of CNN-RNN hybrids bridge the abyss between visual
and textual domains, allowing for a comprehensive synthesis of both modalities. This
is particularly beneficial in image captioning, where textual descriptions are generated
directly from visual data, leading to enhanced human-computer interaction.

In the dynamic domain of video analysis, the hybrid models demonstrate their
power in recognizing actions and events, offering insights critical to domains such as
security monitoring, content analysis, and automated indexing.

The integration of RNNs and CNNs within the CNN-RNN hybrid model repre-
sents a remarkable advancement in artificial intelligence and machine learning. Their
potential lies at the combination of deep learning and data analysis. The continued
enhancement of these hybrid architectures is ready to uncover new dimensions in data
processing and interpretation across a spectrum of applications in the fields of natural
language processing, computer vision, and beyond.

In our thesis, the combination of RNNs and CNNs is leveraged in Chapter 6.

5.4.5 ResNet

Residual Networks (ResNet) [49] are a class of CNN architectures, originally designed

for image classification, as illustrated in Figure 5.5. However, the versatility of ResNet
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extends to effective utilization in video classification by adapting it to process multiple
frames within a video sequence.

Conventional CNNs involve incremental processing of each layer’s output to extract
increasingly complex features from the input image. Nevertheless, as network depth
increases, the training process can become more formidable, potentially leading to the
vanishing gradient problem. This issue surfaces when gradients used for weight updates
dwindle significantly, hindering effective learning.

ResNet ingeniously addresses this concern by introducing residual connections be-
tween layers. These connections allow the network to effectively "bypass" certain layers,
enabling information to traverse these layers with minimal alteration. This ingenious
design circumvents the vanishing gradient problem, fostering more efficient learning.

In the context of video classification with ResNet, the network is applied to each
frame within the video sequence, and subsequently, the outputs from these frames are
merged to produce a final classification. The fusion of these outputs can be achieved
through methods like averaging or by implementing an attention mechanism to em-
phasize the most salient frames.

A widely adopted implementation of ResNet for video classification is the Two-
Stream ResNet. This architecture encompasses two distinct ResNet networks: one
dedicated to processing spatial information, capturing the visual appearance of objects
in the video, and the other tailored for processing temporal information, encapsulating
the motion of objects within the video. The spatial network independently processes
each frame, while the temporal network operates on pairs of frames to capture motion-
related information. The outputs from both networks are subsequently integrated to
yield a definitive classification.

Employing ResNet for video classification offers a effective approach due to its
capability to extract various features and its incorporation of residual connections,

effectively mitigating the vanishing gradient problem.
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Figure 5.5: Architecture of ResNet50 [1].
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5.4.6 EfficientNet

EfficientNet [119, 120] represents a family of CNNs meticulously engineered to maxi-
mize computational efficiency and parameter utilization in comparison to their prede-
cessors. This achievement is accomplished through the adoption of an innovative scaling
technique, which adapts the network architecture (as shown in Table 5.1) based on the
available computational resources.

EfficientNet can be effectively employed for video classification by adapting it to
process multiple frames within a video sequence. One approach involves the utilization
of a 3D CNN architecture, capable of capturing both spatial and temporal information
from the video frames.

To harness EfficientNet for video classification, we apply the 3D CNN to each frame
within the video sequence and subsequently consolidate the outputs from these frames
to arrive at a definitive classification. The consolidation process may involve techniques
such as output averaging or the implementation of an attention mechanism to prioritize
the most relevant frames.

One of the compelling advantages of using EfficientNet for video classification lies
in its exceptional computational efficiency and efficient parameter utilization. This
aspect is particularly crucial in scenarios with resource constraints, such as mobile de-
vices or real-time video analysis. Additionally, EfficientNet demonstrates outstanding
accuracy across a wide range of image classification tasks, promising applicability in
video classification.

However, several challenges are associated with leveraging EfficientNet for video
classification. Video classification often requires processing a significant number of
frames, which can be computationally demanding. Furthermore, EfficientNet may
not be as adept at capturing temporal information as specialized CNN architectures
explicitly tailored for video classification, like the Two-Stream CNN or the 3D ResNet.

Employing EfficientNet for video classification presents an enticing strategy due to
its computational efficiency and remarkable accuracy in image classification tasks. Nev-
ertheless, fine-tuning and optimization may be necessary to achieve peak performance
in video classification tasks.

Both of the architectures, ResNet and EfficientNet, are used in section 7 for video

classification.

5.5 Random forest

Random Forest [22, 110], a powerful machine learning model, stands out as a prominent
representative of ensemble learning techniques. It is particularly renowned for its ability

to handle complex classification and regression tasks with a high degree of predictive
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Stage Operator Resolution | Channels Layers
1 Conv3x3 224 x 224 32 1
2 MBConvl, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x 56 40 2
5 MBConv6, k3x3 28 x 28 80 3
6 MBConv6, k5x5 28 x 28 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 TxT 320 1
9 Convlxl & Pooling & FC TxT 1280 1

Table 5.1: EfficientNet v2 B0 architecture [119].

accuracy. At the heart of Random Forest’s appeal lies its capacity to aggregate the
predictions of multiple decision trees, resulting in a collective, consensus-driven model
that overcomes the limitations of individual classifiers. The structural and operational
principles of Random Forest are grounded in several key aspects. Decision trees serve
as the foundational building blocks within the Random Forest model. Each decision
tree is constructed through a recursive partitioning of the data into subsets, achieved by
evaluating the values of input features. These partitioning decisions are strategically
made to maximize the purity or homogeneity of each subset concerning the target
variable.

Random Forest excels in forming an ensemble of decision trees, creating a diver-
sified collection of classifiers. What sets this ensemble approach apart is its inherent
randomness. Notably, both the data subsets and the feature subsets used for training
are randomly selected with replacement, a technique commonly known as bootstrap-
ping. In classification tasks, the individual predictions of decision trees are harmonized
through a majority voting scheme, while in regression tasks, the predictions are col-
lectively averaged. The final prediction of the Random Forest model emerges as the
output of this voting or averaging process, benefiting from the wisdom of the ensemble.

A pivotal characteristic of Random Forest is the introduction of feature random-
ness. The model considers only a random subset of features at each split during the
tree-building process. This feature selection approach significantly contributes to decor-
relating the constituent trees within the ensemble, enhancing the overall model’s ro-

bustness.
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5.5.1 Algorithm: Sequential Steps

The Random Forest algorithm involves a series of steps to construct an ensemble of

decision trees for both classification and regression tasks.

Step 1: Subsampling Data and Features

Within the Random Forest model, a random subset of data points and a random subset
of features is chosen for the creation of each individual decision tree. Specifically, n
random records and m features are selected from the original dataset, which comprises

k data points.

Step 2: Construction of Individual Decision Trees

Each decision tree within the ensemble is independently constructed using the unique
subset of data and features chosen in Step 1. These individual trees are designed to

capture distinct patterns within the data.

Step 3: Output Generation from Decision Trees

Every decision tree in the ensemble generates an output or prediction based on its
unique training subset. These outputs collectively form the basis for the ensemble’s

final prediction.

Step 4: Final Prediction via Majority Voting or Averaging

The ultimate prediction made by the Random Forest algorithm depends on the task at
hand. For classification tasks, the final output is determined through majority voting,
where the most frequently predicted class across the ensemble is selected. In the case
of regression tasks, the final prediction results from averaging the outputs from all
individual decision trees (Figure 5.6).

Random Forest exhibits several essential characteristics that distinguish it from

other machine learning approaches.

e Diversity: Random Forest leverages diversity by not considering all attributes,
variables, or features when constructing individual trees. This diversity ensures

that each tree captures unique aspects of the data.

o Immunity to the Curse of Dimensionality: The algorithm is immune to the curse
of dimensionality as each tree works with a reduced feature space, mitigating

issues associated with high-dimensional data.



CHAPTER 5. NEURAL NETWORKS FOR SEQUENTIAL DATA 43

e Parallelization: Random Forest takes full advantage of parallelization, allowing
each tree to be independently generated using different data and attributes. This

parallel approach optimally utilizes computational resources.

o Train-Test Split: In Random Forest, there’s no need for explicit data segregation
into training and testing sets. Approximately 30% of the data is never seen by

any individual decision tree, ensuring robust generalization.

e Stability: The stability of Random Forest stems from its reliance on majority
voting or averaging. By aggregating predictions from multiple trees, the final

output becomes more resilient to noise and fluctuations in the data.

New sample

| l |

Result 1 Result 2 Result 3
| Majority voting / Averaging |

Random forest prediction

Figure 5.6: Random forest architecture

5.5.2 The Advantages of Random Forest

Random Forest’s enduring popularity and effectiveness can be summarized to several
keys [97]. The ensemble nature of Random Forest models is a natural defense against
overfitting, ultimately leading to elevated predictive accuracy across a spectrum of
diverse datasets.

The inherent randomness in feature and data selection, coupled with the diversity
of constituent decision trees, bestows upon Random Forest models a notable level of
robustness. This robustness enables the model to navigate the complexities of noisy

and outlier-ridden data. Random Forest models contribute to the interpretability of
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machine learning results by providing feature importance scores. These scores offer in-
sights into the contribution of each feature to the model’s predictive power, facilitating
model understanding and feature selection.

Random Forests have a remarkable aptitude for capturing non-linear and complex
relationships in the data. This versatility makes them suitable for a wide array of tasks,
transcending the boundaries of linear models. Random Forest models excel in their
ability to efficiently handle missing data, maintaining robust predictive performance

even when faced with data incompleteness.

5.5.3 Applications and Utility Across Domains

The versatility of Random Forest models translates into several applications across
diverse domains and industries. Random Forests are harnessed for a wide spectrum of
classification tasks, spanning image recognition, disease diagnosis, sentiment analysis,
and more. Their consensus-based approach enhances classification accuracy. In regres-
sion problems, Random Forest models find application in real estate price prediction,
financial forecasting, ecological modeling, and various contexts where precise numerical
predictions are required.

Random Forests are instrumental in anomaly detection and outlier identification.
They are commonly used in network security, fraud detection, and quality control
scenarios. The model’s ability to assign feature importance scores makes it a valuable
tool for feature selection, streamlining the process of identifying relevant and influential
features.

Bioinformatics, genomics, and proteomics are also the areas in which Random
Forests are used. They aid in the analysis of biological data, contributing to insights
in fields such as genetics and molecular biology. Within environmental sciences, Ran-
dom Forest models serve in ecological modeling, climate modeling, and remote sensing
data analysis. They are instrumental in understanding and predicting environmental
phenomena.

Random Forest stands as a robust and adaptable machine learning model renowned
for its high predictive accuracy and ability to address complex tasks. The ensemble
approach, the introduction of feature randomness, and the model’s versatility have
positioned it as a preferred choice across a wide spectrum of applications in diverse

industries.

5.5.4 Random Forests vs. Neural Networks

Random forests and neural networks are two of the most popular machine learning
algorithms. While both can be used for classification and regression, they have key

differences:
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Random Forest Neural Network

High accuracy Potentially higher accuracy than RF in some cases
Reduced overfitting Complex non-linear relationships

Interpretability Suitable for high-dimensional data

Fast training Black box nature - less interpretable

Linear relationships only Slow and computationally expensive traing

Table 5.2: Characteristics of Random Forest and Neural Network models

Choosing between a random forest and a neural network depends on the specific
task and available data. Random forests are a good option when interpretability and
speed are crucial. Neural networks are better suited for handling complex non-linear
relationships and high-dimensional data.

Beyond random forests and neural networks, other machine learning algorithms
exist, like XGBoost and CatBoost. These algorithms share similarities with random
forests but use different techniques to enhance accuracy and reduce overfitting.

CatBoost is used when dealing with a lot of categorical features. In our work, we use
either numerical or visual data and therefore, this algorithm is not a good choice. While
XGBoost excels at handling numerical data, it offers less interpretability compared to
Random Forests. Since a key consideration in choosing a model is interpretability to
counter the "black box" nature of neural networks, XGBoost might not be the optimal
choice in this case. Nevertheless, XGBoost is one of the best decision trees based

algorithms, therefore, we use it in this thesis.



Chapter 6

Determination of elasticity in straight

canal

The advantage of computational simulation models lies in the access to comprehensive
information about the motion of RBCs in the bloodstream, surpassing what can be
recorded during experiments in physical devices. RBCs, being elastic entities suspended
in blood plasma and constituting the predominant component of blood, are pivotal for
accurate blood flow simulations.

In this chapter, we employ the position data of surface points on red blood cells in
straight cannal as an input dataset for training neural networks. We present the results
of utilizing neural networks to assess the elasticity of RBCs within the bloodstream
from the numerical outputs of the simulation model.

The endeavor of determining the elasticity of RBCs using simulation experiments
was a subject of exploration in the research by [16]. Their primary objective was the
categorization of RBC elasticity into predefined classes. In this chapter, we extend this
line of inquiry, transforming it into a regression task. Here, our goal is to determine
the value of the regression function characterizing the elasticity of each individual
RBC. Our ultimate, albeit distant, ambition is to ascertain the elastic properties, or
elastic coefficients, of RBCs from video records of laboratory experiments. Within our
numerical model, the elasticity of RBCs is governed by five parameters, meticulously
detailed in Section 6.1.

For several reasons, including their robust physical interpretations and substantial
influence on the overall elastic properties of RBCs, we single out the triangulation edge
elasticity parameter (represented by the stretching coefficient k) as a pivotal factor.
You can find the precise values of these coefficients in Table 6.1. In this chapter, we
present a novel approach that employs machine learning methods to deduce the elastic
parameters of the cell membrane.

Our innovative approach leverages data derived from computer simulations based

46
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on laboratory experiments. This data offers exceptional accuracy, rendering it apt
for supervised learning. A notable advantage is that this dataset negates the need
for manual annotations, as the computer can autonomously handle this task. By
harnessing simulations, we can harness data suitable for input into neural networks.
While we have the option to use exclusively the data acquired from video analyses of
these experiments, we choose to also incorporate comprehensive simulation data for
methodological comparisons. The aim is to evaluate the quality of elasticity coefficient
estimations acquired from limited data compared to those obtained using the entire

simulation dataset.

6.1 Simulation Input Settings

Current research explores the application of a physically informed neural network, as
highlighted in prior works [69, 68]. In our thesis, we harness the implicit information
of machine learning models, ensuring alignment with physical principles.

The source data for estimating the ky coefficient via machine learning stem from
several simulation experiments. These simulations are meticulously aligned with real
experiments and have seen prior application in the study by [116].

In these simulations, a standardized channel was utilized, characterized by a cuboid
shape with four walls measuring 60 x 40 x 40 um. Periodic properties of the liquid flow
were established in the direction of the x-axis. The fluid was discretized into a three-
dimensional grid with a spatial resolution of 1 um. The liquid possessed a kinematic
viscosity of 1.3 x 107m?/s and a density of 1.025 x 103 kg/m3. Interaction between
the fluid and objects was maintained through a friction coefficient of 1.414 N, and ex-
ternal forces induced flow at values guaranteeing a maximum velocity of approximately
0.03m/s.

Interaction among red blood cells, known as cell-cell interaction, was modeled using
the membrane_ collision potential, characterized by parameters mc, = 0.01, mec, = 1.0,
and mc.,; = 0.4. Interactions between the cells and the channel walls were represented
by the softspnere potential, defined by parameters soft, = 0.00035, soft, = 1.0, and
S0 ftew = 0.5.

The geometry of red blood cells was captured using a surface mesh, comprising 374
nodes. In their relaxed state, these cells assumed the characteristic biconcave shape,
with dimensions of 7.82 um x 7.82 um x 2.58 uym, and a volume of 90.75 um?. Notably,
the cells were filled with the same fluid as in their immediate surroundings.

To model the elastic properties of the cell membrane, we incorporated five distinct
types of elastic forces. Each force corresponds to a specific modulus of elasticity and

an associated parameter. These moduli of elasticity encompass the preservation of
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edge length, preservation of angles between adjacent triangles (modulus of bending),
local modulus of area preservation, global modulus of area preservation, and volume

preservation modulus. For detailed values of the coefficients, please refer to Table 6.1.

Table 6.1: Overview of used simulation parameters.

coefficient value
coefficient of elasticity (ks): various
bending coefficient (ky): 3x 1079 Nm
local area conservation coefficient (kg;): 2x107° N/m
global area conservation coefficient (kq): 7x 107" N/m
volume conservation coefficient (k,): 900 N/m?

The same channel and fluid flow parameters were used in all simulations. The
simulation channel had the shape of a cuboid with four walls of dimensions 60 X
40 x 40pum. To ensure periodic properties of the liquid in the direction of the x-
axis, the fluid was discretized into a three-dimensional grid with a spatial step of
1um. The kinematic viscosity of the liquid was 1.3 x 107°m?/s, and the density was
1.025 x 103 kg/m3. To facilitate interaction between the fluid and objects, a coefficient
of friction of 1.414 N was utilized. External forces were applied to set the flow in
motion, ensuring a maximum velocity of approximately 0.03 m/s.

Cell-to-cell interactions, referred to as cell-cell interaction, were modeled using
the membrane collision potential with parameters mc, = 0.01, mc, = 1.0, and
mce = 0.4. Interactions between cells and the channel walls were described using the
soft sphere potential with parameters soft, = 0.00035, soft,, = 1.0, and soft.,; = 0.5.
Elastic coefficients for healthy RBCs used are listed in Table 6.2.

With malaria disease in mind, we focused on nine levels of RBC elasticity. First
level represent healthy RBCs, with the most elastic RBCs having a stiffness coefficient
(ks) of 0.005, and the least elastic RBCs with ks, = 0.3, which represent super-sfiff
RBCS. Malaria-infected cells at stage 3 of the disease have a k; value of 0.03 (The
value of k, = 0.03 was chosen based on the reduced elasticity observed in malaria-
infected cells at stage 3, as determined by an optical tweezers stretching experiment
[118]). The remaining two levels of RBC elasticity were distributed between healthy,

malaria-infected and super-stiff RBCs.

6.2 Description of Obtained Simulation Data

The initial arrangement of the platelets was random in the simulations, and the number

of simulation steps recorded was 3400 for Sim3a, Sim3b, and Sim3c, and 1240 steps
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Table 6.2: Overview of kg values in each simulation.

Simulation name | values of elasticity coefficients (k;)

Sim3a 0.3, 0.005, 0.03

Sim3b 0.15, 0.015, 0.009

Sim3c 0.225, 0.1, 0.05

Sim9a 0.005, 0.009, 0.015, 0.03, 0.05, 0.1, 0.15, 0.225, 0.3
Sim9b 0.005, 0.009, 0.015, 0.03, 0.05, 0.1, 0.15, 0.225, 0.3

To note

for Stm9a and Stm9b, which corresponded to RBC movement in the channel of about
5.5 mm. The recorded steps corresponded to every 2000 steps of the simulation, an
internal step of the simulation detailed enough for method training. Due to the need
to stabilize the flow in the run-up part of the experiment, the first 300 records of the
simulation outputs were not used. To create a balanced dataset, each type of red blood
cell, categorized by elasticity, was represented by an equal amount of data. In the Sim3
experiments, 9 types of elasticity were simulated, each with 6 red blood cells, and each
type had 3100 records. For Sim9, there were also 9 different types, with 6 blood cells
of each type and 940 records. In total, 54 red blood cells were simulated in both cases,
Sim3 and Sim9. A similar procedure was employed in the study [16].

In each internal simulation step of the ESPreSso module, the current position of each
non-stationary point in the blood flow, and therefore all red blood cell triangulation
points, are calculated. Given the vast range of this data, basic information about the
position and velocity of vital points of each blood cell was usually stored, including
the simulation step (cycle) number, the coordinates of the center of the simulated cell
[z,y, 2], the velocity of the center of the cell determined by its components in the
direction of the axes x,y, z, coordinates x,y, z representing the extreme points of the
triangulation of the cell (according to minimum and maximum coordinates along each
axis, as shown in 6.1), and the velocities of the extreme points of the cell determined
by its components in the direction of the x,y, z axes, as well as the volume or surface

area of the cell.

f
| 4 4

| 4

-

Figure 6.1: 3D RBC covering cube from the simulation and two 2D RBC covering

rectangles from the video.
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When selecting and editing the data, we considered what information we can obtain
from the actual video footage. While the information contained in the simulation
outputs allows us to determine the extreme points of the red blood cell in a real
experiment, other parameters such as the center of the cell, the speed of its movement,
the movement of the extreme points, the volume, or the total surface area of the cell
are much more challenging to obtain, if at all. Therefore, in our work, we focused on
using data that represents the projection of information from 3D into two-dimensional
space along the zy and zz axes. By subtracting the positions of the extreme points in
each axis’s direction, we could also derive information about the size of the rectangle
"bounding box" (or cube) that encloses the blood cell at each time step 6.1.

In the individual computational experiments intended for training machine learning
methods, we generally employed the following types of simulation data modifications

for input to the neural network:

e data to 2D according to xy axes
e data to 2D according to zz axes
e double projection of data into 2D along the xy and zz axes

e use of full 3D data along all three xyz axes

Table 6.3: Overview of used data sets.

dataset xyz

dataset xy xz

dataset xz

cuboid x min

(x,y,2)

(x,y,2)
cuboid _y min

(x,y,2)

(x,y.2)
cuboid z min

(x,,2)

(x,y.2)
X_X_size
y_y_size

Z_7_size

cuboid x max

cuboid y max

cuboid 7z max

cuboid x min
(x,y.2)
cuboid x max
(x,y,2)
cuboid y min
(x.y)
cuboid y max
(x.y)
cuboid z min
(x,2)
cuboid 7z max
(x,2)

X_X_size
y_y_size

7z 7 _size

cuboid x min

(x,2)

cuboid x max

(x,2)

cuboid z min

(x,2)

cuboid z max

(x,2)

X_X_size

7z 7 _size

dataset xy
cuboid x min
(x.y)
cuboid x max
(x.y)
cuboid y min
(x.y)

cuboid y max

(%)

X_X_size

y_y_size
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In each option, data along the z-axis was utilized because the fluid in the channel
flows primarily along this axis, making the effect of cell elasticity most observable.
However, data along all three axes was also used to verify the accuracy of the neural
network models and to determine how effectively we could extract information about

RBC elasticity from full simulation data.

6.2.1 Data Preprocessing and Augmentation

The dataset obtained from simulation experiments needed transformation to be suitable
for training the machine learning model.

Given that the simulation data aims to replace real video information, cell velocity
information is implicitly included based on the change in x-coordinate values in consec-
utive records. Thus, the resulting dataset was divided into time windows, equivalent to
a sequence of consecutive simulation records in video processing. The sequence length,
represented by the window size w, becomes a crucial hyperparameter for the model.

In computational experiments involving the training of individual neural networks,
window sizes from the set w = {5, 10, 20, 30, 40, 50} were used. After selecting w,
the entire dataset was divided into time sequences of size w, resulting in the training
data (xw, y;), where z,,; represents the time sequence, and y; is the actual value of the
elasticity coefficient kg for that sequence.

To expedite the model training process, we applied standardization and normaliza-
tion techniques, as described in [85]. Standardization was performed on the values of
the extreme points along the y and 2z axes and the dimensions of the bounding rect-
angle (or cube). This transformation ensured that the data had a mean of 0 and a
standard deviation of 1. We then adjusted attributes separately for each training ex-
ample containing information about the coordinates of the extreme points along the x
axis. For each record within the time window, we subtracted the minimum value of the

x; attribute from the x; attribute, resulting in the following normalization equation:

zij_transformed = Tij — mln(xz) (61)

This approach allowed us to normalize the training examples while implicitly pre-
serving information about the speed of red blood cell movement.

The data created underwent subsequent division into three parts:

e Training data - used for model training.
o Validation data 1 - utilized for model validation after each epoch.

o Validation data 2 - data used to compare different models.
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This partitioning was performed to avoid data leakage. Data leakage occurs when
information used for training a machine learning model is also used for validation or
final testing. To prevent this, the model was trained on one set of data, while validation
and testing were carried out on separate datasets.

In order to augment the training data for machine learning, the original positions
were transformed by adding noise. Noise (n) was generated from a random normal
distribution with a mean of 0 and standard deviation of 1, and was multiplied by a
constant of 0.1 for each component of the training example. Additionally, a random
shift (s) was generated from a uniform distribution within the interval (—0.25,0.25)

for each training example. The number of expansions (a) was determined as follows:

10000
310050 1 (6.2)

w

a =

and then «a is rounded to an integer. The amount of training data thus increased

to approximately 380,000 examples.

6.2.2 Types of Neural Network Architectures Tested

LSTM

The LSTM (Long-Short Term Memory) architecture [135] is typically employed for in-
put data in the form of time sequences. Our network using this architecture consisted
of four layers with 512, 64, 32, and 10 hidden neurons, respectively. It utilized a hy-
perbolic tangent activation function and a recurrent sigmoid activation function. Each
LSTM layer was followed by a dropout layer in which 10% of the neurons were dropped
out. The output was then flattened (keras.layers. Flatten()) and passed through a pair
of fully connected layers, one with 1024 neurons, another with 512 neurons, both us-
ing a ReLU activation function. Finally, a fully connected output layer with a single

neuron and a linear activation function served as the output layer.

CNN-LSTM

The CNN-LSTM architecture combines CNN convolutional layers for feature extraction
from input data with LSTM for sequence prediction. The combination of these layers
is motivated by research [95] and studies such as [63]| that suggest improved LSTM
performance with this architecture. It is suitable for problems that involve data with
spatial structures (e.g., image pixels) or time-structured inputs/outputs (e.g., video
frames or text).

We implemented two versions of the CNN-LSTM network. The first, CNN-LSTM

ConvlD, used 1D convolution while traversing the time sequence. The second, CNN-
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LSTM Conv2D, used 2D convolution. To reduce input data variance, we passed the
input through two convolutional layers with 256 filters, a step size of 1, and applied
ReLU activation. For CNN-LSTM ConvlD, the filter size for both layers was three
times the width of the time window. For CNN-LSTM Conv2D, the filter size was three
times the width of the time window for the first layer and 4x3 for the second layer.
Following the convolutional layers, the result was adjusted by pooling with a 2x2 filter
size. The multivariate intermediate result was flattened (keras.layers.Flatten()) and
passed to an LSTM layer with 256 hidden neurons and a ReLU activation function.
Finally, the output from the LSTM layer was connected to a fully connected layer with
512 neurons using ReLU activation, and the network was terminated with a linear
output layer containing one neuron.

The network architectures used in our experiments are illustrated in 6.2.

All experiments were conducted using Python 3.8, with the Tensorflow (Keras)
[3] library utilized to construct the neural networks. Training was performed on a
computer equipped with an AMD Ryzen 55600H processor, Radeon graphics card, 16
GB of RAM, and an NVIDIA GeForce RTX 3060 Laptop graphics card.

6.3 Result Examples of Using CNN-LSTM Networks
for Simulating Three RBC Types

In total, we trained 84 different neural network models for each combination of archi-
tecture type (3 types), data (4 data sets used), and w window size (7 options) with
Sim3 data. The mean absolute percentage error (MAPE) was used as the loss function,

calculated as:

MAPE (Yre, Yprea) = 100 x | 2200 —Fered

(6.3)

Ytrue

Figure 6.3 displays the MAPE values for each possible combination of the options
mentioned. The graph illustrates that as the size of the training time window (w)
increases, the MAPE also increases, possibly due to noise and distortion introduced.
The selection of MAPE as the loss function is selected over other loss functions due to
prioritized capturing of the relative difference between true and predicted coefficients.
Unlike Mean Absolute Error (MAE) or Mean Squared Error (MSE) which deal with
absolute differences, MAPE expresses error as a percentage of the actual target value.
This makes it scale-invariant, meaning the error is independent of the overall magnitude
of the target variable.

The MAPE falls within the 20% range for data simulating information from video

recordings, but combining these data can halve the error. Data from all three xyz axes
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provides the lowest error, at 5%, validating the hypothesis that RBC elasticity infor-
mation can be obtained from the used data. Table 4 lists MAPE values by architecture
and data subset for the w hyperparameter with the lowest error. The most accurate
neural network model was CNN-LSTM Conv2D for data along the xy, zyz, vy xz
axes with w values successively 3, 3, 5. For xz axes, LSTM with w = 5 was the best.
CNN-LSTM Conv2D with w = 3 achieved the lowest MAPE of all models, at 4.58%.
For 2D projection, LSTM with w = 5 performed the best for data along the xz axes,
with a MAPE value of 20.46%. When combining two 2D projections, CNN-LSTM
Conv2D with w = 5 resulted in a MAPE value of 7.97%.

The distribution of MAPE for all simulated types of elastic blood cells can be
observed in 6.4 for CNN-LSTM Conv2D xyz with w = 3 and 6.5 for CNN-LSTM
Conv2D xyz, w = 3 and CNN-LSTM Conv2D zy xz with w = 5. The green triangles
represent the average MAPE for each value of the elasticity coefficient k;, and the
yellow line indicates the median. Outliers are also shown in figures (b) and (d).

The largest mean MAPE values are observed at elasticity values of 0.03 and 0.1 for
CNN-LSTM Conv2D models ryz with w = 3 and xy xz with w = 5, as shown in 6.6
and 6.7. For blood cells with elasticity values of 0.03, the predicted value was around
0.009, and similarly, for elasticity values of 0.1, a substantial number of predictions fell
in the range (0.005,0.03).

Table 5 lists MAPE values by architecture, data subset, and the value of the hy-
perparameter w for which the resulting model achieved the lowest error. The most
accurate neural network model was CNN-LSTM Conv2D for data along the zy, xyz,
xy_ xz axes, with w values of 3, 3, and 5, respectively. For data from the zz axes,
the best model was LSTM with w = 5. CNN-LSTM Conv2D with w = 3 achieved
the lowest MAPE value among all the trained models, at 4.58%. For 2D projection,
LSTM with w = 5 achieved the best performance for data along the xz axes, with a
MAPE value of 20.46%. When combining two 2D projections, CNN-LSTM Conv2D
with w = 5 resulted in a MAPE value of 7.97%.

The results of the experiment described in subsection 6.3 indicate that it might be
possible to determine the elasticity of the red blood cell from the data we can obtain
from video recordings of blood flow in microfluidic devices. However, if we use only
one view of blood flow, e.g. along the xy axes, the resulting prediction will contain
a relatively large error, more than 20% on average. If an image from two sides, xy
and xz, is used, the prediction achieves an average error of less than 8% of the true
value. Such a result would be difficult to obtain from data measured in a real blood
flow experiment. In the simulation experiment, we have all values of coordinates x,
y, z for all discretization points of the RBC surface. Thanks to this, we can estimate
how much the real blood cell deviates from its video recording. By substituting an

estimate of the elasticity parameter k, we can estimate the error we made compared



CHAPTER 6. DETERMINATION OF ELASTICITY IN STRAIGHT CANAL 55

Table 6.4: MAPE values by architecture, subset of data used for training, and hyper-

parameter w values. The lowest (best) value for each data subset is highlighted.

MODEL DATA w MAPE
LSTM Xy 5 23.311285
LSTM XZ 5 20.463190
LSTM Xyz 5 5706743
LSTM Xy_XZ 5 8.803662
CNN-LSTM ConviD | xy 3 22.353682
CNN-LSTM ConviD | xz 5 22.477804
CNN-LSTM Convi1D | xyz 3 5173491
CNN-LSTM ConviD | xy_xz 3 9.300526
CNN-LSTM Conv2D | xy ) 20.930489
CNN-LSTM Conv2D | xz 3 20.559206
CNN-LSTM Conv2D | xyz ) 4578221
CNN-LSTM Conv2D | xy+xz 5 7.974189

to a situation where we would have had complete information. Our results show that
when solving the k, parameter estimation problem, we get better results for videos

from multiple symmetry axes of the monitored channel.

6.4 Using a Regression Neural Network to Classify
Red Blood Cell Elasticity

As discussed in the introduction, determining RBC elasticity as a classification problem
has been previously explored. To compare the results, the output of the regression
method was transformed into a simple classifier using the same simulation data as in
Section 6.3 (Sim3a-c).

Two approaches were used to classify blood cells: training a classification neural
network and directly using the output of the regression neural network. The latter
method involved averaging the elasticity coefficients and assigning the result to the
appropriate category. Categories were created by establishing eight thresholds among
the nine elasticity values, with each boundary located midway between two adjacent
coefficients in ascending order. This neural network is referred to as RegToClass.

The classification neural network model shared the same architecture as the re-
gression neural networks, with the only alteration being in the output layer. Here, one
output neuron was replaced by nine to represent the nine categories, and the activation

function was switched from linear to softmax. The loss function was also changed to
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categorical cross-entropy, and the target variables were converted to one-hot encoding.

Table 6.5 presents the classification performance for the best models, as determined
in the 6.4. Overall, better classification performance was achieved for the models
optimized directly for the classification task. The largest improvement was almost
11.75% for the model trained on data representing the projection to 2D along the xz
axes, while the smallest improvement was 5.84% for the model with zyz. A noticeable
bias was observed for blood cells with an elasticity coefficient value of 0.03, where the
predicted class was 0.009, particularly for the model trained on the zz data. Lower
classification success was also seen for coefficient values of 0.225 and 0.3, indicating
that predicting the class is challenging for very rigid blood cells with small differences

in elasticity.

Table 6.5: Comparison of classification accuracy of RegToClass and Classification neu-

ral networks.

Window Size w | Data Subgroup | RegToClass | Classification
3 xy 69.83% 80.92%
3 xz 71.84% 83.59%
3 Tyz 93.73% 96.87%
5 Ty xZ 88.83% 94.67%

6.5 Validation of Models on Different Simulations

In previous experiments, three simulations were utilized, each divided into training,
validation, and testing parts. To further investigate model errors and potential over-

fitting, a different dataset compilation was employed in this experiment:

e Training: One simulation with 9 types of cells based on elasticity coefficient values
(ks = {0.005,0.009,0.015, 0.03,0.05,0.1,0.15,0.225,0.3}).

e Validation: One simulation with 9 cell types (same as model training but with

different initial seeding) and the same simulation parameters.

The previous experiments indicated that the best-performing data subsets for the
model were those along the zy and xz axes simultaneously, excluding the xyz subset,
which is not practical to obtain in real experiments. For this specific combination
of the model and data subset (zy xz), models were trained with varying window
lengths w. As in previous experiments, data preprocessing was conducted, and data
was augmented for the neural network. The resulting MAPE values can be observed
in 6.5.
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The validation results revealed a significant deterioration in model performance,
despite efforts to mitigate overfitting by adding extended noise and dropout data.
This decline could be attributed to the data, specifically the components containing
information about the y and z axes. The neural network may have overfit by focusing
on this portion of the data and predicting the elasticity coefficient based on the cell’s
position in the channel. In the prior experiment, the entire trajectory of red blood cells
was divided into segments with a specified number of records equal to the parameter w
and then split into subsets for random training and validation. This information was
present in both data sets, which accounted for the superior model performance.

A noteworthy finding was the significantly improved performance of the CNN_LSTM
_ Conv2D model in all experiments. Unlike the original CNN_LSTM ConvlD archi-
tecture from the article [132], this model incorporated a convolution filter of size (4, 3),
as opposed to (number of features, 3). This outcome reinforces the notion that CNNs
are among the most potent neural network architectures today.

The code is available at [84].
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Figure 6.2: Diagrams of the neural network architectures used in the experiments.
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Model-input data comparison
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Figure 6.3: Comparison of training MAPE for each combination of w, data subset, and

NN model type.
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Figure 6.4: MAPE boxplots for each RBC elasticity type for the CNN-LSTM Conv2D

architecture, zyz data subset used with w = 3 without (up) and with outliers (down)
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architecture, zy xz data subset used with w = 5 without (up) and with outliers (down)
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Figure 6.6: Highest average MAPE for elasticity 0.03 and 0.1 for architecture CNN-
LSTM Conv2D, used data subset xyz with w = 3.
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Figure 6.7: Highest average MAPE for elasticity 0.03 and 0.1 for architecture CNN-
LSTM Conv2D, used data subset zy zz with w = 5.
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Figure 6.8: Distribution of predicted k4 values for different data subsets and elasticity

values.

This figure shows the distribution of predicted stiffness coefficient (ks) for the CNN-
LSTM Conv2D architecture. Subplots (A) and (B) depict data for RBCs with elasticity
0.03 and 0.1, respectively, using the xy xz data subset with window size w = 5.

Subplots (C) and (D) show the distribution for the same elasticity values using the zyz
data subset with window size w = 3.
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Figure 6.9: RBC classification confusion matrices for RegToClass (up) and Classifica-

tion (down) xz neural networks.
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Figure 6.10: Confusion matrices classification RBC for RegToClass (up) and Classifi-
cation (dow) xyz neural networks.



Chapter 7

Determination of elasticity in obstacle

canal

Prior research has explored the determination of RBC elasticity through simulation ex-
periments [16], same as we do in Chapter 6. However, this chapter introduces a novel
methodology for distinguishing between different levels of RBC elasticity correspond-
ing to different diseases based on the analysis of RBCs in canal with obsticles. The
approach involves examining the geometric characteristics of RBCs in video recordings
or numerical data. Video classification is accomplished using a CNN.

The simulation model of blood flow offers novel opportunities for the analysis of
blood flow and its properties through NNs. While real blood flow experiment videos
recorded by cameras offer insights into blood cell dynamics, they are limited to two
dimensions. Gaining information about the third dimension necessitates additional
camera recordings or alternative viewing angles. With a precise simulation model, this
research explores the accuracy of identifying cell properties from a 2D image of the
simulation compared to complete model data. The focus here is not solely on replicating
the real experiment but on investigating the capabilities of NNs in categorizing cells of
varying elasticity when provided with complete information (exact particle positions
in all three dimensions) versus only two-dimensional video data. The use of CNNs to
identify the elasticity of moving blood cells constitutes the second attempt to address
this issue. In prior work, statistical methods and multidimensional data analysis were
employed [15]. Additionally, CNNs were applied to predict the trajectory of red blood
cells in blood flow analysis [31].

CNNs, inspired by biological systems, are widely employed in deep learning for
image and video classification tasks. The primary advantage of CNNs lies in their
capacity to analyze image content while explicitly leveraging spatial structure through
features such as local filters, convolution, and max pooling. CNN architectures have

demonstrated their proficiency in learning interpretable image features [137|. Conse-
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quently, these architectures effectively shift the focus from manual feature design to

the design of network connectivity structures.

7.1 Simulation Experiments for RBC Health Classi-

fication

The data source for classifying the health of RBCs was obtained through multiple
simulation experiments using the open-source software ESPResSo [129].

All simulations were conducted under consistent channel and fluid flow parame-
ters. The channel had a cuboid shape with dimensions of 104 x 60 x 40um, and the
fluid was discretized into a three-dimensional grid with a spatial step of 1 um. The
elasticity of RBCs becomes most apparent when they come into contact with other
objects. Therefore, we designed a simulated canal topology where RBCs flow through
a space with obstacles. The simulated canal featured five cylinders acting as obstacles,
restricting the area of blood flow and inducing RBC elasticity, as depicted in Figure
7.1. This canal design aimed to replicate a realistic laboratory environment.

The kinematic viscosity of the fluid was 1.3x 1075 m? /s, and the density was 1.025 x
103kg/m3. To initiate fluid flow, external forces were applied, with values chosen to

achieve a maximum velocity of approximately 0.03 m/s.

40 ym

20

ey

104 pm !

Figure 7.1: Scheme of the simulation microfluidic channel with cylindrical obstacles.

Cell-cell interactions were simulated using the membrane_ collision potential, while
interactions between cells and the channel walls were modeled using the soft sphere
potential. RBCs were represented by a surface network consisting of 374 nodes. The
elastic properties of the cells were simulated using five types of elastic forces, each
corresponding to a different elastic modulus in the same way as in the previous chapter.

Four levels of RBC elasticity were taken into the consideration. Healthy RBCs, with

a stiffness coefficient (ks) of 0.005, and the least elastic RBCs representing malaria-
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infected cells at stage 3 of the disease with a kg value of 0.03. The remaining two levels
of RBC elasticity were evenly distributed between healthy and malaria-infected RBCs,
with k, values of 0.0133 and 0.0216, respectively.

The size of the training dataset plays a crucial role in the training of machine
learning (ML) models. When the dataset is small, the model may struggle to capture
the intricate patterns and nuances present in the data, resulting in poor generalization
performance on unseen data. In contrast, a larger dataset provides the model with
more examples to learn from, leading to better generalization and reduced overfitting,
where the model becomes too specialized to the training data. Therefore, having a
sufficiently large training dataset is crucial for developing accurate and reliable ML
models.

However, it is essential to consider the computational resources required to train
models on large datasets. Larger datasets demand more computational power and
longer training times. Thus, striking a balance between dataset size and available
computational resources is necessary for successful model training.

Each simulation in our research involved 36 RBCs, with nine cells representing each
level of elasticity. The simulated channel has a periodic structure, meaning that when
an RBC exits the channel, it reappears at the beginning. We remove the initial and
final passes of RBCs due to their incompleteness. As a result, each RBC completes
approximately 20-21 passes through the simulated channel (Figure 7.2). Consequently,

each part of the train/validation datasets contains approximately

4 types of RBC x 9 from each type x 21 passes = 756 samples.

OOrL>

O<F

Figure 7.2: One pass of a RBC through the simulated channel.

Given the small number of training examples, we have two options to overcome this

limitation.
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The first option involves utilizing data augmentation techniques to augment our
training set and increase its size. Data augmentation entails applying various trans-
formations to the existing examples to generate new variations. In our case, we can
perform vertical flips (to preserve the direction of blood flow) and rotations (while con-
sidering the preservation of blood flow direction). By applying these augmentations,
we can create additional training examples and enhance the diversity of the dataset.

The second option is to leverage pretrained models, which do not necessitate train-
ing from scratch and thus require fewer training examples. Pretrained models are
pre-trained on large-scale datasets and have acquired general features. We have chosen
two pretrained models, EfficientNet v2 B0 and ResNet50, which have demonstrated
successful results in various image and video tasks [81, 89, 36, 140|. These models only
require a sufficient number of training examples to fine-tune the last few layers of the
NN, making them well-suited to our small training dataset.

To prepare the dataset, we generated video recordings of individual RBCs from the
simulation data. These videos are employed for training and validation purposes. As
the simulations conducted in ESPResSo provide three-dimensional information about
the flow of simulated RBCs, we projected this data onto a two-dimensional plane.
We accomplished this by creating a 2D video that captures the width and length of
the channel while disregarding differences in depth. This transformation enabled us
to effectively analyze and classify RBC behavior in the videos using image and video

classification techniques.

7.2 CNN-based Red Blood Cell Classification

Our network utilized video samples in the shape of N x T'x H x W x C, where N
represents the batch size, T" is the number of frames in the video, H is the height, W
is the width, and C' is the number of channels, which is 3 (representing red, green, and
blue). Subsequently, we rescaled the video into black and white format, reducing the
number of channels from 3 to 1.

As the base for our models, we employed pretrained models, specifically EfficientNet
v2 B0 and ResNetb0. These models are originally designed for image classification.
To adapt them for video classification, we utilized a time-distributed layer, enabling
the model to classify video recordings. The pretrained model is not trainable. This
was followed by 3D Average Pooling. Our network was completed with a sequence
of Flatten, Dropout, and Dense layers (as illustrated in Figure 7.3), resulting in an
output with the number of neurons equal to the number of classes, which, in our case,
is four neurons. We used Dropout and regularization for the last dense layer to mitigate

overfitting. The network’s optimizer could be either Adam or SGD.
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Figure 7.3: Diagram of the network architecture

Title: The base model can be either EfficientNet v2 B0 or ResNet50.

We optimized the hyperparameters of our network using the Hyperband class from

the keras_tuner module [91]. The optimized hyperparameters exhibit slight variations

based on the network’s optimizer, which are detailed in Table 7.1.

Table 7.1: Hyperparamters optimized for Adam and SGD.

Hyperparameter Adam SGD Options
Dropout yes yes 0.05, 0.1, 0.2, 0.3
Regularizer yes yes L1, L2, L1 + L2
Init learning rate yes yes le-3, le-4, le-5
Final learning rate yes no le-5, le-6, le-7
Decay steps yes no le+4, le+5, le+6
Momentum no yes 0.6, 0.8, 1.0
Neural Network Model | Optimizer | Validation Accuracy
4 Classes | 2 Classes
EfficientNet v2 B0 Adam 55.48% 61.72%
SGD 46.86% 56.44%
ResNetd0 Adam 54.26% 55.12%
SGD 51.45% 58.25%

Table 7.2: Validation accuracies for the models with 4 classes using optimized hyper-

parameters.
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Hyperparameter | Value
Dropout 0.1
Regularizer L1 + L2

Initial learning rate | 1 x 107°

Final learning rate | 1 x 107°

Decay steps 1 x10%

Table 7.3: The best set of hyperparameters from Adam optimizer.

The results of the hyperparameter optimization for each type of network and opti-
mizer are presented in Table 7.1. The highest accuracy is attained with the EfficientNet
v2 B0 model using the Adam optimizer, with the best hyperparameters outlined in Ta-
ble 7.3. It is worth noting that the validation results for each model type are subpar,
while the training accuracies are high, indicating two key findings. Firstly, the net-
works tend to overfit for each architecture and optimizer, despite the incorporation
of regularization methods to mitigate this effect. Secondly, the presence of overfitting
suggests that there is valuable information in the data that can be learned.

Upon analyzing the confusion matrix for the validation set (Figure 7.4), we iden-
tified that the primary challenge in classification lies in distinguishing between RBCs
with reduced elasticity, while the differentiation between healthy and sick RBCs is more
accurate. Consequently, we decided to train a binary classification NN. In this setup,
the first class encompasses healthy RBCs (ks = 0.005), and the second class includes
all cells with reduced elasticity. We conducted hyperparameter optimization for two
types of NNs with two different optimizer options.

Upon examining the confusion matrix depicted in Figure 7.5, we found that our
initial hypothesis did not hold. Transitioning from a 4-class to a 2-class classification
problem resulted in increased final accuracies, though not as significantly as the con-
fusion matrix in Figure 7.4 may have implied. We also experimented with weighted
classification using a combination of EfficientNet v2 B0 and the Adam optimizer, re-
sulting in a marginal accuracy increase to 61.74%, marking only a 0.02% improvement.

Another approach was to separate healthy and sick RBCs after they were classi-
fied into 4 classes, where class 0 represented healthy RBCs, while classes 1, 2, and 3
represented sick RBCs. With this approach, we achieved a classification accuracy of
93.54%.
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Figure 7.4: The confusion matrix of 4 classes classification.

Description: The confusion matrix represents the classification results of the valida-

tion set, which consists of samples belonging to 4 classes. The classification was
performed using the EfficientNet v2 B0 model, which was optimized with the

Adam optimization algorithm.
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Figure 7.5: The confusion matrix of 2 classes classification.

Description: The confusion matrix represents the classification results of the valida-
tion set, which consists of samples belonging to 2 classes. The classification was
performed using the EfficientNet v2 B0 model, which was optimized with the
Adam optimization algorithm. The classes of healthy and sick are represented

by the labels 0 and 1, respectively.

7.2.1 Adding Physical Information

In order to enhance the performance of the network, we added information about the
underlying physics—specifically, about the velocity of the fluid flowing in the channel.
Our hypothesis was that by adding the physical information, the NN would be able to
learn to classify the RBCs better than without it.

First, using ESPReSso, we calculated the velocities of each point of the fluid (which
is represented as a mesh; more information is available in [34]) in the empty channel—
the channel with no RBCs in it. We obtained a 3D data of velocities, since the channel
is a 3D object. Then, we took a layer H x W x | D/2| that corresponds to the velocities
in the middle of the channel along the depth axis. This information can be used in
two ways: we can either use it as it is, meaning 3D data with dimensions W x H x 3,
where 3 represents the z, y, and z components of a velocity vector, or we can create a
heatmap where the colors represent the velocity of the flow.

In both options, we added the physical information by creating a new branch of
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our NN that has the physical information about the flow as input. This information
is passed through a Rescale layer, three 2D convolution layers with a number of filters
32, 16, 8, followed by a max pooling layer, a flattening layer, and a dense layer with
1024 hidden units. Then, it is concatenated with the penultimate output of the main
branch of our NN, which is passed to the last dense layer.

Generally, it is not effective to add the same information to each training example
for a NN. The reason for this is that NNs learn patterns and relationships in the data
through the variations and differences between the examples. When all examples con-
tain the same information, the network is unable to distinguish between them and may
not learn the relevant patterns that are necessary for accurate predictions. However,
there may be some cases where adding the same information to each training example
can be helpful. For example, if the added information provides some contextual or
background information that is relevant to all examples, it may help the network learn
more effectively. In general, it is important to carefully consider the information that is
added to each training example and how it may affect the network’s ability to learn and
generalize. We trained both versions of PINNs using the optimized hyperparameters
described in Table 7.3, with the best performing model being EfficientNet v2 B0 with
the Adam optimizer. The final results are presented in Table 7.4.

NN Model Accuracy
4¢_heatmap 87.83%
4c_values 91.48%
2¢__heatmap 57.04%
2¢_ values 67.33%
2cw__heatmap 59.13%
2cw_ values 69.78%

Table 7.4: The validation accuracies were assessed for six distinct classes of models

with optimized hyperparameters.

Description: The names of these neural network (NN) models are composed of two
parts. The first part indicates the number of classes used during training, and
the second part specifies the type of physical information incorporated into the
physics-informed neural network (PINN). The abbreviations "4c¢," "2¢," and
"2cw" represent models trained with four classes, two classes, and two weighted
classes, respectively. Additionally, "Heatmap" and "Values" indicate the use of

heatmap information and velocity vectors from the middle flow layer, respectively.

The obtained results reveal several key observations concerning the performance

of different classification approaches. Firstly, when comparing the two-class classifi-
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cation (whether weighted or unweighted) to the conversion of four-class classification
into a two-class classification, it is evident that the latter achieves significantly su-
perior results. This implies that the additional information present in the four-class
classification contributes to enhancing the overall model accuracy.

Moreover, the incorporation of physics-related information in the form of a heatmap
seems to be less effective compared to using velocity vectors as input. This suggests
that velocity vectors carry more meaningful and discriminative information for precise
classification. Utilizing velocity vectors as input likely enables the model to capture
dynamic patterns and better comprehend the motion characteristics of the analyzed
data.

However, it is interesting to note that even with the inclusion of velocity vector
information, there is no substantial improvement in the final accuracy of the network.
Specifically, the NN relying solely on the provided input without any additional physical
information achieves an accuracy of 93.56%. In contrast, the network using velocity
vectors attains a slightly lower accuracy of 91.48%. This indicates that while the
inclusion of velocity vectors may offer valuable information, it does not necessarily

translate into a significant enhancement in classification performance.

7.2.2 Up-Scaling of the Healthy Examples

Our simulations encompass four types of RBCs, of which three types exhibit reduced
elasticity and are categorized as sick. Although the ratio of healthy to sick RBCs is 1:3
in our dataset, this does not align with the observed ratio in reality [130]. To address
this class imbalance, we employed data augmentation to augment the minority class
and balance the class sizes. We applied horizontal flips and rotations to create two new
training examples for each original example. This augmentation, in conjunction with
the original healthy examples, increased the size of the healthy class threefold.

We trained the best-performing model from our previous experiments, a four-class
classification NN without additional information, which was then converted into a
two-class classification. We augmented both the training and validation datasets to
maintain class distribution consistency between the datasets. After training and vali-
dating the model with the same class distribution, we cross-validated it on a dataset
with a different class ratio.

Table 7.5 presents a comparison of three models: the original model (O 4x1) and
the best-performing model from previous experiments, as well as two models trained
on datasets with equal ratios of healthy and unhealthy RBCs. The first model employs
unmodified class weights (A3 1 1 1), resulting in equal weights for each class. The
second model (AW _3 1 1 1), on the other hand, utilizes class weights proportional

to the sizes of the classes. The results reveal that the second model outperforms the
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first model in terms of classification accuracy.

The findings indicate that the original dataset achieved the highest accuracy on
the original dataset for all three models. The O 4x1 model attained an accuracy of
93.54%, while the A_ 3 1 1 1and AW_3 1 1 1 models achieved lower accuracies
of 88.88% and 81.55%, respectively.

When comparing the accuracies on the augmented dataset, it can be observed
that the A_3 1 1 1 model performed slightly better, with an accuracy of 93.91%,
compared to the 91.01% accuracy of the O _4x1 model. However, the AW 3 1 1 1
model achieved an accuracy of 92.21%, which was slightly lower than both the original
dataset and the A 3 1 1 1 model.

In conclusion, augmenting the dataset through upsampling had a mixed impact on
the model performance. While the A_3 1 1 1 model showed a slight improvement,
the addition of class weights in the AW 3 1 1 1 model did not yield significant
improvements and even resulted in a slightly decreased accuracy compared to the

original dataset.

Validation 0 4x1 A3 111 |AW 3 1 1 1
original dataset 93.56% 88.88% 81.55%
augmented dataset 91.01% 93.91% 92.21%

Table 7.5: The validation accuracies of three models with identical architecture.

Description: The first model, referred to as O 4x1, was trained on the original
dataset, which consisted of a roughly equal number of examples per class. The
second model, denoted as A 3 1 1 1, was trained on an upsampled dataset,
while the third model, labeled as AW 3 1 1 1, utilized the upsampled dataset

with additional class weights proportional to their respective proportions.

7.2.3 Four-Class to Two-Class Classification

The obtained results unveil significant insights into the performance of different clas-
sification approaches. A notable observation lies in the comparison between two-class
classification and the four-class classification converted to two-class classification. Two-
class classification pertains to a classification task that distinguishes between two spe-
cific classes (e.g., healthy and sick), while four-class classification converted to two-class
classification involves merging multiple classes into two broader categories.

The results demonstrate that the four-class classification converted to two-class
classification yields significantly superior performance compared to two-class classifi-
cation. This indicates that including additional classes in the training process imparts

valuable information that enhances the overall model accuracy. Training the model on
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a dataset comprising multiple classes allows it to capture a broader spectrum of pat-
terns, variances, and data characteristics. This expanded comprehension and increased
model complexity contribute to improved classification accuracy when discerning be-
tween the two broader categories in the four-class classification converted to two-class
classification scenario.

The enhanced performance achieved with the four-class classification converted to
two-class classification underscores the importance of considering a more comprehensive
representation of data during model training. By incorporating additional classes,
the model can learn more nuanced and discriminative features, resulting in better
differentiation between the target categories. This finding underscores the value of
harnessing the full range of available classes and their associated information when
constructing classification models.

The results highlight the importance of thoughtful classification task design and the
selection of an appropriate class representation to achieve optimal performance. By
utilizing the additional information provided by the four-class classification, the model
gains a deeper understanding of the underlying data, leading to improved accuracy
when distinguishing between broader categories. This underscores the significance of
considering the relevance and inclusion of additional information in classification tasks.

Furthermore, the findings highlight the significance of choosing suitable input fea-
tures in classification models. In this instance, the incorporation of velocity vectors as
input features proves more effective compared to the use of a heatmap representation.
This suggests that the choice of input features plays a main role in capturing relevant
patterns and characteristics for accurate classification.

Moreover, the research underscores that the network’s architecture and optimization
techniques are main factors influencing the final performance. It is essential to consider
the interplay between the model’s architecture, training algorithms, and the specific
classification task at hand. Fine-tuning these components and exploring alternative
approaches may further enhance the accuracy and performance of the classification
model.

The results stress the importance of carefully considering various factors, includ-
ing classification task design, class representation, input feature selection, network
architecture, and optimization techniques, to achieve optimal classification accuracy.
Further analysis, experimentation, and method refinement are warranted to advance
our understanding and improve the accuracy of classification tasks.

The code is available at [83].
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7.3 Applying Random Forest Model

In case we utilize video pictures straightforwardly for classification, it is characteristic
to select profound neural systems as a show. Be that as it may, within the occasion that
we have accessible as information particular properties of the filtered RBC portraying
its shape, speed and changes of these properties over time, it makes sense to moreover
apply models that are appropriate for working with unthinkable information. The
recreation from which we created the recordings can be additionally well utilized to
create such information. Some time recently contributing in experiments with costly
sensors, able to in this way confirm the classification exactness that can theoretically
be anticipated with such a method. At the same time, we are going be able to compare
the classification capacity of person models additionally assess which indicators have a
noteworthy affect on classification precision. This will be vital when planning genuine

tests.

7.3.1 Utilized Indicators - Featurization

We utilize RBC triangulation to calculate indicators from the recreation. The output
of the simulation is for each cell the position of each of the 374 triangulation nodes,
determined by three coordinates in three-dimensional space. Different characteristics
can be calculated from this information, which we along these lines utilize as indicators
for classification. In add up to, we made 41 indicators. We partitioned them into a few
sets concurring to the evaluated complexity of getting them from a genuine explore.
Based on this, we made 6 tests reviewed concurring to the number of indicators we
utilize: Within the to begin with test we utilize as it were the easiest predictors to get,

within the final test all of them.

e The 1st set comprises of as it were two indicators: the measurements of the
rectangle in which the checked RBC is located, i.e. j. dimension of the RBC in
the x-direction and within the y-axis heading. These values can be easily gotten

from a (inactive) depiction of the RBC.

e Within the 2nd set, there are additionally velocities and changes in the speed
of the RBC within the x and y directions. These information can be calculated

from a few successive pictures.

e The 3rd set moreover contains measurements and velocities within the z-axis

heading. These values can be gotten from pictures taken from a diverse point.

e Within the 4th set, we included the RBC axis length and the most extreme and
least breadth of the RBC equator, which can possibly be decided from multi-angle

pictures.
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e The 5th set also contains predictors that can be calculated from the complete
triangulation of the cell: cell surface, cell volume and diameters, standard devi-
ations and skewness coefficients calculated from the lengths of all triangulation
edges, angles subtended by every two triangles of the triangulation and spatial
angles at all triangulation nodes. Cell triangulation is quite difficult to obtain
from a real experiment, it would require the creation of a 3D image of the cell

from the scanned flow.

e The 6th set too contains the midpoints, standard deviations and skewness coef-
ficients of the deviations and supreme deviations of the characteristics added in
the Hth set. The deviations are calculated from the RBC in a loose state, so for
the calculation we got to have the essential triangulation of the RBC,which in

our procedure corresponds to the cell in the first step of the simulation.

The mentioned predictors compare to the current state of the cell at one checked
minute (in one step of the reenactment). It can be anticipated that the classification
precision will progress in the case that we track the cell for a longer period of time. To
evaluate this effect, we made an experiment for each S = 1, 10, 20, 40, 80, 160, 320, 640,

and 1280 in which we observed each cell for S recorded steps'.

7.3.2 Used Models

We used two of the most popular techniques: Random Forest and Gradient Boosted
Decision Trees. For the implementation, we used the Python language and the methods
RandomForestClassifier from the sklearn library and XGBClassifier from the xgboost
library.

The goal in this part was not to maximize the accuracy to the highest possible
level, therefore we did not optimize the hyperparameters of individual models and
were satisfied with the default values.

For each of the six sets of predictors and each of the nine S values, we trained
2 models using both methods — one for classification into four classes (four degrees
of cell elasticity), the other for classification into two classes (healthy/diseased cell).
When evaluating the accuracy of the classification into two classes, in addition to the
second model, we also used the first model, in which we combined the three degrees of

elasticity into the result "sick cell" (same is in Chapter 7.2).

!Commentary: One entry of the cell through the channel compares to around 100 recorded steps.)
Since the values of the person indicators alter amid the section of the cell through the channel, we
have up to S values for each indicator rather than one value. From these values, we calculated the
cruel and standard deviation and utilized them as predictors - in total, we have up to two indicators

for each esteem shown within the statement over (with the exemption of the case of S = 1.
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7.3.3 Data preparation

We sampled the simulation for each recorded step of the simulation, followed by at
least S 1 additional recorded steps (so that we could calculate predictors for a given
value of S). However, we removed the first 100 recorded steps of the simulation. The
total number of generated samples is thus equal to C (N 100 S + 1), where C is
the total number of cells in the simulation and N is the total number of simulation
recorded steps.

It follows from the above that many generated samples are very similar to each
other. The cell changes little between two consecutive recorded steps, moreover, for
S > 1, two consecutive samples have a large part of the data from which we generate
the predictors in common (the last S 1 recorded steps of the sample are identical to the
first S 1 recorded steps of the next samples). This must be kept in mind when dividing
the set into a possible training and validation or testing part - it is not appropriate to
use data from one simulation in several parts and a new simulation must be used each
time.

Due to the tree models used and the omission of hyperparameter optimization,
we did not need the validation part, so we were satisfied with two simulations. We
created training samples from the simulation with values of C' = 36 and N = 2356,
the total number of training samples is thus in the range from 81216 (for S = 1) to
35172 (for S = 1280). The second simulation, from which we generated test samples,
has parameters C' = 36 and N = 2289, so the number of samples is in a similar range
(from 78804 for S =1 to 32760 for S = 1280).

7.3.4 Results of Random Forest Approach

The classification accuracy in respect to the value of S, that is, the effect of the number
of tracking recorded steps of one cell, was the first phenomena we focused on. From the
graphs in figures 7.6, 7.7, it can be concluded that increasing S has a positive effect up
to the level around the values of S = 160 or 320, from which the classification accuracy
ceases to continuously improve. Thus, it seems pointless to track the cell significantly
longer than during one passage through the channel (approx. 100 simulation recorded
steps).

The graphs in figures 7.8, 7.9 show how the classification accuracy changes depend-
ing on which set of predictors we use. Especially when classifying into 4 classes, a
significant improvement in accuracy can be observed when moving from the 4th set to
the 5th set. On the contrary, the effect of the third dimension (the transition from the
2nd set to the 3rd set) does not seem to be very significant.

In all figures, the dashed line shows the accuracy we achieved in the classification
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Figure 7.6: Classification to 4 classes.

using deep neural networks in 7.22. In fig. 7.8, 7.9 in the middle graph it can be seen
that we achieved almost identical accuracy with the 3rd set of predictors.

To see which predictors have the biggest impact on the classification, we took a
closer look at the models for S = 80 (i.e., those where we observe approximately one
cell passage through the channel) with the 6th set of predictors and the 4th set of
predictors. For these models in figures 7.10 and 7.11 we present the significance of the
predictors calculated by the permutation importance method from the sklearn library.
In the case of the 6th set and classification into four classes, the "edge length delta
abs deviation" predictor appears to be the most significant in both models, that is, the
predictor indicating the standard deviation of the absolute changes in the lengths of

the edges of the triangulation against the relaxed state of the cell. When classifying

2We observed one passage through the channel in the video image of each cell, which corresponds

approximately to a model with a value of S = 80
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Figure 7.7: Classification to 2 classes.

into only two classes, "edge angle delta abs mean" and "edge length delta skewness"
are significant for both models, that is, the average absolute change in the angles at the
edges of the triangulation compared to the relaxed state and the coefficient of skewness
of the changes in the lengths of the edges of the triangulation compared to the relaxed
state. For the simpler 4th set of predictors, the most significant predictor for all models

is the cell axis length.

7.3.5 Summary of Random Forest Approach

We investigated the effectiveness of a Random Forest model for classifying RBC elas-

ticity using data generated from a simulation. The key findings are:

e Tracking duration impact: Increasing the number of recorded steps a cell is

tracked improves classification accuracy up to a point (around 160-320 recorded
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Figure 7.8: Classification to 4 classes.

steps), which corresponds roughly to a single passage through the simulated chan-

nel. Further tracking yielded minimal improvement.

e Feature set influence: The choice of features significantly affects classification
accuracy. Using a more comprehensive feature set, including information from
3D triangulation, led to a substantial improvement, especially for classifying cells

into four elasticity classes.

e Comparison with deep learning: The Random Forest model with a well-chosen
feature set achieved comparable accuracy to a deep neural network approach

(used previously) for classifying cells into four classes.

e Feature importance: The model provided insights into the most influential fea-
tures for classification. For complex feature sets, standard deviation of changes in

edge lengths and absolute changes in edge angles emerged as significant factors.
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Figure 7.9: Classification to 2 classes.

For simpler sets, cell axis length played a key role.

These findings suggest that Random Forest models are a viable approach for RBC
classification using simulation data. By carefully selecting features and considering the
optimal tracking duration, accurate classification can be achieved. Additionally, the
interpretability of Random Forest models allows for identifying the key characteristics

impacting classification, which is valuable for understanding RBC behavior.

7.4 Statistical analysis of elasticity based on surface
optimization

To fully utilize this data, we focus on numerical statistics to uncover deeper insights

into canal dynamics. By analyzing numerical data, we aim to understand the complex
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Figure 7.11: Feature importance for 4th set.

relationship between fluid flow and obstacles in canals. This approach allows us to
identify patterns and trends within the data, enhancing our understanding of canal
dynamics.

One of the key characteristics of RBC is their tendency to adopt a shape that

maximizes surface area relative to volume, described as the SA /V ratio. While elasticity
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plays a significant role in various RBC properties such as membrane penetration in
healthy cells and clumping in sickle-cell anemia, we were interested in how differences
in elasticity affect the SA/V ratio. [88] and [101] suggest similar findings from real
RBC studies.

We utilized simulation experiments to compare surface and volume values of indi-
vidual RBCs. Real experiments have limitations in obtaining such data, making sim-
ulations particularly suitable. Study [88] suggests the possibility of measuring SA/V
values in vitro, linking experimental and computational efforts. [94] also examines SA
and volume values.

The core of RBCs typically adopts a shape that maximizes surface area in relation
to volume, commonly described as the SA/V ratio. While elasticity plays a pivotal
role in various RBC properties such as membrane penetration in healthy RBCs and
clumping in sickle-cell anemia, we aimed to explore how differences in RBC elasticity
affect the SA/V ratio. Previous studies [88] and [101] have indicated the feasibility of
similar investigations with real RBCs.

Our comparison rely on surface and volume values of individual RBCs obtained from
simulation experiments. We acknowledge the limitations in acquiring such data from
real experiments and recognize the suitability of in-silico experiments for methodologi-
cal analysis. Notably, [88] suggested the potential for measuring SA/V values in vitro,
linking them to computational experiments. Additionally, [94] addressed the measure-
ment of SA and V values. Deliberately opting for straightforward statistical methods,
we seek to distinguish if this approach can yield meaningful results, contrasting with
more complex machine learning methods.

Following the simulation experiment, each of the 36 cells with varying elasticity
underwent analysis using a sequence of 2356 surface and volume values. For simpli-
fication, we selected four basic statistics for each RBC: minimum 7.12a, maximum
7.12b, variance 7.12c¢ and average 7.12d of the SA/V values. The examination aimed
to determine whether these statistics could distinguish between different levels of RBC
elasticity.

The results showed promising differentiation particularly in the average and max-
imum SA/V values for normally elastic RBCs compared to others, with no signifi-
cant difference observed for SA/V minimum and variance values. Verification of our
assumption using the Kolmogorov-Smirnov test 7.13 supported these findings, show-
casing distinctiveness in average and maximum SA/V values between cells of varying
elasticity types.

By utilizing basic statistical measures such as maximum, minimum, average, and
variance, along with the straightforward Kolmogorov-Smirnov test, we can observe
significant differences in the average and maximum SA:V ratio values between healthy

RBC type 0 and each group of RBCs with reduced elasticity. Conversely, in other
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Figure 7.12: Graphs of values of SA:V for different statistics.

scenarios, such a distinction may not be achieved.

Acknowledging the limitations imposed by the small dataset resulting from the de-
sign of the simulation experiment, we recognize the simplicity of the proposed method-
ology as advantageous. This simplicity allows for verification of conclusions in larger
in silico experiments and potentially in vitro as well.

Moreover, we highlight the notable consistency between our findings and those
mentioned in 7.2, despite the utilization of significantly different tools, data formats,
and amounts, all originating from the same initial simulation.

Additionally, it’s recognized that during the described experiment or simulation
run, the volume of RBCs in the channel should remain constant, while their surface
may deteriorate. Statistical verification revealed that the variance of simulated RBC
surface values was approximately one hundred times greater than that of volume values.
Consequently, limiting the examination solely to SA values would yield essentially the

same results.
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Figure 7.13: Graf of Kolmogorov-Smirnov test values of SA:V for different statistics.



Chapter 8
Summary

In this thesis, we looked into how computer simulations help us understand the elas-
ticity of red blood cells, and we used neural networks to predict their elasticity. The
simulations modeled how red blood cells move in blood flow, giving us important data
to train neural networks. While simulations aren’t exactly like real experiments, we
adjusted the simulation results to match simple video recordings from experiments.

Chapter 6 takes a look into predicting red blood cell elasticity using high-performance
CNN-LSTM, considering various input data dimensions. The study emphasizes the im-
portance of using at least two devices for recording to capture blood flow in linearly
independent planes. The CNN-LSTM architecture with 2D convolutional layers is
identified as the most efficient, achieving acceptable accuracy, particularly with input
data representing all three dimensions of the bounding boxes surrounding the RBC.

In Chapter 7, the focus shifts to the challenges of measuring RBC deformation
rates and the potential of neural networks to compensate for the loss of accuracy and
dimensionality when processing video recordings. The study explores RBC elasticity
classification through CNN-based video analysis, employing architectures like ResNet
and EfficientNet. The EfficientNet model emerges as the best classifier, and the im-
portance of regularization techniques and cross-validation is highlighted.

Overall, the thesis contributes to the understanding of red blood cell dynamics and
explores innovative diagnostic applications by combining computer simulations and
CNN-guided video analysis. The findings underscore the potential of neural networks
in categorizing red blood cell elasticity and emphasize the need for careful consid-
eration of input data dimensions and model architectures for optimal classification
performance. The research demonstrates the effectiveness of simulation-based train-
ing, ensuring robust neural network performance even with limited real-world video
datasets.

In conclusion, our thesis highlights the potential of combining computer simulations,

video analysis, and CNNs for RBC elasticity classification. Ongoing research and
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optimization are essential to enhance accuracy, ultimately contributing to improved

healthcare outcomes.
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Appendix - LSTM Principles

iy = o(w;[hi—1, 2] + b;) Input gate (8.1)
fi = o(wylhi—1, 2] + bf) Forget gate (8.2)
ot = o(wWolhi—1, 7] +b,) Output gate (8.3)

where:

1; is the input gate
f+ is the forget gate
o; is the output gate
hi_1 is the hidden state from the previous time step
x; is the input at the current time step
o represents the sigmoid activation function
w;, W, w, are the weight matrices for the input, forget, and output gates

bi, bs, b, are the bias terms for the input, forget, and output gates

¢, = tanh(w.[hy_1, z¢] + be) Input gate (8.4)
= fi-c1+i-c Memory cell update (8.5)
hy = o4 - tanh(c;) Hidden state update (8.6)

where:

¢, is the input gate

¢ is the memory cell

h; is the hidden state

w, is the weight matrix for the memory cell
b. is the bias term for the memory cell

tanh represents the hyperbolic tangent activation function
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To calculate the memory vector for the current timestamp (¢;), a candidate is
computed. The cell state, at any given timestamp, decides what to forget from the
previous state (i.e., f; * ¢;_1) and what to consider from the current timestamp (i.e.,
iy % ¢;). The symbol * represents element-wise multiplication of vectors.

Finally, the cell state is filtered and passed through an activation function that pre-
dicts which portion should appear as the output of the current LSTM unit at timestamp
t. This output (h;) from the current LSTM block can be further processed through a
softmax layer to obtain the predicted output (y;) from the block.
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