
ŽILINSKÁ UNIVERZITA IN ŽILINA

Faculty of Management Science and Informatics

Automated video processing for development and

verification of computational models of biological cells

Dissertation Thesis

Žilina, 2020 Ing. Frantǐsek Kajánek

ŽILINSKÁ UNIVERZITA IN ŽILINA

Faculty of Management Science and Informatics

Automated video processing for development and

verification of computational models of biological cells

Dissertation Thesis

28360020203002

Study Programme: Applied Informatics

Field of Study: Informatics

Department: Department of Software Technologies

Faculty of Management Science and Informatics

Žilinská Univerzita in Žilina

Supervisor: prof. Mgr. Ivan Cimrák, Dr.

Associate supervisor: Ing. Peter Tarábek, PhD.

Žilina, 2020 Ing. Frantǐsek Kajánek

Annotation

Type of thesis : Dissertation Thesis

Academic Year : 2019/2020

Name of Thesis : Automated video processing for development and

verification of computational models of biological cells

Author : Ing. Frantǐsek Kajánek

Supervisor : prof. Mgr. Ivan Cimrák, Dr.

Associate Supervisor : Ing. Peter Tarábek, PhD.

Language: : English

Number of Pages : 69

Number of Images : 19

Number of Tables : 8

Number of References : 49

Keywords : Red Blood Cell, Machine Learning, Detection, Tracking,

Data gathering, Neural Networks

Acknowledgements

I would like to thank prof. Mgr. Ivan Cimrák, Dr. and Ing. Peter Tarábek,

PhD. for their infinite patience when being tasked with helping me with this im-

mense topic. I would also like to extend gratitude to the whole Cell-In-Fluid team

who were always supportive even when there seemed to be no light at the end of

the tunnel. Big thanks also goes to Dmitri for programming support when in need

and to Anne when two equal heads were needed.

Abstract

KAJÁNEK, Frantǐsek: Automated video processing for development and verifica-

tion of computational models of biological cells. [Dissertation thesis] University

of Žilina. Faculty of Management Science and Informatics. Department of Soft-

ware Technology. - Supervisor: prof. Mgr. Ivan Cimrák, Dr., Žilina: FRI ZU, 69 p

This dissertation thesis deals with the topic of automated image processing for the

purpose of automated data gathering for validation of simulations of microfluidic

devices. The goals of this thesis are to evaluate existing methods for detection and

tracking of red blood cells and propose improvements to both problems. Detection

of objects is a topic of great interest and analysing state-of-the-art approaches and

applying it to red blood cells shows promise for improving performance. Tracking

on the other hand provides wider possibilities for experimentation using convo-

lutional neural networks. The thesis also proposes several metrics for utilizing

gathered data for immediate validation of simulations.

Keywords: Red Blood Cell, Machine Learning, Detection, Tracking, Data gath-

ering, Neural Networks

Abstrakt

KAJÁNEK, Frantǐsek: Poč́ıtačové spracovanie obrazu pre vývoj a verifikáciu

výpočtových modelov biologických buniek. [Dizertačná práca] Žilinská Univerzita v

Žiline. Fakulta riadenia a informatiky. Katedra softvérových technológíı. - Vedúci

dizertačnej práce: prof. Mgr. Ivan Cimrák, Dr., Žilina: FRI ZU, 69 p

Táto dizertačná práca sa zaoberá automatizovaným zberom dát z vidéı za účelom

validácie simulácíı mikrofluidických zariadeńı. Ciělom tejto práce je prejsť ex-

istujúce metódy na detekciu a trasovanie červených krviniek a navrhnúť nové

vylepšené metódy. Detekcia objektov je širokou témou o ktorú je vělký záujem.

Analýza najmoderneǰśıch pŕıstupov a aplikácia na túto úlohu je dobrým spôsobom

na zlepšenie detekcie. Trasovanie na druhej strane umožňuje viac možnost́ı na ex-

perimentáciu pomocou konvolučných neurónových siet́ı. Práca taktiež navrhuje

niekǒlko spôsobov na vyhodnotenie simulácíı pomocou źıskaných dát.

Kľúčové slová: Červené krvinky, Strojové učenie, Detekcia, Trasovanie, Zber

dát, Neurónové siete

Contents

List of Figures 15

List of Tables 17

Introduction 19

1 Data Extraction 20

1.1 Object Detection . 21

1.2 Object tracking . 22

1.3 Common issues . 24

1.4 Descriptors and Classifiers . 24

1.5 Machine Learning . 25

1.6 Issues of Machine Learning . 27

1.7 Overview of work done in the field 29

2 Previous Research 32

2.1 Analysis of the current situation . 33

2.2 AdaBoost . 36

3 Dataset 39

4 Convolutional Neural Networks 42

4.1 Proof of Concept . 42

4.2 Testing configuration . 45

4.3 Architectures . 46

4.4 Test results . 47

5 Tracking and cells 52

5.1 Flow matrix . 52

5.2 Neural network tracking . 54

6 Validation with simulations 57

7 Future goals and closing remarks 59

13

Conclusion 61

References 63

Publications 68

14

List of Figures

1 Example of first video. Source: [49] 22

2 Example of blurred cells due to low FPS [44] 23

3 Example of Haar Wavelets. The rectangles represent a specific Haar

Wavelet. The squares are summed up, with black taken as negative

and white as positive values, producing one feature. 26

4 Example of supervised vs. unsupervised learning. Supervised learn-

ing specifically segments samples into circles and crosses, whereas

unsupervised learning only groups together similar samples, with-

out knowing what they are called.

Source: [46] . 27

5 Example of overfitting. The green line is an example of an over-

trained model, and the black line is an example of an enough trained

model. The dots on the wrong side are usually noise or wrong data.

Source: [47] . 28

6 Example of fragmented tracks. Source: [43] 33

7 Example of double edges with canny edge detection. Background

source: [44] . 34

8 Example of round objects, which interfere with detection. Back-

ground source: [45] . 35

9 Example of a cascade. Each stage removes a percentage of sam-

ples, and samples which get to through the last stage are labeled as

containing an object. Stage 1 is usually much faster than Stage n.

Source: [48] . 37

10 Example of first video and examples of cells in the video. Source: [44] 39

11 Example of second video. Source: [45] 40

12 Example of difficult events for detection. 41

13 Diagram of our convolutional neural network. 43

14 Example of false positives . 50

15 Example of false negatives . 51

16 Example of tracks found in first 300 frames 53

15

17 Heat map of the cell density in the channel. Left: First video, Right:

Second video . 57

18 Flow visualisation of cell trajectories in second video. 58

19 Two cross-sections (bold lines) and two regions (dashed) are indi-

cated for evaluation of velocity histograms. 59

16

List of Tables

1 Best AdaBoost detection results confusion matrix 38

2 Dataset Data . 41

3 CNN network training results . 44

4 CNN testing results . 48

5 Overtraining . 49

6 Background Subtraction . 49

7 Grayscale . 50

8 Tracking performance results . 52

17

18

Introduction

When modeling blood flow in artificial microfluidic devices, the exploration of

behaviour of different cells, as well as understanding the physical properties of

such a device is necessary. For this purpose a lot of data is required for both

design and testing of such a model. Due to this, the data gathering process is

very important and needs to be as efficient as possible. In today’s age this means

automated processing on computers.

Most common experiment data is available in video or image form. As a result

advanced computer vision techniques are required, to process high volumes of

data. Different algorithms already exist in computer vision, and utilizing existing

algorithms or designing own algorithms is difficult. For our purpose, we need to

design system capable of analysing video data, and through cell detection and cell

tracking acquire data for model validation.

In this thesis we will be dealing with the problems posed by automated image

processing. Firstly, we will provide a quick overview of existing methods. Next,

we will evaluate existing methods in order to provide a baseline and we will in-

troduce our dataset. After that we will delve deeper into detection of Red Blood

Cells and our solutions for the problem. After elaborating on detection, we will go

over our existing tracking algorithms and our proposed method for improved re-

sults. We will conclude with a short discussion about current problems and future

possibilities.

19

1 Data Extraction

Modeling of blood flow in microfludic devices is a way of approaching tasks, which

are hard to solve using other means, for example conducting real world biological

experiments. Computational modelling helps to predict outcomes in circumstances

that are difficult to achieve in laboratory [5]. It is an effective tool in optimiza-

tion and design [2, 1]. In order for simulations to provide valid results, fidelity

and quality of the simulation are critical for modeling elasticity, interaction and

motion of red blood cells (RBC). This is due to, e.g. hematocrit of blood being

very high (45%), which means that realistic modeling of RBCs is key for further

improvement. RBC models have been used to model processes inside microflu-

idic devices [4, 7]. The underlying model for cell’s membrane is built upon the

knowledge about real behaviour of cells in biological experiments. To validate the

models, experiments with single cells may be used to assess the biomechanics of

individual cells, such as in [8], where the stretching of individual cells is performed

with optical tweezers. To validate macroscopic phenomena such as cell-free layer,

experiments with many cells can be used. For reference see [9] and references

therein. In the latter case, data extracted from video sequences are crucial for the

process of validating a model.

With the increase in available data, and with the increased need for automated

processing in many scientific areas, and not just for the purpose of validating

simulations. Scientists commonly gather videos for further examination as well

as for other parties to use during simulation configuration and validation. Our

interest lies in cell experiments in general, or specifically red blood cell experiments.

Validation can be performed after acquiring data from a video. Video footage

can be either processed manually, which is feasible for a very small amount of

footage, or automatically, by extracting key information important for further

experimentation. Example of automated processing can be cell detection and cell

tracking.

Cell tracking can be divided into two types of methods. The first type is contour

matching methods, which segment cells in the first image and then continue to

evolve their contours in subsequent images/frames.[21][22] This solves both the

segmentation problem and the tracking problem simultaneously. Second group can

20

be characterised by first detecting all cells and subsequently tracking found cells

through images/frames through temporal information.[23][24][25] In this thesis we

will be mainly exploring various augmentations and improvements to the second

group.

1.1 Object Detection

Cell detection or rather the general problem of object detection is a common task

with many applications not just related to tracking. Even though this task has had

considerable advancements in recent years, it is still considered to be a challenging

task due to changes in illumination, partial occlusion, object overlap or object

rotation. One approach to object detection is through shape-based methods, like

Hough-transform [10][11]. This method in particular expects certain geometric

shapes, such as lines, circles or ellipses, and is then able to identify these shapes

in images. Despite the lower success rate of such methods, the big advantage is

that the method can be used without any machine learning, and can potentially

be used for automated data gathering.

Most state-of-the-art approaches rely on hand-crafted feature extraction (lo-

cal binary patterns [34], Haar-like features [20], histograms [35], HOG descriptors

[12]). These however, are not very well suited for all general objects, and require

a lot of testing to determine, which feature extractor is most suited for the task.

In addition to that, these descriptors are generally used in connection with ma-

chine learning algorithms. This means, that they require a training dataset and

additional tweaking for actual use.

Neural networks present a change in the common paradigm of using hand-

picked custom feature extraction for each task. Neural networks directly learn

features from raw data, which resulted in state-of-the-art results in complicated

tasks, such as image classification [36], object recognition [37], detection and seg-

mentation [38]. Neural networks perform exceedingly well on tasks, which are able

to supply a great amount of training data. Object detection specifically utilizes

convolutional layers in order to provide the highest quality of detection. In recent

years, convolutional neural networks are widely used and significant improvements

have been made to the use and propagation of information, which greatly improved

21

their usability. Such examples are [40][39]

Figure 1: Example of first video. Source: [49]

Detection results can be interpreted through a confusion matrix (Figure 1).

In turn, this information is very useful in computing the Precision/Recall metric.

Precision is the percentage of valid detections in a given image and can be calcu-

lated as true positives/(true positives + false positives). Recall on the other hand

is the percentage of all objects found within a given image and can be calculated

as true positives/(true positives + false negatives).

1.2 Object tracking

The idea of general object tracking with input taken from object detection is very

simple: connect together all bounding boxes found by the detection step so that

they form one consecutive track. This track can then be used for various purposes,

like computing average velocity, showing the most common trajectory, highlighting

object characteristics and changes in shape, size, etc.

A very common approach is to utilize object velocity in order to estimate the

location of a given object in the next frame of a video. Such an approach is

22

described in [26]. It utilizes a keyhole searching mechanism which gives estimates

on where to look for the next bounding box.

Another approach utilizes particle filtering. Particle filtering is a method used

for estimating the internal states of dynamical systems when partial observations

are made and deviations are present in the system. In object tracking this trans-

lates to objects being close each other, potentially overlapping or crossing their

paths, and connecting objects into tracks with the highest likelihood. Such an

approach is described in [27].

Figure 2: Example of blurred cells due to low FPS [44]

23

Evaluation of tracking is also a non-trivial problem. Object tracking which

uses bounding boxes from detection is heavily dependant on the performance of

object detection. This requires detection to be incorporated in any metric used for

indicating performance increase of an algorithm. Tracking itself has various useful

metrics. One such metric is for example the average length of a track, especially

when compared to a dataset. Another metric is the percentage of correct track

segments. Possible condensation of all these remarks can be seen for example in

[28] where both detection and tracking contribute to a final score called AOGM

(Acyclic oriented graphs matching) based on predefined weights adjusted according

to their importance.

1.3 Common issues

Even though common algorithmic approaches already solve these problems in gen-

eral, specifically cell detection and tracking has its own set of problems. When

acquiring video data from biological experiments, not all data is usable. Footage

from biological experiments is more often than not below average quality, the light-

ing is very poor, and for example colors are usually non-existing. Cells themselves

tend to move at a relatively high speed comparable to their size. This causes

blurring and in some cases virtual disappearance rendering certain videos not only

unusable for automated processing but even for manual processing (Figure 2).

There are also a few cell-specific events, such as cell division or cell death which

do not occur in generic detection and tracking tasks. Cell detection in particu-

lar has to deal with an increased amount of overlap and boundary blurring due

to overlap which is not usual for most objects and occurs due to the partial cell

transparency.

1.4 Descriptors and Classifiers

Descriptors and classifiers are the most basic building blocks for image processing,

that work in connection with each other. They enable us to tackle tasks, like image

recognition, object detection, automated labeling, or filtering.

A descriptor is a representation of features in specific type of data, in our case

24

a visual descriptor represents features in an image. These features need to have

specific properties for the successful detection/tracking in an image. Different

descriptors serve a different purpose, and each computer vision task can have

different descriptors. They are mostly divided into two categories. First category

are low level descriptors, which give description about shape, color, texture or

motion. Second category are specific domain descriptors, such as descriptors which

give information about the object or the scene. Examples of such descriptors are:

for face recognition (Haar Wavelets) or object detection (Histogram of Oriented

Gradients). Haar Wavelets for example sum areas on an image with differing signs,

and produce one number, i.e. a feature.

Classifier on the other hand is an algorithm, which is able to classify data. Its

result is a discrete class for each given piece of data. Most common classifiers

are binary, but also multi-class classifiers exist. Classifiers use a feature vector

as input, in the case of computer vision it can either be the raw image, or more

frequently the output of a descriptor. A good example of a classifier is a decision

tree. A simple decision tree takes a number as input, and then by traversing along

the tree to the leaves, we get a class decision.

1.5 Machine Learning

Machine learning (ML) deals with the study and construction of algorithms, that

can learn from data and make predictions. Such algorithms are designed to make

data-driven decisions, as opposed to static coded programs, which can only respond

in one way. The tasks for which machine learning is used, tend to be difficult

or unfeasible for normal explicit programs, due to various criteria, for example

performance or development time. Examples of tasks for which machine learning

is used are malware detection, email filtering, or computer visions problems.

There are two kinds of machine learning, or learning in general:

1. Supervised learning

2. Unsupervised learning

Supervised learning requires a labeled dataset, for which a mathematical model

is constructed. Such a data set for example in cell detection will have images, which

25

Figure 3: Example of Haar Wavelets. The rectangles represent a specific Haar

Wavelet. The squares are summed up, with black taken as negative and white as

positive values, producing one feature.

are either labeled as cell or as background. It is most useful in two areas, those

being classification and regression problems. Examples of algorithms which utilise

supervised learning are Support Vector Machines, Linear Discriminant Analysis or

Decision Trees. This approach is valid for tasks where a dataset of ground truths

is obtainable, and that is not always the case.

26

Unsupervised learning is an approach, that describes unlabeled data. The

idea is to give structure by inferring a function. The downside is that there is

no straightforward way to evaluate unsupervised learning algorithm, compared

to supervised learning methods. That being said, the upside of not having to

supply the algorithm with any dataset of ground truths is very critical in some

tasks. Algorithms, which use this approach are for example clustering methods

like k-means, certain neural networks or autoencoders.

Figure 4: Example of supervised vs. unsupervised learning. Supervised learning

specifically segments samples into circles and crosses, whereas unsupervised learn-

ing only groups together similar samples, without knowing what they are called.

Source: [46]

1.6 Issues of Machine Learning

Machine learning has to overcome many obstacles when being used. First of such

problems is overfitting. Logically one would think that more data always equals

better results. This is not the case. Some machine learning algorithms try to solve

classification by deciding which side of a hyperplane the sample of data is on. In

such case, overfitting can be viewed like a too-detailed hyperplane, which models

itself based on either wrong or extreme data. (Figure 5) The result of overfitting

can be either loss in classification performance, i.e. giving wrong decisions or loss

27

in prediction speed, since a too-complex function likely requires more variables in

its decision making process, making the process slow in comparison to an optimal

function. Also another downside can be the loss of portability of such model.

Figure 5: Example of overfitting. The green line is an example of an overtrained

model, and the black line is an example of an enough trained model. The dots on

the wrong side are usually noise or wrong data.

Source: [47]

Another common problem in machine learning is the curse of dimensionality.

28

[16] Machine learning problems tend to take a multidimensional approach to linear

problems. The issue with that, is that simple logic tends to be wrong when dealing

with a high order of dimensionality. Such problems include for example the usage of

common euclidean distance, where measuring the distance in a multi-dimensional

space does not always do what we want to achieve (nearest neighbour algorithms).

Building a classifier in two or three dimensions is easy, since validation through

visual inspection is possible and easy, but this is not the case in a 100-dimensional

space. It is important to understand, that the dimensionality grows with the

number of features. It is commonly the case that all 100 features of a given

data source are relevant, and can’t be reduced to less. Fortunately, there is an

effect that counteracts some of these symptoms called blessing of dimensionality.

The idea is that in most applications, the data samples are not spread uniformly

around high-dimensional space, but are clustered in certain areas. As a result,

dimension-reducing algorithms can be used or algorithms can take advantage of

this effectively lower dimension.

In addition to that, machine learning is often hard to explore and examine di-

rectly. Many machine learning algorithms work with arbitrary weights which work

in unison to render proper judgement, but to a human observer individual values

mean nothing. As a result machine learning algorithms are often perceived as a

black box. troubleshooting errors in learning can often be both computationally

and time consuming. There are more issues with machine learning, some of which

are more common than others. These other issues are explored in [16].

1.7 Overview of work done in the field

Visual cell processing is a common practice in computer vision. This task has

the potential of helping disease detection and aiding professionals in diagnosing

patients. The common workload is the detection and multi-class classification of

cells and the resulting interpretation for example in [14].

The problem with detecting all different kinds of cells, means that the success

rate of such an algorithm is currently much lower, than in a case where the algo-

rithm focuses on only one kind of cell, or cells with similar characteristics. When

looking further into existing research of cell detection, our focus was on tasks with

29

only one cell type, or specifically red blood cells.

Concerning more traditional computer vision methods, morphological methods

gave good results. In [18], the proposed method uses edge detection using various

algorithms, selecting canny edge detector as the most successful one. The method

then plugs the detected edges into hough transform, which successfully identifies

cells. In [17] this output is not just used for detection, but also for classification

between normal cells and sickle cells. It is worth mentioning that both these papers

utilize high quality video, and therefore does not have to deal with many challenges

due to low quality and bad lighting.

In [19] the proposed method utilizes histograms and thresholding to achieve a

very good cell detection algorithm. Certain color ranges are thresholded to 255,

being considered cells, and certain ranges are thresholded to 0, being considered

background. The image processed in this way is then analysed, and clusters of

255 value pixels are taken. Clusters which have below 100 pixels are considered

noise. These clusters are then counted, and compared to manual counting of cells

and existing algorithms, showing that the proposed method indeed gives improved

results.

Recently the focus has shifted to the usage of neural networks, for the purpose

of cell detection. Most research papers deal with the unified task of cell detection

and cell tracking, utilizing neural networks for the detection part and then more

traditional methods for cell tracking using the detected cells. Such an approach

is used in [26] where physical properties are used for making connections. On

the other hand in [13] the proposed method utilizes 2 neural networks. The first

neural network gives suggestions for bounding boxes in an image. The second

neural network is then online-trained for a specific cell and is used to decide which

bounding box proposals are the same cells, and lastly a traditional tracking algo-

rithm is used, which utilizes physical properties like speed, shape and so on. The

paper also showcases a benchmark algorithm ISBI (International Symposium on

Biomedical Imaging) cell tracking challenge, which is used for evaluating this cell

tracking task.

Then in [14] again a set of two neural networks is utilized for successful cell

tracking. This paper presents ways on how to approach tracking specific cells

30

using manual bounding box labeling and then utilizing sampling methods to train

a neural network for this particular cell. Next a particle filtering method is utilized

in the cell tracking stage, and then its results are fed into another neural network,

which gives propabilities for it being the same cell, like in previous frames. In

comparison to the [13] a completely different design of a neural network is used.

Also again a benchmark data set is presented, in this case for stem cells.

When going over state-of-the-art algorithms in the field of computer vision [15],

they tend to improve results by utilizing various methods at the same time. The

utilized methods are both traditional morphological or machine learning methods

for detection. In the cell tracking step, usually graph-based, overlap-based or

distance-based algorithms, without the use of machine learning. The problem

with these algorithms, is that they are specifically built for a task, and as a result

there is no way of using existing algorithms if we want high detection and tracking

performance.

In summary very few methods deal with red blood cells specifically, and more

often than not, the presented results are made on ideal data, that does not reflect

commonly available video. That being said, those algorithms which focus on a

specific cell type, do give better results, than those which try to work with cells in

general. It is worth mentioning that only detection stage is usually impacted by

being multi-class. In tracking algorithms, at least those which utilise physics to

connect objects into tracks, the results are not impacted by having a multi-class

problem.

The research is lacking in areas of dealing specifically with RBCs, for both

their detection and tracking. This might partially be due to RBC-only datasets

with sufficient quality not being readily available. Using methods, which were

utilized in other parts of this field is one avenue worth investigating. Another such

possibility seems to be in utilizing deep learning not only for detection, as is quite

common these days, but also for object tracking. Lastly, tightly connecting these

steps, detection and tracking, and creating some sort of feedback loop is worth

exploring as well.

31

2 Previous Research

Progress on this topic has been done within our team as well. In [42, 43], an algo-

rithm was developed, which was composed of two steps: Detection and tracking.

The first step of this algorithm detects RBCs. Static images or video is taken

as input. The output of this step are centres of cells within a given image. This

step first utilizes background subtraction methods, in order to remove clutter and

noise from the image. Subsequently the image is processed using an edge detection

algorithm, specifically canny edge detector. The resulting edges are then used with

Hough transform, which searches for two shapes: circles and ellipses. The Hough

transform creates dense clusters of high intenstity points, where centres of shapes

are located. A thresholding operation is then applied to the image, and qualified

points are then used as output of this step.

The second step uses the result of the first step as an input. Singular cells

are connected into tracks for each cell. In the initial step, where no physical

data is available, neighbouring centres are connected using an initial radius. After

that, the algorithm uses the speed and direction from the previous frames, to

predict which bounding box should be chosen from the next frame. The direction

is computed from both the previous motion, as well as the flow matrix. A flow

matrix tells us what vector a cell would have in a given point, without having

any other information. This is useful both when deciding what to do in the next

frame, and also when the track is heavily fragmented. The current implementation

is capable of skipping frames, in which there was no valid detection. The output

of this step is a track for a cell, and the assortment of bounding boxes for this cell

in each frame. This output can be used for statistical purposes, and is the desired

output for this algorithm.

The problem with this approach is that it is still subject to many flaws of each

step. The detection step has issues with lighting and shapes, that are not exact

circles or ellipses, as well as setting a threshold for a particular data source, due to

differences in color intensity. Unfortunately, the tracking is heavily dependent on

detection input. When annotated data from our dataset was used as input for the

tracking instead of the output from the detection step, the tracking algorithm was

outputing very long tracks, as opposed to fragmented and short tracks when using

32

the detection step output (Figure 6). Going forward, this thesis will deal with the

research and improvements to the detection step and the tracking step in tandem

as well as extracting data from both steps suited for simulation validation.

Figure 6: Example of fragmented tracks. Source: [43]

2.1 Analysis of the current situation

As was detailed in the overview, other algorithms for the purpose of cell detection

do exist. The algorithms that were presented, have shown the progress in the

field. Most algorithms started out with best-case-scenario data, which was well

lit and easily analysed, and a single method for detection was required to provide

a good result, like with Hough transform. This was the approach of my team as

well. The problems start when Hough transform is applied to other videos. For

example, calculating the threshold value for cell identification ended up being a

big issue and not transferable between videos. Another issue is that when objects

are very big, i.e. high quality video, dual edges are made out of cells, causing

Hough transform to display detection artifacts. (Figure 7) Another issue is that

similar round objects (Figure 8) can also be wrongly classified as a cell.

33

Figure 7: Example of double edges with canny edge detection. Background source:

[44]

Coming back to the previous analysis, the commonly adopted solutions were

as follows: 1. use multiple methods, which together alleviate the issues of one

particular method, or 2. go into machine learning. We chose to go with various

machine learning algorithms, with other parts of our team going into the first

method potentially in the future. The reasons for choosing it were simple. Machine

learning algorithms usually require a dataset for the online part of the training.

34

This requirement was fulfilled when we made our dataset (more in chapter 3).

The dataset was made from the same video on which the existing algorithms were

implemented. The dataset contains bounding boxes of each cell, with coordinates

and height + width. The dataset is still a work in progress, and there are plans on

extending it, especially adding a cell tracking part, which will enable cell tracking

performance benchmarks.

Figure 8: Example of round objects, which interfere with detection. Background

source: [45]

35

An additional reason for choosing machine learning, was the previous posi-

tive experience with both using, and implementing additional parts of AdaBoost,

namely SHOG descriptor that was added to the Viola-Jones cascade [41], as well as

experience with CUDA, GPU architectures and other machine learning algorithms

like SVM.

2.2 AdaBoost

Our previous experience gained during master studies led us to test the AdaBoost

algorithm and to evaluate its use for our particular task. First a brief description

of the algorithm and the surrounding technology. AdaBoost is a machine learning

meta-algorithm, which can be used for a variety of tasks. The meta part comes

from training weak classifiers, which can be any classifier, most commonly used

are decision trees. AdaBoost takes these weak classifiers in bulk, assigning weight

to each of them, and producing one more powerful classifier as a result.

The inputs are the same as for most machine algorithms that is a fixed size

feature vector, that corresponds to the trained model. As an output, we have the

assignment into one class or another. AdaBoost can be both binary and multi-

class classifier, in our case it will be binary. The algorithm works in two stages,

first stage is training, second stage is testing. In the training stage, labeled data

is supplied into the algorithm, which trains a model composed of certain features,

and their labels. These labels tell the algorithm, to which class the data belongs

to. In the testing stage, a judgment is produced based on the data sample.

When it comes to features, a descriptor has to be chosen that is good for that

particular task. In practice this means that different types of feature descriptors

have to be tested, to determine which one is best for that task. Another thing

that is important, are cascades. Cascades combine multiple classifiers, in order to

improve speed of an algorithm. This enables us to put a fast, but not very rigorous

classifier at the front end, and a slow, but very powerful classifier at the back end.

This means that most data, will be classified as false, by the time they arrive at

the slow powerful classifier. The critical behaviour of these fast classifiers though,

is that they maintain a 99% or higher true positive rate, so that actual good data

make it to the complete end. (Figure 9)

36

Figure 9: Example of a cascade. Each stage removes a percentage of samples, and

samples which get to through the last stage are labeled as containing an object.

Stage 1 is usually much faster than Stage n. Source: [48]

The particular implementation of cascades and AdaBoost in question is called

Viola-Jones cascade [20]. It is part of the OpenCV library, and contains a set of

tools for training and also a high performance suite for testing, as well as some

implementations on the GPU. This cascade has 2 types of supported features out

of the box, Haar Wavelets and Local Binary Patterns, out of which the Haar

Wavelets were relevant to us. Haar Wavelets can be easily generated in thousands,

which means they are usable for both fast and slow stages.

The cascade was tested using various settings by training different models and

then benchmarked as highlighted in [K2]. The best model image width and height

ended up being 25px by 25px, which corresponds to the usual cell sizes in our

dataset, which are from 25-30px. Weak classifier count restriction was also tested,

but had no performance or speed benefit, unless a very low sub-10 number was

chosen, when the performance started to decay. Increased depth of weak classifiers

(depth of the decision tree), had a negative impact on detection performance, as

a result depth 0 was chosen for the final model.

Table 1 contains best achieved results for detection with Haar cascade. As we

can see, the positive detection rate is at about 50% of total detected object count,

which means that half of the objects output by the algorithm are valid detections.

This might seem like a low number, but one has to take into consideration that

the image had thousands of small windows to process. The false positive rate is at

37

Table 1: Best AdaBoost detection results confusion matrix
Predicted cell Predicted background Total

Actual cell 1 320 1 290 2610

Actual background 1 322 approx. 8 000 000 X

Total 2 642 X X

about 50% as well, but this can be partially countered by training a more rigorous

cascade. In the future the algorithm might provide better results when coupled

with different feature descriptors, but is not particularly well suited for our task.

The only possible use would be in tandem with the Hough transform.

With these results, which have proven to be moderately successful, we decided

we will try a more novel approach using machine learning, specifically deep learn-

ing. In the next chapter we will go over our initial research going forward with

neural networks.

38

3 Dataset

Figure 10: Example of first video and examples of cells in the video. Source: [44]

In order to be able to evaluate any algorithm, be it cell detection or tracking,

we have created a dataset for both tasks. The current version of the dataset

contains two videos. In the first video (Figure 10) we have annotated 300 frames for

detection purposes. The video generally averages to about 50 RBCs per frame, the

cells being between 25px to 35px in size and the resolution is 1280px by 720px. This

video also has tracking annotations for 300 frames for tracking testing purposes.

The second video (Figure 11) has 100 frames of bounding boxes annotated for

detection. This video averages to about 35 RBCs per frame, cells being 35px to

45px in size and the resolution is 512px by 512px. More detailed information about

the dataset videos is in Table 2

Our main goal when creating this dataset was to create a dataset that is diverse

enough to encompass the general characteristics of RBCs in different experiments.

39

Figure 11: Example of second video. Source: [45]

The addition of our second video to the dataset introduced us to new RBC be-

haviour due to the squeezing mechanism in the experiment from which the video

originated. In the second video , the cells themselves are more easily discernible

from the surroundings and they have different scale ratio to the whole video frame.

Both videos contain cases which are difficult to discern even for humans. Such

cases can be seen on Figure 12 Going forward it is of utmost importance to extend

this dataset with more annotations, especially for any usage of machine learning

40

algorithms which greatly benefit of added variety.

Table 2: Dataset Data
Bounding Boxes Tracks Average Width Average Height Average Track Length

First Video 15089 85 25.0147 24.4071 176.9647

Second Video 5012 265 40.1941 40.2298 18.8301

Key information about differences in the dataset. We can see that cell sizes

are different and tracks are also fundamentally shorter.

(a) Clump of cells (b) Microfluidic channel obstacles

Figure 12: Example of difficult events for detection.

The actual structure of the dataset is done through an XML file, which holds

the information about file names and locations. Each image file holds information

about all bounding boxes. The bounding boxes themselves contain their location

and dimensions, as well as the track to which they belong if the information is

available. For ease of transfer, any described algorithms are capable of using this

format as input/output.

41

4 Convolutional Neural Networks

When it came to the initial testing of convolutional neural networks (CNNs), it

became clear that we do not want to jump right into making our own implementa-

tion. As a result, we ventured into finding the correct implementation, that would

serve our needs for the foreseeable future. Most of our previous codebase was ei-

ther in Python for Hough transform and tracking, and then in C++ for AdaBoost.

Therefore it would make little sense to focus on an additional language, and would

also create problems with maintaining the code down the line.

When it comes to neural network frameworks, the most commonly referred to

in 2018 are TensorFlow and PyTorch. Both frameworks use python, and both are

very well maintained. TensorFlow is slightly more established, starting back in

2015, whereas PyTorch is a very recent, and is still in beta. Both are capable

of utilizing GPUs for heavy workloads, most importantly CUDA technology. We

opted for TensorFlow based on the fact, that the community is more ripe and

the availability of tutorials is more widespread. That being said, our focus is on

detection and not being rooted to one framework, so we might revisit PyTorch in

the future.

Both frameworks are open-source, meaning it is possible to extend them, and

contribute to the original repository. Both are written in a blend of C++ and

Python, with their own building tools and contribution guidelines. In the future

should we wish to improve any existing implementation, or make our own, it is

possible to do within both of these frameworks.

4.1 Proof of Concept

As an initial proof of concept for delving into CNNs for detection, we constructed

a simple neural network using Python and TensorFlow. The input of the CNN

is going to be a frame of the video and the output will be the probability of a

sample being a red blood cell. It consist of 3 convolutional layers, one flattening

layer, and two fully connected layers, in this specific order. After that we apply

the Adam Optimizer, which minimizes the cross entropy with the annotated data.

We let the algorithm run for 1500 iterations, which is not too much, but this proof

42

of concept was run on a CPU, rather than on a GPU.

The convolutional layers apply the convolution operation. Each layer applies

a 3x3 operation with max pooling. Max pooling takes the output of a convolution

operation, and takes the maximum value out of a 3x3 matrix, thereby reducing

the image size in the process and growing in channel count. The first and second

layer produces 32 channels, and the third layer produces 64 channels. The strides

of the filter window are 1,2,2,1 in a 4D tensor, meaning in the first dimension they

move by 1 px. After the 3 convolutional layers, we add a flattening layer, which

squashes the 4D feature output into a 1D feature vector with 128 features. This

is then fed into the two fully connected layers, the first layer reduces the feature

vector to 64 and the second creates our 2 output values. Those are probabilities

for class Cells and Non-cells, and since these values are complementary, we only

need one value out of these. Visual representation is on Figure 13.

Figure 13: Diagram of our convolutional neural network.

Adam optimizer is a stochastic gradient method, that maintains a single learn-

ing rate for all weight updates, and maintains an adaptive learning rate for each

network weights. The algorithm is commonly used in deep learning. When it was

first designed it was applied to a logistic regression algorithm, and proved to be

fast and efficient.

The training dataset consisted of 279 cell images and 549 background images

which were segmented from our dataset. The testing dataset consisted of 261 cell

images and 873 background images. These were selected at random from our whole

dataset and the images between training and testing datasets do not overlap. The

43

success rate of this trained CNN is around 87% on the training data. Considering

the fact that the training is not using all of the data, the training process was

relatively quick (around an hour on a CPU, 20 minutes on a GPU— and the fact

that this CNN was designed only for general use, and not specifically for cells, this

is a very good result for our task. For these results we used 2000 iterations which

equalled to about 50 epochs.

Table 3: CNN network training results

Predicted cell Predicted background Total

Actual cell 6172 1058 7230

Actual background 1626 114501 116127

Total 7798 115559 123357

For the evaluation of this prototype, we used all the remaining cell images in

the dataset, which amounted to 7230 cell images and 116127 background images.

The results can be seen in Table 3. The resulting precision is 79% and recall is

85%. If we compare these results to our implementation of Hough transform, which

has around 90% precision and 65% recall, and to AdaBoost with Haar wavelets,

which has 50% precision and 50% and recall, we can already see, that our simple

CNN prototype provides competitive results on the same dataset, with very little

training time and a small dataset. Even though these methods have fundamental

differences, the results were obtained by cross referencing the bounding boxes, or

centers of them in the case of Hough transform, with the provided results of each

method of detection.

Our prototype can be improved by using recent discoveries in state-of-the-art

algorithms. Instead of opting for pooling methods and conventional convolutional

layers, we can utilize dense layers described in [6]. This is possible through the

propagation of information not being lost between layers. In addition to that, we

can remove one fully-connected layer since based on other work being done in the

area one is completely sufficient.

The final version is composed of 7 dense convolutional layers and one pooling

layer, complemented by a fully connected layer which produces classification prob-

abilities. We trained this final version with 10000 iterations. We did the same with

44

the first prototype in order to produce an equal comparison. After more thorough

training, both models provide comparable results, with the final version providing

98% precision and 93% recall, and the former version 97% and 93% respectively.

It is however of note that the more complex final version was also training more

slowly by about 10%.

These prototypes have one major flaw however. They are quite slow and not

being able to process whole images at once. As a result we need to look at existing

approaches which provide performant and ready full image processing and evaluate

them on our task.

4.2 Testing configuration

For the evaluation of detection we had to preprocess our dataset. We have created

3 subsets of our dataset:

1. 150 images of first video for training and 50 images for testing during training

2. 200 images of first video for training and 50 images for testing during training

3. 200 images of first video for training, 50 images of first video for testing

during training, 30 images of second video for training and 20 images of

second video for testing during training (this subset was also reshuffled 3

times for cross validation)

The purpose of this separation was to evaluate the impact of additional data on the

performance of the neural network. The specific groups of images do not overlap

within a given subset. The training process is supplied with whole images with

annotated bounding boxes with valid RBCs. The rest of the image is used during

the training for segmenting backgrounds.

Neural networks were trained with 100 000 iterations by default. We also

evaluated training for 200 000 to see if it gives any added benefit. All configurations

were selected by default for the COCO dataset which cannot be used for transfer

learning in connection with our task and dataset it is very easy however to find

configurations for all tested architectures for COCO, creating a perfect baseline

for testing. Only change made to the configurations were the input resizers being

45

accommodated to our image sizes. We also tested both RGB and grayscale images

for training and evaluation to see the impact of color on our images, since they are

generally almost gray anyway. The input for each CNN in the evaluation stage is

one frame of any size and the output is a tuple of position, class (in our case just

one) and probability of each detected bounding box. For the grayscale testing,

due to the framework being implemented for RGB, we converted each image to

grayscale on load and then duplicated the one channel, so that the neural network

was still supplied with 3 channels of an image.

The testing workbench was comprised of Threadripper 2950X and GTX 1080

Ti graphics card. The training time for most of our models was around 12 hours,

with some of our training taking up to 24h each.

4.3 Architectures

For testing we have selected 3 main state-of-the-art approaches:

1. SSD - Single Shot Detector [31]

2. Faster R-CNN - Region - Convolutional Neural Network [29]

3. R-FCN - Region-based Fully Convolutional Network [30]

The main selection criterion was the ready availability of these architectures as

well as top performance on datasets like for example MNIST, CIFAR or SVHN.

The SSD architecture utilizes an anchor system to propose the target bounding

box and then classifies that bounding box. This architecture is aimed towards

real-time performance and generally has issues with small objects, but that can be

adjusted through generating more anchors for each image. For detecting different

sizes SSD utilizes scaling of input image, which more akin to a traditional sliding

window.

Faster R-CNN is fundamentally different from SSD in that it utilizes region

estimation. As a first pass the architecture identifies interesting regions in the

whole image and then proceeds to only render judgement on those regions, reducing

computational complexity considerably. Next, the neural network classifies a given

region and outputs an estimating bounding box for the searched objects. R-CNN

46

used to utilize an external region estimation algorithm, whereas moving to Fast

and Faster R-CNN the whole algorithm was moved to the neural network.

R-FCN is also a region estimating neural network. R-FCN tries to improve

on R-CNN through simplification of certain steps providing comparable detection

performance at an increased real-time performance. Even though it is similar in

logic to R-CNN, the design of the neural network is different and it also responds

very different to changes in shape, color or scale. As such we need to evaluate it

as well to see what suits our needs best. On paper, this is the best performing

architecture.

4.4 Test results

For evaluation of CNNs we used the precision and recall metrics. In order to decide

whether an object is the same in annotated data as in the detected data we used

Intersection over Union (IoU) with overlap value of 0.5. We also used a second

parameter which puts a limit on the maximum distance of centers of bounding

boxes to be 0.5 * width of annotated bounding box. When judging these criteria

we also segmented IoU into three bins, 0.5, 0.3 and 0.1 and the distance into 0.5

and 0.3 bins. This provided us extra information when comparing the different

architectures, specifically related to centering of detected object.

Firstly we tested the detection results of our 3 architectures on all 3 described

subsets of our dataset. The results can be seen in Table 4. We can see that a fully

trained network provides considerable improvements over our existing methods in

two cases. SSD seems to behave very poorly on our dataset, even though it was

configured for the same COCO dataset as the other two architectures.

We can see that all the neural networks perform considerably worse when

trained on only 200 frames, indicating that performance still can improve with

more data going forward. The more interesting metric is that when trained on

both videos, even though Recall values go slightly down, the performance is still

going well. We can also see that without adding data from second video, the neural

network fails to detect almost anything. This implies that we need to introduce

more variety into our dataset. The performance on the second video after only

adding 50 frames of training/testing data is better than on the first video, which

47

is due to bigger cells and more easily distinguishable contour. Faster R-CNN

provides the best results of the 3 architectures by far. SSD seems to have issues

with small objects in the first video, but on the second video it performs admirably

right away, which leads us to the anchor system limiting the performance. R-FCN

seems to be more susceptible to dataset variety after adding second video to the

training. We will need to enhance our dataset further to see if R-FCN performance

will be fixed.

Table 4: CNN testing results
200 frames 250 frames 250 and 50 frames

Precision/Recall First video Second Video First Video Second Video First Video Second Video

SSD 90.9%/66.3% 16.7%/11.0% 94.5%/68.0% 0.0%/0.0% 95.1%/68.7% 99.2%/93.3%

SSD - Adjusted - - - - 98.7%/88.0% 99.2%/95.1%

Faster R-CNN 99.6%/89.7% 0.0%/0.0% 99.3%/97.2% 1.4%/0.1% 99.5%/94.7% 98.7%/98.7%

R-FCN 99.2%/82.1% 2.7%/0.4% 99.6%/88.6% 10.0%/0.4% 82.5%/86.5% 95.5%/97.4%

First two columns represent trained models on 200 frames of first video. Second two

columns represent trained models on 250 frames of our first video. Last 2 columns represent

trained models on both videos with 250 and 50 frames respectively. The values in each

column represent the Precision/Recall values of a given model. The models were trained

with 100 000 iterations each.

Before we go over our adjustments to the SSD framework, we need to explain

the impact on our metrics. First of all, our recall is high due to us including 0.5

width distance difference bounding boxes in the ”true positive” category. While

these suffer from worse localization, they are still valid detections for our next

step. This improved detection across the board, but it improved recall of SSD on

our first video by 16%. This seems to imply, that because SSD works on much

smaller images, this causes some issues with pinpointing location. On the second

video, which has much smaller resolution, the difference was less than 0.5%. After

tweaking the model of SSD further, we achieved comparable results on our first

video. We achieved this through adjusting anchor scaling of SSD model, as well

as increasing the working resolution of the model from 300px to 600px. This also

fixed the localization issue of SSD in the first video. It is to be noted however, that

this had an adverse effect on the speed of training of this adjusted SSD model,

causing it to train twice as slow. Luckily this is not a concern for us.

48

Table 5: Overtraining

First Video

SSD 75.9%/59.4%

Faster R-CNN 92.9%/96.8%

R-FCN 95.4%/88.5%

250 frames trained with 200000 iterations from first video - values represent

Precision/Recall

In Table 5 we showcase the results of further training our models with 200000

iterations, up from 100000. All 3 frameworks suffer from overtraining and precision

degradation. This means, that our training is as good as it gets and will only

benefit from additional data and minor tweaking using error rate during the testing

step.

Table 6: Background Subtraction

First Video Second Video

SSD 93.8%/66.7% 72.6%/98.4%

Faster R-CNN 99.3%/88.4% 5.5%/0.8%

250 frames trained from first video with background subtracted from both -

values represent Precision/Recall

Next, we looked at our background subtraction evaluation. The goal here was

to lessen the transferability of our models between videos with as little human

intervention as possible. Here we illustrate Faster R-CNN and SSD (R-FCN be-

haved similarly to Faster R-CNN) in Table 6. We can see that in the case of SSD,

background subtraction improved transferability considerably at the cost of preci-

sion. With additional data manipulation we can likely create a model, which will

be more robust towards lighting and color. Faster R-CNN on the other hand pro-

vided no noticeable performance uplift and as a result still needs training from the

other video. When comparing our two background subtraction methods, temporal

and static image, both provided similar results. Our first video has an accidental

camera shift, and the temporal method mitigated this issue after the frames in

49

mind going out of history.

Table 7: Grayscale
First Video (Gray) Second Video (Gray) First Video (Color) Second Video (Color)

SSD 97.2%/88.3% 99.4%/95.5% 97.7%/87.6% 99.4%/95.5%

Faster R-CNN 98.2%/95.9% 99.4%/96.6% 98.2%/95.2% 99.4%/96.6%

R-FCN 72.7%/80.9% 87.9%/96.9% 71.8%/73.1% 87.9%/96.9%

250 frames of first video and 50 frames of second video converted to grayscale

used for training, then evaluated on both gray and colored images - values

represent Precision/Recall

We wanted to evaluate the impact of using grayscale images during detection.

The logic stems from all the cell imagery being gray to the human eye. We can see

the results of this evaluation in Table 7. The first thing we can notice is that R-

FCN suffers greatly from being trained on a grayscale dataset compared to an RGB

one across the board in both precision and recall. As such this framework is not

viable for use with grayscale imagery. Second thing of note is that the frameworks

have a noticeable performance degradation on the first video for SSD and Faster

R-CNN for precision, but Recall is better than with a color trained model. On

the second video we even see SSD outperforming its color trained counterpart and

Faster R-CNN suffers a minor recall degradation. In turn if we use a grayscale

trained model on colored images, we get almost the same results on the first video

and identical results on the second video. This leads us to believe that color is

still important to RBC detection in images but we do not need to shy away from

potential gray image inclusion in the training dataset.

Figure 14: Example of false positives

When analysing all of our results, specifically false negatives (Figure 15), we

came to a conclusion that the CNN performance is starting to outperform humans

in certain cases. We took a closer look at cells which caused a Precision downgrade

and when looking at multiple frames in a sequence, we noticed that manual anno-

50

tations for our dataset were missing certain cells. After visualisation, this enabled

us to improve our dataset, further improving the results of our trained CNNs. On

the different end of the scale, a percentage of false positives also turned out to not

be completely invalid. In many cases the neural network joined several bounding

boxes which ended up being in the middle of several cells around it. This is better

than if the neural network was spitting out nonsensical data.

Figure 15: Example of false negatives

As last verification, we performed 4-fold cross validation on our test case of 250

images from first video and 50 images from second video. The variance of Faster

R-CNN precision was 99 % ± 1 % and Recall 94 % ± 4 %. The variance of SSD

precision was 97 % ± 1 % and Recall 80 % ± 4 %. The variance of R-FCN precision

was 99 % ± 1 % and Recall 86 % ± 2 %. The results confirm the quality of Faster

R-CNN for our task and also show that SSD is more unstable in performance

compared to R-FCN.

51

5 Tracking and cells

We have already discussed the existing algorithm used for cell tracking. We have

also discussed that it is capable of skipping gaps in detections for a certain amount

of frames. In order to establish a baseline we evaluated this algorithm on our

tracking dataset using frame skipping parameter set to 5. We can see the results

of this baseline in Table 8. We used 300 frames of our tracking dataset to produce

the results. We need to take into account that the annotated data has a Recall of

100% and it goes down to 95% for our detected data. This 5% decline amounts to

having about 0.6 more holes on average within a track. The performance of the

current algorithm is already showing enough potential to enable data gathering

but our aim is to improve it further. We can see the visualization of these tracks

in Figure 16

Table 8: Tracking performance results

Average track length Pass-through

Data source First Second Fragment per track

Annotated 41.602/355 59.552/248 1 : 2.3

Detected 36.243/399 48.5/298 1 : 2.9

Values in each cell represent the average track length / track count. Track dataset

has average track length 139.7 and 73 tracks total on 250 frames of the video. This

amounts to about 2-3 holes per each track found by our algorithm.

5.1 Flow matrix

The first main issue with the current algorithm is its usage of a flow matrix. The

problem with the flow matrix constructed from the existing tracks that have been

detected so far is the scarcity and unevenness of data. The flow matrix even after

interpolation does not have accurate data for each point. In order to solve this we

setup a computational fluid dynamics (CFD) simulation of flow in the channel. For

this one needs to provide the geometry of the channel and inlet velocity conditions.

The channel geometry is readily available and the averaged inlet velocity can be

obtained from the information of maximal fluid velocity in the channel, or using

52

Figure 16: Example of tracks found in first 300 frames

the volumetric flow rate. The video data does not contain information about the

volumetric flow rate, however, the maximal fluid velocity can be estimated using

maximal velocities of the individual cells.

Our current results enabled us to extract this vital information. We extracted

the maximum possible speed of cells inside our channel which turned out to be

around 11 pixels per frame. This speed occurred in the direct middle of the channel.

We used the PyOIF module [4] within the ESPResSo package [3]. This module

is capable of simulating the flow of red blood cells in a given microfluidic channel.

We seeded the cell sizes roughly based on the occurrence of cell sizes in our dataset,

which amounts to sizes between 25px and 35px.

The results of this simulation enabled us to gather a perfect flow matrix for

experimentation within reasonable margin of error. In addition to a flow matrix

we also gathered the positions of RBCs within the simulation with their cell size

and velocity vector for further experimentation.

After evaluating our existing algorithm with this simulation flow matrix, the

results were within 0.5 ±average length of a track compared to the flow matrix

made from annotated / tracked data. That seems to indicate that the resulting

53

flow matrix from simulations does not impede the tracking algorithm in any way.

5.2 Neural network tracking

As the next step in improving our tracking performance, we have designed a pro-

totype using CNNs. The idea is to take the resulting tracks from our second

pass-through and try to join them with other existing tracks together. The neural

network is designed to predict the location in the next frame more accurately than

our physical model would.

The initial step is to convert our tracking dataset into a manageable format

for our neural network. We have created 30x30x5 matrices out of our tracking

dataset, centered at each given cell for which we are trying to find a segment

in the future frame. First 2 channels contain the X and Y velocity of the cell

respectively located at coordinates [15,15] and the rest being 0. The 3rd channel

contains locations of all cell centers in the 30px x 30px vicinity from our cell. The

last 2 channels contain a flow matrix of X and Y velocities for each of the 30x30

points. The velocities of in the 4 channels share a similar magnitude and were

calculated from a fluid-only simulation. Our dataset contains 10058 samples for

training.

The output of the neural network is two values, predicted X and Y velocity

between the current and the next frame. The structure of the neural network is

12 convolutional layers with 32 filters each with 3x3 convolutions and utilizing

ReLu after each. Then we have 1 pooling layer and at the end we have 1 fully

connected layer which outputs our two values. For the cost function we use mean

square error and Adam Optimizer for the training. We measure the accuracy of

our model through the sum of absolute values of all errors after each epoch of

training.

We were able to train the neural network successfully and validated it after

segmenting our dataset into 3 parts: 60% for training, 20% for testing and 20%

for validation. The initial test took 60% sequential data and used only those for

training. This has proven inefficient, because the neural network provided bad

results on the other two parts of our dataset. We approached this issue through

random sampling our dataset before segmenting it into parts. This increased the

54

diversity of the data for the neural network and we were able to verify relatively the

same performance on the latter two parts as well. Our current best performance is

with error sum being at around 8 for a batch size of 32. The value is computed as

a sum of all absolute values of differences between the predicted velocities and the

dataset X and Y velocities. Going forward we will need to utilize this prototype in

our tracking pipeline to see if the synthetic benchmark is indicative of being able

to connect cells into segments using the CNN.

As a next step we trained the neural networks without the last 2 channels which

represent the flow matrix. We wanted to see if the neural network performance on

the training and testing dataset during training would be impacted in any way. We

ran twice the amount of iterations during training and after watching how loss and

error sum develops. The neural network was not even able to achieve good results

on the training dataset, let alone the testing dataset. This leads us to conclude

that the flow matrix is critical during training for extrapolation of information.

We also wanted to see what impact might dataset augmentation have. In

an effort to add more data, we tested out rotating our data. Due to how our

data is segmented for training our tracking neural network, it is not as trivial as

just rotating image data clockwise by X degrees. On every rotation, all velocity

vectors have to be adjusted based on the rotation. As a result we chose a simple

scheme of rotating counterclockwise by 90 degrees and then doing a vector swap

with sign change. The final formula is vector X becomes vector Y and vector Y

becomes minus vector X. This increased our data by a factor of 4. This change

negatively affected training speed. The model can still reach the same performance,

or potentially better with more training, but it was generally slower by about 40%.

On our synthetic benchmark we observed a minor mean error decrease in predicted

velocity.

After this we used simulation RBC data for training the neural network model.

We saw this as an eventual possibility of improving the diversity of our dataset.

The simulation data could be acquired in a similar way to gathering a flow matrix.

As a result, we had 6x more data from a single simulation than we had from our

annotated dataset. On its own however, the data was not capable of predicting the

movements in our videos. That being said, this might be an issue with the diversity

55

of the data provided by the simulation. After splicing together some samples from

the simulation with our dataset, we observed no performance degradation and in

the future on new videos this might provide more robust results.

As our last important step towards utilizing our new method, we had to in-

tegrate it into our existing tracking pipeline. The tracking neural network easily

interfaces with it, due to velocities being readily available and flow matrix already

being used by the algorithm. The neural network is capable of both looking into

the future and into the past (frames with +1 and -1 indices respectively). We

used it as a refinement step in the pipeline. On average, the current output of

the tracking step produces tracks which have on average 2.3 holes. (Table 8) Our

neural network was able to reduce that fragmentation of tracks to 1.8 holes per

track, which amounts to average track length of 77 bounding boxes. This in of

itself is a significant improvement in performance for our tracking algorithm.

Going forward, it shows promise to further tweak the neural network to com-

plement the tracking algorithm even more. Other possibility is rechecking certain

critical decisions in some tracks where overlap is common and using the neural

network as a second judgement call with certain weight attached to it. For now

the performance of the neural network, however, does not seem to indicate being

able to remove the whole physical tracking algorithm in favor of solely using the

neural network approach.

56

6 Validation with simulations

After gathering all possible data from videos we need to gather important metrics

for validating simulations. The established output from the whole tracking pipeline

is the list of all detected bounding boxes connected tracks, each track representing

the lifetime of one cell in a given video. The first rudimentary metrics were already

mentioned in the Dataset, width and height of an RBC. These are relatively easy

to gather from the detection step already.

Next we are able to create a heat map of the occurrence of RBCs. This can

be seen in Figure 17. The heat map gives us a detailed picture of where most

RBCs flow within a given fluid flow. The heat map represents low occurrence

(blue color) and high occurrence (red color) of RBCs in a given location. We can

see for example in the second video due to the different nature of the obstacles

there are almost no cells over the course of our 150 processed frames. This can be

directly compared to a simulation to see whether the occurrence of cells is similar

to the video. This is again created from the detection step.

Figure 17: Heat map of the cell density in the channel. Left: First video, Right:

Second video

Moving on to data gathered from cell tracking, here we have more information

due to having the bounding boxes connected together. Firstly, we created a di-

rection of movement visualisation. This can be seen in Figure 18. This particular

output highlights the behaviour of cells around the squeezing obstacles. We can

57

see how most cells avoid them by flowing under or above the obstacle.

Figure 18: Flow visualisation of cell trajectories in second video.

Particularly of note are also the velocities of cells. Velocities can tell us whether

the fluid is flowing the same way in the simulation, especially with added RBCs.

We can designate regions within a given channel which are interesting for mea-

surements, for example bends as seen on Figure 19. These bends are generally

problematic even for the tracking algorithm. We can then construct velocity his-

tograms from both the simulation and tracking output and directly compare their

values.

Lastly, we are able to acquire partial 3D information from a 2D image. In the

case of our second video that is not possible, because the microfluidic device is too

thin for any overlap. However, in the case of the first video, we are able to discern

the depth at which a cell is moving based on the velocity it travels at. The channel

in question has highest fluid flow in the both horizontal and vertical middle and

the cells slow down when near the boundaries of the microfluidic device. This is

58

Figure 19: Two cross-sections (bold lines) and two regions (dashed) are indicated

for evaluation of velocity histograms.

also critical information for calibrating a simulation since the fluid flow behaves

the same way in a simulation and a single velocity value per pixel might not be

enough.

7 Future goals and closing remarks

With the advent of new methods being available very frequently in the field of

computer vision and specifically neural networks, future improvements to the data

gathering show a lot of promise. In terms of detection, for the future use of the

described approaches, further data gathering is imperative for any progress. It is

however of note, that further incremental improvements are not trivial not only

from the research and data gathering standpoint, but also from the software devel-

opment standpoint. A dataset of relatively small size as was described in this thesis

already requires a lot of data manipulation for any simple task. By introducing

any further redundancies like is often the case, in our case with the usage of a flow

matrix, the complexity increases. Any simplification such as the introduction of

59

already mentioned dense convolutional layers over normal convolutional layers is

desirable. Exploring latest state of the art approaches to detection that could be

combined with the detection framework capabilities described would be the most

straightforward area of improvement next to the addition of more data.

In terms of tracking, the approach of using any form of neural network is

relatively new and quite often is on a per-cell basis or in our case requires help

from simulation software for certain steps. As such, further research shows a

lot of promise in replacing or complementing traditional methods like physical

models or particle filtering. Improvements on our proposed method lie mainly in

the experimentation with different information components, since they are not as

straightforward as changing layers example with detection.

After describing all of our metrics and data analysis methods, there is still a lot

of potential in finding new ways of how to apply the existing data to simulations.

One possible approach is the automation of future approaches, which would then

lead to more data as well as more validated models. Potentially automating the

simulation software to work in tandem with the tracking algorithm would enable

experimentation with parameters of the flow matrix generation. All in all both

this area of study as well as the improvement of microfluidic devices simulations

shows a lot of promise going into the future.

60

Conclusion

In this thesis we went over several topics, which all deal with the automated gath-

ering of data from videos of RBCs. We performed an analysis of existing solutions

for detection and tracking problems. We then went over current approaches to

detection and tracking of RBCs in videos and presented improvements through

the application of state-of-the-art algorithms. We also delved into the topic of

data extraction through several metrics for immediate simulation validation.

In the first chapter we established a common terminology for topics in Com-

puter Vision. We went over how most traditional and modern methods work and

what is required to make them work.

In the second chapter we went over the previous research done in the field

of tracking RBCs in videos. We established both the methods used world-wide

but also used by the Cell-In-Fluid team specifically for validation of simulations.

These methods included an existing Hough Transform method and a physics-based

model for tracking.

In the third chapter we introduced our dataset and provided statistics of what

data it contains. We also noted the particular problems that occur when a new

dataset is composed.

The fourth chapter deals with convolutional neural networks and their appli-

cation to RBC detection. We described a proof of concept, which was capable

of correctly classifying RBCs in images despite having poor performance. Next,

we evaluated several existing frameworks for object detection and selected one

which provided the best results for RBC detection on our dataset. This chapter

also remarks upon the particular differences between various convolutional neural

network architectures.

In chapter five we go over the existing tracking algorithm and suggest several

improvements for improving its performance. We describe a method which utilizes

convolutional neural networks for reducing the amount of gaps in detected tracks.

The chapter also describes several issues when designing the inputs for training

such a model.

Chapter six summarizes the proposed methods and suggest future improve-

ments in the field and highlights some obstacles which prevent further improve-

61

ment.

All in all, the tracking pipeline is proving to be a valuable asset for acquiring

large volumes of data from real-world experiment videos. The development of

this pipeline and its algorithms is not final and shows future promise for both its

performance and its utilization.

62

References

[1] K.-K. Kleineberg, L. Buzna, F. Papadopoulos, M. Boguñá, and M. A. Ser-

rano, “Geometric correlations mitigate the extreme vulnerability of multiplex

networks against targeted attacks,” Phys. Rev. Lett., vol. 118, p. 218301,

2017.

[2] J. Janacek, M. Kohani, M. Koniorczyk, and P. Marton, “Optimization of

periodic crew schedules with application of column generation method,”

Transportation Research Part C: Emerging Technologies, vol. 83, pp. 165

– 178, 2017.

[3] F. Weik, R. Weeber, K. Szuttor, K. Breitsprecher, J. de Graaf, M. Kuron,

J. Landsgesell, H. Menke, D. Sean, and C. Holm, “Espresso 4.0 – an extensible

software package for simulating soft matter systems,” The European Physical

Journal Special Topics, vol. 227, no. 14, pp. 1789–1816, Mar 2019.

[4] I. Cimrák, M. Gusenbauer, and I. Jančigová, “An ESPResSo implementation

of elastic objects immersed in a fluid,” Computer Physics Communications,

vol. 185, no. 3, pp. 900–907, 2014.

[5] M. Calder and et al., “Computational modelling for decision-making: where,

why, what, who and how,” R Soc Open Sci, vol. 5, no. 6, 2018.

[6] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convo-

lutional networks,” CoRR, vol. abs/1608.06993, 2016. [Online]. Available:

http://arxiv.org/abs/1608.06993

[7] I. Jančigová and I. Cimrák, “A novel approach with non-uniform

force allocation for area preservation in spring network models,” AIP

Conference Proceedings, vol. 1648, no. 1, pp. –, 2015. [Online]. Available:

http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4912489

[8] M. Dao, J. Li, and S. Suresh, “Molecularly based analysis of deformation of

spectrin network and human erythrocyte,” Materials Science and Engineering

C, vol. 26, pp. 1232–1244, 2006.

63

[9] D. Fedosov, B. Caswell, A. Popel, and G. Karniadakis, “Blood flow and cell-

free layer in microvessels,” Microcirculation, vol. 17, pp. 615–628, 2010.

[10] J. Illingworth and J. Kittler, “The adaptive hough transform,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9,

no. 5, pp. 690–698, Sep. 1987.

[11] H. K. Yuen, J. Illingworth, and J. Kittler, “Ellipse detection using the hough

transform,” 01 1988.

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients for hu-

man detection,” Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05)

- Volume 1 - Volume 01, pp. 886–893, 2005. [Online]. Available:

http://dx.doi.org/10.1109/CVPR.2005.177

[13] S. U. Akram, J. Kannala, L. Eklund, and J. Heikkilä, “Cell tracking

via proposal generation and selection,” CoRR, vol. abs/1705.03386, 2017.

[Online]. Available: http://arxiv.org/abs/1705.03386

[14] Y. Wang, H. Mao, and Z. Yi, “Stem cell motion-tracking by using deep neural

networks with multi-output,” Neural Computing and Applications, pp. 1–13,

2017.

[15] V. Ulman, M. Maška, K. Magnusson, O. Ronneberger, C. Haubold, N. Harder,

P. Matula, P. Matula, D. Svoboda, M. Radojevic, I. Smal, K. Rohr, J. Jaldén,

H. Blau, O. Dzyubachyk, B. Lelieveldt, P. Xiao, Y. Li, S.-Y. Cho, and

C. Ortiz-de Solorzano, “An objective comparison of cell tracking algorithms,”

Nature Methods, vol. 14, 10 2017.

[16] P. Domingos, “A few useful things to know about machine learning,”

Commun. ACM, vol. 55, p. 78–87, 10 2012.

[17] S. ArunaN and S. Hariharan, “Edge detection of sickle cells in red blood cells,”

International Journal of Computer Science and Information Technologies, Vol.

5(3), 2014.

64

[18] M. Maitra, R. Gupta, and M. Mukherjee, “Detection and counting of red

blood cells in blood cell images using hough transform,” International Journal

of Computer Applications, vol. 53, pp. 13–17, 09 2012.

[19] S. Khan and A. Khan, “An accurate and cost effective approach to blood cell

count,” International Journal of Computer Applications, vol. 50, pp. 975–

8887, 08 2012.

[20] P. Viola and M. Jones, “Robust real-time object detection,” International

Journal of Computer Vision - IJCV, vol. 57, 01 2001.

[21] A. Dufour, R. Thibeaux, E. Labruyère, N. Guillen, and J. Olivo-Marin, “3-d

active meshes: Fast discrete deformable models for cell tracking in 3-d time-

lapse microscopy,” Image Processing, IEEE Transactions on, vol. 20, pp. 1925

– 1937, 08 2011.

[22] M. Ka, O. K, S. Garasa, A. Rouzaut, A. Muñoz-Barrutia, and C. Ortiz-de

Solorzano, “Segmentation and shape tracking of whole fluorescent cells based

on the chan-vese model,” IEEE transactions on medical imaging, vol. 32, 01

2013.

[23] E. Turetken, X. Wang, C. Becker, C. Haubold, and P. Fua, “Network flow

integer programming to track elliptical cells in time-lapse sequences,” IEEE

Transactions on Medical Imaging, vol. PP, pp. 1–1, 12 2016.

[24] M. Schiegg, P. Hanslovsky, C. Haubold, U. Köthe, L. Hufnagel, and F. Ham-

precht, “Graphical model for joint segmentation and tracking of multiple di-

viding cells,” Bioinformatics (Oxford, England), vol. 31, 11 2014.

[25] R. Bensch and O. Ronneberger, “Cell segmentation and tracking in phase con-

trast images using graph cut with asymmetric boundary costs,” Proceedings

- International Symposium on Biomedical Imaging, vol. 2015, 04 2015.

[26] C. Reyes-Aldasoro, S. Akerman, and G. Tozer, Measuring Red Blood Cell

Velocity with a Keyhole Tracking Algorithm. Springer Verlag, 01 2007, pp.

810–813.

65

[27] I. Smal, K. Draegestein, N. Galjart, W. Niessen, and E. Meijering, “Parti-

cle filtering for multiple object tracking in dynamic fluorescence microscopy

images: Application to microtubule growth analysis,” IEEE Transactions on

Medical Imaging, vol. 27, no. 6, pp. 789–804, June 2008.

[28] P. Matula, M. Maška, D. Sorokin, P. Matula, C. Ortiz-de Solorzano, and

M. Kozubek, “Cell tracking accuracy measurement based on comparison of

acyclic oriented graphs,” PloS one, vol. 10, p. e0144959, 12 2015.

[29] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time

object detection with region proposal networks,” CoRR, vol. abs/1506.01497,

2015. [Online]. Available: http://arxiv.org/abs/1506.01497

[30] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection via region-based

fully convolutional networks,” CoRR, vol. abs/1605.06409, 2016. [Online].

Available: http://arxiv.org/abs/1605.06409

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C.

Berg, “SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325,

2015. [Online]. Available: http://arxiv.org/abs/1512.02325

[32] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural

networks for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[Online]. Available: http://arxiv.org/abs/1704.04861

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR,

vol. abs/1409.4842, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842

[34] Z. Kalal, J. Matas, and K. Mikolajczyk, “P-n learning: Bootstrapping bi-

nary classifiers by structural constraints,” Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, vol. 238,

pp. 49 – 56, 07 2010.

66

[35] X. Jia, H. Lu, and M. Yang, “Visual tracking via adaptive structural local

sparse appearance model,” 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pp. 1822–1829, June 2012.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp.

84–90, May 2017. [Online]. Available: http://doi.acm.org/10.1145/3065386

[37] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and

T. Darrell, “Decaf: A deep convolutional activation feature for generic

visual recognition,” CoRR, vol. abs/1310.1531, 2013. [Online]. Available:

http://arxiv.org/abs/1310.1531

[38] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature

hierarchies for accurate object detection and semantic segmentation,” CoRR,

vol. abs/1311.2524, 2013. [Online]. Available: http://arxiv.org/abs/1311.2524

[39] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convo-

lutional networks,” CoRR, vol. abs/1608.06993, 2016. [Online]. Available:

http://arxiv.org/abs/1608.06993

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:

http://arxiv.org/abs/1512.03385

[41] K. F., “Parallel implementation of feature descriptor for object detec-

tion using adaboost.” [Master thesis] University of Žilina, Faculty of

Management Science and Informatics, Department of Mathematical Methods

and Operations Research, 61 p., 2017.

[42] F. Mučka, “Algorithms and their implementation for analysis and image pro-

cessing from recordings of biological experiments,” [Master thesis] - University

of Žilina. Faculty of Management Science and Informatics. Department of

Software Technologies, Žilina, 61 p., 2017.

[43] J. Tomášiková, “Processing and analysis of videosequences from biologi-

cal experiments using special detection and tracking algorithms,” [Master

67

thesis] - University of Žilina. Faculty of Management Science and Informatics.

Department of Software Technologies, Žilina, 63 p., 2017.

[44] G. Mazza., 2017.

[45] C. T. et all, 2016.

[46] [Online]. Available: lakshaysuri.wordpress.com

[47] I. Icke. [Online]. Available: commons.wikimedia.org

[48] C. de Souza. [Online]. Available: www.codeproject.com

[49] M. SIRSAT. [Online]. Available: https://manisha-

sirsat.blogspot.com/2019/04/confusion-matrix.html

Publications

[50] F. Kajánek and I. Cimrák, “Evaluation of detection of red blood cells us-

ing convolutional neural networks,” in 2019 International Conference on

Information and Digital Technologies (IDT), June 2019, pp. 198–202.

[51] ——, “Advancements in red blood cell detection using convolutional neu-

ral networks,” in Proceedings of the 13th International Joint Conference

on Biomedical Engineering Systems and Technologies - Volume 3:

BIOINFORMATICS,, INSTICC. SciTePress, 2020, pp. 206–211.

[52] T. Poštek., F. Kajánek., and M. Ondrušová., “Detection of lattice-points

inside triangular mesh for variable-viscosity model of red blood cells,”

in Proceedings of the 13th International Joint Conference on Biomedical

Engineering Systems and Technologies - Volume 3: BIOINFORMATICS,,

INSTICC. SciTePress, 2020, pp. 212–217.

[53] F. Kajánek, I. Cimrák, and P. Tarábek, “Automated tracking of red blood

cells in images,” in Bioinformatics and Biomedical Engineering, I. Rojas,

O. Valenzuela, F. Rojas, L. J. Herrera, and F. Ortuño, Eds. Cham: Springer

International Publishing, 2020, pp. 800–810.

68

[54] H. Bachratý, K. Bachratá, M. Chovanec, F. Kajánek, M. Smiešková, and

M. Slav́ık, “Simulation of blood flow in microfluidic devices for analysing of

video from real experiments,” in Bioinformatics and Biomedical Engineering,

I. Rojas and F. Ortuño, Eds. Cham: Springer International Publishing, 2018,

pp. 279–289.

[55] F. Kajánek, “Tracking of red blood cells in videos of experiments,” in

Proceedings of the MIST conference 2018. CreateSpace Independent Pub-

lishing Platform, 2018, pp. 1–5.

[56] ——, “Red blood cell detection using convolutional neural networks,” in

Mathematics in science and technologies: proceedings of the MIST conference

2019. CreateSpace Independent Publishing Platform, 2019, pp. 40–44.

69

