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ABSTRAKT 

  

Rusnák, Patrik: Časovo závislá analýza spoľahlivosti systémov na základe použitia 

logického diferenciálneho počtu.  [Dizertačná práca] 

Žilinská Univerzita v Žiline, Fakulta riadenia a informatiky, Katedra informatiky.  

Vedúca práce: Prof. Ing. Elena Zaitseva, PhD.  

FRI ŽU v Žiline, 2020 (115s.) 

Skúmanie spoľahlivosti systému je komplexný problém, ktorý zahŕňa mnoho úloh. 

Jednou z takýchto úloh je hodnotenie dôležitosti systémových komponentov. Tieto 

informácie môžu byť použité pre rôzne účely, ako napríklad pri údržbe systému alebo pri 

optimalizácii spoľahlivosti systému. Hlavným cieľom tejto práce je vývoj nových prístupov 

pre analýzu spoľahlivosti systému založenej na štruktúrnej funkcii, ktoré umožnia časovo 

závislú analýzu systému a jeho komponentov a tiež ktoré riešia problém reprezentácie 

systému s veľkým počtom komponentov. Prvá časť tohto cieľa bude riešená použitím 

logického diferenciálneho počtu a druhá časť bude riešená pomocou podpisu prežitia pre 

reprezentáciu systému. Tiež budú tieto prístupy demonštrované na vybraných prípadových 

štúdiách.  

Kľúčové slová:  Štruktúrna funkcia, logický diferenciálny počet, podpis prežitia, analýza 

spoľahlivosti, indexy dôležitosti; 

ABSTRACT  

 Examining system reliability is a complex problem that involves many tasks. One 

such task is to evaluate the importance of system components. This information can be used 

for a variety of purposes, such as system maintenance or optimizing system reliability. The 

principal goal of this work is to develop new approaches for reliability analysis of system 

based on the structure function that allows time-dependent analysis of the system and to 

reduce the mathematical representation of system with large number of components. The 

first part of this goal will be solved using a logical differential calculus and the second part 

will be solved using a survival signature. These new approaches will also be demonstrated 

in selected case studies. 

Key words: structure function, logical differential calculus, survival signature, reliability 

analysis, importance measures; 
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Used Notations 

 

𝑥𝑖 - Boolean variable, which represents the state of the 𝑖-th component; 

𝒙 - state vector that contains information about the state of all system components; 

𝑛 - number of system components; 

𝜙 - structure function; 

∧ - Boolean operation AND; 

∨ - Boolean operation OR; 

⊕ - Boolean operation XOR; 

̅  - Boolean operation NOT; 

𝑧(𝑡) - system state function at time 𝑡; 

𝑍(𝑡) - random variable modelling behavior of the system at time 𝑡; 

𝑋 - random variable that takes value from set {0,1}; 

𝑥𝑖(𝑡) - function that defines state of the 𝑖-th component at time 𝑡; 

𝒙(𝑡) - vector that contains 𝑥𝑖(𝑡) for each system components; 

𝐴 - system availability; 

𝑈- system unavailability; 

𝑝𝑖 - probability that the 𝑖-th component will work during its mission time; 

𝒑 - vector that contains probabilities 𝑝𝑖 for each system components; 

𝑞𝑖 - probability that the 𝑖-th component will not work during its mission time; 

𝒒 - vector that contains probabilities 𝑞𝑖 for each system components; 

𝐴(𝑡) - system availability function at time 𝑡; 

𝑈(𝑡) - system unavailability function at time 𝑡;  

𝑃𝑖(𝑡) - probability that the 𝑖-th component will work at time 𝑡 given it is working at time 0; 

𝑷(𝑡) - vector that contains 𝑃𝑖(𝑡) for each system components; 
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𝑄𝑖(𝑡) - probability that the 𝑖-th component fails no later than at time 𝑡 given it is working at 

time 0; 

𝑸(𝑡) - vector that contains 𝑄𝑖(𝑡) for each system components; 

𝑅 - system reliability; 

𝐹 - system unreliability; 

𝑅(𝑡) - system reliability function at time 𝑡; 

𝐹(𝑡) - system unreliability function at time 𝑡;  

𝜕𝜙(𝒙)

𝜕𝑥𝑖
 – logic derivation of the Boolean function 𝜙 with respect to variable 𝑥𝑖; 

𝜕𝜙(1→0)

𝜕𝑥𝑖(1→0)
,

𝜕𝜙(0→1)

𝜕𝑥𝑖(0→1)
 - direct partial logic derivative of the Boolean function 𝜙 with respect to 

variable 𝑥𝑖; 

𝜕𝜙(1→0)

𝜕𝑥𝑖(0→1)
,

𝜕𝜙(0→1)

𝜕𝑥𝑖(1→0)
 - inverse partial logic derivative of the Boolean function 𝜙 with respect to 

variable 𝑥𝑖; 

𝜕𝜙(1→0)

𝜕(𝑥𝑖,𝑥𝑗,… )(1,1,… )→(0,0,… )
 - direct partial logic derivative of the Boolean function 𝜙 with respect 

to vector of variables (𝑥𝑖, 𝑥𝑗 , … ); 

𝐬𝜏 - system signature of the system 𝜏; 

𝐾 - number of different types of the system components; 

𝑛𝑘 - number of system components of type 𝑘; 

𝒙𝑘 - state vector that contains information about the state of all system components of type 

𝑘; 

Φ - survival signature; 

𝑙, 𝑙𝑘 - number of the working system components and system components of type 𝑘;  

𝑆𝑙 , 𝑆𝑙
𝑘 - set that contains all state vectors 𝒙, 𝒙𝑘, in which exactly 𝑙 system components or 𝑙 

system components of type 𝑘 are working; 

𝑆𝑙1,…,𝑙𝐾
 - set that contains all state vectors 𝒙, in which exactly 𝑙𝑘 components of type 𝑘 are 

working for each 𝑘 = 1, … , 𝐾; 
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𝐶, 𝐶𝑘  - number of components or components of type 𝑘 in the system that are in working 

state; 

𝐶𝑡, 𝐶𝑡
𝑘  - number of components or components of type 𝑘 in the system that are in working 

state at specified time point 𝑡 > 0; 

SI𝑖 - structure importance of the 𝑖-th component; 

TD(. ) - truth density of the argument interpreted as a Boolean function; 

BI𝑖 - Birnbaum’s importance of the 𝑖-th component; 

CI𝑖 - criticality importance of the 𝑖-th component; 

JRI𝑖,𝑗 - joint reliability importance of the 𝑖-th and 𝑗-th component; 

FI𝑖,𝑗 - failure importance of the 𝑖-th and 𝑗-th component; 

BI𝑖(𝑡) - time-dependent Birnbaum’s importance of the 𝑖-th component; 

CI𝑖(𝑡) - time-dependent criticality importance of the 𝑖-th component; 

JRI𝑖,𝑗(𝑡) - time-dependent joint reliability importance of the 𝑖-th and 𝑗-th component; 

FI𝑖,𝑗(𝑡) - time-dependent failure importance of the 𝑖-th and 𝑗-th component; 

𝜕𝛷(𝑙1,…,𝑙𝐾)↓

𝜕𝑙𝑘(𝑎𝑎−1)
 - first direct partial logic derivative of the survive signature 𝛷 with respect to type 

𝑙𝑘; 

SI𝑘,𝑎
↓  - structure importance for 𝑎 working components of type 𝑘 that uses first direct partial 

logic derivative; 

𝜕𝛷(𝑙1,…,𝑙𝐾)↓

𝜕𝑙𝑘↓
 - second direct partial logic derivative of the survive signature 𝛷 with respect to 

type 𝑙𝑘; 

SI𝑘
↓  - structure importance for components of type 𝑘 that uses second direct partial logic 

derivative; 

𝜕𝛷(𝑙1,…,𝑙𝐾)⇓

𝜕𝑙𝑘↓
 - third direct partial logic derivative of the survive signature 𝛷 with respect to 

type 𝑙𝑘; 

SI𝑘
⇓ - structure importance for components of type 𝑘 that uses third direct partial logic 

derivative; 



Introduction 

Reliability engineering is a multidisciplinary scientific field that provides the 

methods necessary to quantify the reliability of the system, to test the design of the system, 

to analyse the system and its components, etc. The main problems of reliability engineering 

can be defined as follows [1]: 

 application of the theoretical knowledge and mathematical techniques to prevent or 

reduce the likelihood of failure occurrence; 

 identification and solving the causes of failures that occur in system despite failure 

prevention; 

 definition of processes, which will manage failures that may occur if the causes of 

these failures have not been resolved; 

 application of the methods to estimate the reliability of new system design and to 

analyse reliability data. 

Important step in reliability evaluation of system is the development of its 

mathematical representation. As has been shown in [1], this mathematical representation 

must allow investigating the system failure, e.g., mechanisms of failure and its 

consequences; measuring system reliability; analysing critical states of system reliability; 

elaborating maintenance of the system, fault diagnosis and prognosis. 

The most often used mathematical representation of a system in reliability analysis 

is a model that takes into account two important states of system: failure and working state. 

This mathematical model is known as Binary-State System (BSS) that has been introduced 

as one of the first [2]–[4] . This will also be used in this work. Boolean logic is  mainly used 

for analysis of systems represented as BSS. Another used mathematical representation of a 

system is known as Multi-State System (MSS). This mathematical representation allows to 

perform reliability analysis with more than two performance levels and is used to define 

multiple states for the system and its components and to perform a more detailed reliability 

analysis of the states of the system or its components [5], [6].  

There are various methods to evaluate the system reliability and failure based on 

these mathematical models. All these methods can be divided into four groups depending on 

the mathematical background [1], [3]: methods based on structure function, stochastic 
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methods, Monte-Carlo simulation and methods based on universal generation function. The 

structure function based methods permit mathematically representing system of any 

structural complexity [2] and will be used in this work.  

The structure function defines univalent correlation of a system performance level 

on components states and is used to represent system composed of n components [7]. The 

BSS structure function can be viewed as a Boolean function, which can be easily used in 

reliability analysis of the steady-state system [7], [8]. Such a mathematical representation is 

time-independent. Important advantage of this representation is possibility to use the well-

developed and useful mathematical approach of Boolean algebra in reliability evaluation of 

the investigated system. Effective methods in reliability analysis were developed with 

application of Boolean algebra for minimal cut/path sets definition [8], frequency 

characteristics of system reliability [7], or importance measures calculation [9]. The structure 

function has its relevant role in modern development in reliability analysis, for example, in 

case of multi-function system reliability [10], general multilinear expression of the structure 

function of an arbitrary semi-coherent system [11], or Graphs models and algorithms for 

reliability assessment [12]. The disadvantage of these methods is analysis of system in 

stationary state. On the other hand, the structure function in a form of Boolean function can 

be used for calculation of the reliability function of the system  that  represents the probability 

of the system to be in functioning state during its mission time or specific time. In this case, 

special methods for this calculation should be developed [3]. Although, reliability function 

is important in reliability analysis, it is not sufficient to give a complete picture about system 

reliability. Another necessary constituent of reliability evaluation is importance analysis. 

Methods for calculation of Importance Measures (IMs), which quantify influence of the 

system components on the whole system, based on application of system representation by 

the structure function and logic differential calculus have been considered in [13], [14] for a 

system in stationary state.  

The structure function can be formed simply for a system with any structural 

complexity. At the same time, the structure function dimension will increases significantly 

with  increasing number of system components. The evaluation of the structure function is 

complicated for the systems with large number of components, when the uncertainty of 

components behaviour is taking into account. This is important because the information for 

the quantitative specification of the uncertainties associated with the components is often 

limited and appears as incomplete information. Therefore, the methods for the dimensional 
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reduction should be developed for the structure function. A possible way is application of 

modern approach known as survival signature [15], which focuses on system survivability 

with system with 𝐾 types of components [16].  

In reliability analysis, the concept of the system signature has been recognized as an 

important tool to quantify the reliability of systems with or without time consideration. 

Specific of these investigation is analysis and evaluation of systems that are formed by more 

than one type of components [15]. Recent advancements using the concept of system 

signature in reliability analysis are reported in [17]–[20]. Typically, the system signature is 

associated with the assumption that all components in the system are of the same type that 

is limitation for real systems. The system signature with different types of components has 

been considered in [15] as system survival signature. This approach has been further 

developed for the purposes of reliability analysis in [17], [18]. In paper [19], this approach 

has been developed for importance analysis of system. This method is effective, but is 

computational demanding. Typically, the methods for importance analysis are based on the 

different mathematical methodologies [14]. One such methodology is logic differential 

calculus [21], [22] that is standardly used for analysing of the system represented by the 

structure function and not for survival signature. 

By taking all the previously mentioned information into account, the structure 

function in form of Boolean function is simple mathematical representation of a system in 

reliability analysis which can be formed for a system of any structural complexity and 

evaluated based on well-developed methods related to Boolean functions. The disadvantages 

of this mathematical representation is (a) high dimension for system with large number of 

components and (b) impossibility of time-depend analysis. The principal goal of this work 

is to develop new approaches for reliability analysis of system based on the structure 

function that allows time-dependent analysis of the system and to reduce the dimension of 

mathematical representation of system with large number of components. This goal can be 

divided to two parts. The first part can be solved by developing of the new approach for 

time-dependent importance analysis of the system mathematically represented by the 

structure function that is based on the logic differential calculus. The second part can be 

solved by the use of mathematical approach of survival signature for the system 

representation. To achieve the principal goal, the following tasks are addressed in this work: 
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 continuation in investigation from [13], [14] and proposing an approach for 

system importance analysis depending on time and based on the application 

of logic differential calculus in Boolean algebra; 

 showing the efficiency and usability of this approach on selected systems; 

 defining the extension of direct partial logic derivatives (DPLDs) for analysis 

of system dynamic properties based on system survival signature [15];  

 illustration of the use of proposed approach of direct partial logical 

derivatives for system signature on selected systems. 

This work is divided into three chapters. In the first chapter, we will describe basic 

terms in reliability analysis using Boolean logic such as structure function, reliability, 

unreliability, system signature, survival signature and logic differential calculus, especially 

direct partial logic derivatives.  

In the first part of the second chapter, we will show how IMs can be calculated and 

how the logic differential calculus can be used for their calculation. Then, we will present a 

new approach to compute time-dependent IMs based on structure function and logic 

differential calculus. Finally, we will introduce the new IM based on logic differential 

calculus that focuses on the analysis of the pair of the system components. In the next part 

of the second chapter, the new DPLDs and SI measures for survival signature will be shown.  

Lastly, in the third chapter, we will demonstrate the usage of the new approaches in 

reliability analysis of selected case studies such as hydro power plant, data storage system, 

or surveillance system. 
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1 Boolean Logic in Reliability Engineering 

Reliability analysis is used to study the properties of analysed system and its 

components [1]. In this section, we are considering systems and its components with two 

states that can be interpreted as functioning and failure. In order to describe the analysed 

system, a mathematical approach that can represent activity of the system is needed [1], [4]. 

One approach is to represent the system using the structure function. 

1.1 Structure Function 

The structure function is a mapping that defines value of system state for each 

combination of states of the system components. If we assume that the system is composed 

of 𝑛 components, then this mapping is as follows [3]: 

𝜙(𝑥1, 𝑥2 … , 𝑥𝑛) = 𝜙(𝒙):   {0,1}𝑛 → {0,1}, (1.1) 

where 𝑥𝑖 is a variable that defines state of component 𝑖 for 𝑖 = 1,2, … , 𝑛 and 𝒙 =

(𝑥1, 𝑥2, … , 𝑥𝑛) is a vector of states of the system components (state vector). For example, let 

us consider a data storage system consisting of two main modules, in which the same data is 

stored. In the first part, two hard drive disks (HDDs) are organized in Redundant Array of 

Independent Disks (RAID) 0. In RAID 0, the capacity of the unit is equal to the sum of 

capacities of the used drives, which implies no redundancy of data. Therefore, failure of one 

drive means that the entire RAID 0 is lost. In the second part, the single HDD is used to store 

data. At least one part must be in working state to write and read data successfully. This 

system can be seen in form of reliability block diagram (RBD) that is shown in Fig. 1.1. 

According to the system description, its structure function can be represented by the 

following logic expression:  

𝜙(𝑥1, 𝑥2, 𝑥3) = 𝑥1 ∧ 𝑥2 ∨ 𝑥3 (1.2) 

where the operator ∧ represents the Boolean operation AND and operator ∨ represents the 

Boolean operation OR. 
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From this point forward, we will assume that the analysed system is coherent, which 

means that structure function 𝜙(𝒙) is not decreasing in any of the variables and all the 

components are relevant for system operation [3], [14]. The data storage system is an 

example of the coherent system because its structure function (1.2) is not decreasing in any 

of the variables, and each component – HDD is needed for system operation. This means 

that there are not situations, in which the HDD failure will result in system functionality, if 

the system was failed. 

Knowledge of the structure function allows us to investigate topological properties 

of the system. For example, we can use it to find the most reliable topology in a set of systems 

with different topologies [8] or evaluate importance of the components of a system and find 

those with the greatest influence on system operation from topological point of view [8], 

[13], [17], [23], [24]. However, its knowledge is not sufficient in performing time-dependent 

reliability analysis, which deals with evaluation of reliability of the system over time. For 

such purposes the system state function can be used. 

System state at time 𝑡 can be obtained from system state function 𝑧(𝑡) that has 

following form [3]: 

𝑧(𝑡) = 𝜙(𝒙(𝑡)) = 𝜙(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)): ⟨0, ∞) → {0,1}, (1.3) 

where 𝑥𝑖(𝑡) for 𝑖 = 1,2, … , 𝑛 is a function that defines state of the 𝑖-th component at time 𝑡. 

Although system state function 𝑧(𝑡) is closely related to structure function 𝜙(𝒙), these two 

functions are very different in their nature because the former is a function of time, while 

the latter is a function defining system topology, which is independent of time. If we consider 

the data storage system represented by (1.2), its state function has the following form: 

𝜙(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) = 𝑥1(𝑡) ∧ 𝑥2(𝑡) ∨ 𝑥3(𝑡). (1.4) 

Example of time courses for (1.4) and each component during specified time period in days 

can be seen in Fig. 1.2, where on the x-axis are values that represent number of days and on 

 

Fig. 1.1 Reliability block diagram of data storage system 
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the y-axis is state (0 - failed, 1 - working). From time courses it is possible to see that the 

system will fail during 232th day, i.e. when the third component fails, which is caused by 

the fact, that the first and the second components failed and according to the (1.4) when the 

third component fails the system will fail as well. This is caused by system topology and by 

the fact that there are no repairs of the system or its components, which means that the data 

storage system is non-repairable during specified time period.  

𝑥1(𝑡)  

 

𝑥2(𝑡) 

 

𝑥3(𝑡) 

 

𝜙(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) 

 

Fig. 1.2 State function of the data storage system and its components 

The system state function can be viewed as a composition of system structure function and 

one specific realization of the state functions of all the system components, which means 
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that the system state function 𝑧(𝑡) can also be viewed as one realization of uncountable many 

system state functions. This implies that evolution of the system over time can be viewed as 

the following stochastic process: 

{𝑍(𝑡); 𝑡 ≥ 0}, (1.5) 

where 𝑍(𝑡) is a random variable modelling behavior of the system at time 𝑡. 

Let us evaluate function 𝑍(𝑡) at fixed time. In such a case, we obtain random variable 

𝑋 that takes value from set {0,1} with probability 𝐴 or 𝑈. These probabilities are known as 

system availability and unavailability, and they represent one of the basic reliability 

characteristic of a BSS [3]. In terms of single system component, those probabilities are 𝑝𝑖 

and 𝑞𝑖 and are defined as follows [3]: 

𝑝𝑖 = Pr{𝑥𝑖 = 1}, 𝑞𝑖 = Pr{𝑥𝑖 = 0}, 

𝑝𝑖 + 𝑞𝑖 = 1. 
(1.6) 

If we know random variable 𝑥𝑖, which models behavior of component 𝑖 at fixed time, for 

each system component, i.e., for 𝑖 =  1,2, … ,  𝑛, and if we assume that the components are 

independent, then random variable 𝑋 can be obtained by combining random variables 𝑥𝑖 

using the structure function. This allows us to compute the system state probabilities using 

the following formula [3]: 

𝑝 = Pr{𝜙(𝒙) = 1}, 𝑞 = Pr{𝜙(𝒙) = 0}, (1.7) 

where 𝒙 =  (𝑥1, 𝑥2, … , 𝑥𝑛) is a vector of random variables modeling behavior of the system 

components at fixed time. This definition implies that the system availability 𝐴 and 

unavailability 𝑈 can be viewed as functions of component state probabilities [3]: 

𝐴 = 𝐴(𝒑) = Pr{𝜙(𝒙) = 1}, 𝑈 = 𝑈(𝒒) = Pr{𝜙(𝒙) = 0}, 

𝐴 + 𝑈 = 1, 
(1.8) 

where 𝒑 =  (𝑝1, 𝑝2, … , 𝑝𝑛) and 𝒒 =  (𝑞1, 𝑞2, … , 𝑞𝑛) are vectors whose elements are the state 

probabilities of individual system components. 

Formula (1.8) allows us to find the system state probabilities if we know the structure 

function of the system and the state probabilities of the components. It can be used to 

investigate how specific changes in state probabilities of one or more components influence 
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the system state probabilities or other reliability measures [3], [14], but it does not allow us 

to perform dynamic (time-dependent) analysis of a BSS. For this task, random variable 𝑋 

has to be replaced by function 𝑍(𝑡), which defines how properties of random variable 𝑋 

changes over time. In this case, the system availability 𝐴(𝑡) and unavailability 𝑈(𝑡) become 

functions of time, i.e.:    

𝐴(𝑡) = 𝐴(𝑷(𝑡)) = Pr{𝜙(𝒙(𝑡)) = 1}, 𝑡 ≥ 0, 

𝑈(𝑡) = 𝑈(𝑸(𝑡)) = Pr{𝜙(𝒙(𝑡)) = 0}, 𝑡 ≥ 0, 

𝐴(𝑡) + 𝑈(𝑡) = 1, 𝑡 ≥ 0, 

(1.9) 

where 𝑷(𝑡) =  (𝑃1(𝑡), 𝑃2(𝑡), … , 𝑃𝑛(𝑡)) and 𝑸(𝑡) =  (𝑄1(𝑡), 𝑄2(𝑡), … , 𝑄𝑛(𝑡)) are vector-

valued functions, whose elements are functions defining the state probabilities of individual 

system components over time, and 𝒙(𝑡) =  (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)) is a vector of random 

variables modelling behaviour of the system components over time. This function can be 

used to find how reliability of the system or importance of the components change as time 

flows. 

The most important result of previous formulae is that the system state probabilities 

can be viewed as a function of the components state probabilities combined using the 

structure function (static analysis based on (1.8)) or as a composition of functions defining 

the state probabilities of the system components over time (time-dependent analysis based 

on (1.9)) defined again by the structure function. This means if the system components are 

independent and we know the structure function of the system and the (time-dependent) state 

probabilities of the components, then we are able to find the (time-dependent) system state 

probabilities. As one can see, a BSS can be analysed with respect to time (dynamic analysis) 

or regardless of time (static analysis). This implies that reliability measures of a BSS might 

or might not depend on time.  

In reliability analysis, it is also needed to compute the system reliability 𝑅 that 

represents a probability that the system will be functioning during its mission time (period 

of time during which the system is required to operate properly). It is needed to point out, 

that the system reliability has same meaning as the system availability for unrepairable 

systems, which are the main focus of this work. Therefore, the system reliability is defined 

as follows [3], [14]: 
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𝑅 = 𝑅(𝒑) = Pr{𝜙(𝒙) = 1}, (1.10) 

where 𝒑 = (𝑝1, 𝑝2, … , 𝑝𝑛) is a vector of probabilities of components being functioning 

during the mission time  and 𝑝𝑖 is the probability that component 𝑖 will be functioning during 

the mission time (it agrees with reliability of the component).  

A complementary measure to system reliability is system unreliability, which agrees 

with the probability that the system will fail during the mission time [3], [14]: 

𝐹 = 𝐹(𝒒) = Pr{𝜙(𝒙) = 0} = 1 − 𝑅(𝒑), (1.11) 

where 𝒒 = (𝑞1, 𝑞2, … , 𝑞𝑛) is a vector of unreliabilities of the components and 𝑞𝑖 = 1 − 𝑝𝑖 is 

the probability of a failure of component 𝑖 during the mission time (it agrees with 

unreliability of the component).  

As an example, we will compute the 𝑅 and 𝐹 for the data storage system represented 

by (1.2). Thanks to the fact that the storage system has a parallel topology with serial 

topology with two HDDs in one branch and single HDD in another branch, the 𝑅 for data 

storage system has following form: 

𝑅 = 𝑝1 ∗ 𝑝2 + 𝑝3 − 𝑝1 ∗ 𝑝2 ∗ 𝑝3. (1.12) 

In case of the 𝐹 for the data storage system, it can be easily computed using (1.11), i.e. 𝐹 =

1 − 𝑅 = 𝑞1 ∗ 𝑞3 + 𝑞2 ∗ 𝑞3 − 𝑞1 ∗ 𝑞2 ∗ 𝑞3. In this example, we will be working with same 

HDDs with 𝑝 = 0.8. Therefore, the 𝑅 and 𝐹 of the data storage system is as follows: 𝑅 =

0.8 ∗ 0.8 + 0.8 − 0.8 ∗ 0.8 ∗ 0.8 = 0.928 and 𝐹 = 1 − 0.928 = 0.072. 

Definitions of system reliability (1.10) and unreliability (1.11) are computed for the 

whole mission time of the system, but they does not take the specific time values into 

account. Therefore, they allow us to compute reliability or unreliability of the system only 

for given values of reliabilities/unreliabilities of the components. If we want to find functions 

𝑅(𝑡) and 𝐹(𝑡) that define time courses of system reliability and unreliability (occurrence of 

system failure), we have to replace vector 𝒙 by its time-dependent version. Similarly, vector 

𝒑 of reliabilities of the components has to be replaced by 𝑷(𝑡) = (𝑃1(𝑡), 𝑃2(𝑡), … , 𝑃𝑛(𝑡)) 

and vector 𝒒 of unreliabilities of the components by time-dependent vector 𝑸(𝑡) =

(𝑄1(𝑡), 𝑄2(𝑡), … , 𝑄𝑛(𝑡)) [14]. In this case, 𝑄𝑖(𝑡) is lifetime distribution of component 𝑖. 

This distribution defines the probability that the component fails no later than at time 𝑡 given 
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it is working at time 0. After finishing this process, we obtain functions 𝑅(𝑡) and 𝐹(𝑡) that 

are defined as follows: 

𝑅(𝑡) = 𝑅(𝑷(𝑡)) = Pr{𝜙(𝒙(𝑡)) = 1}, (1.13) 

𝐹(𝑡) = 𝐹(𝑸(𝑡)) = Pr{𝜙(𝒙(𝑡)) = 0} = 1 − 𝑅(𝑡). (1.14) 

The procedure described above allows us to find reliability and unreliability (failure) 

function of the system if the structure function of the system is known, and we have 

information about lifetime distributions of all the system components. This proves that 

structure function, which is a static representation of the system (it defines system topology 

independent of time), can be used in time-dependent (dynamic) reliability analysis. 

We will show how the 𝑅(𝑡) and 𝐹(𝑡) can be computed on the data storage system 

system represented by (1.2). We will assume that each HDD is independent and because all 

HDDs has the same type, they are also identically distributed. Furthermore, we will be 

working with exponential distribution with 𝜆 = 1/5,000 days as lifetime distribution of each 

HDD. According to (1.13) and (1.14), the 𝑅(𝑡) and 𝐹(𝑡) for data storage system has the 

following form:  

𝑅(𝑡) = 𝑃1(𝑡) ∗ 𝑃2(𝑡) + 𝑃3(𝑡) − 𝑃1(𝑡) ∗ 𝑃2(𝑡) ∗ 𝑃3(𝑡). (1.15) 

𝐹(𝑡) = 1 − 𝑅(𝑡) = 𝑄1(𝑡) ∗ 𝑄3(𝑡) + 𝑄2(𝑡) ∗ 𝑄3(𝑡) − 𝑄1(𝑡) ∗ 𝑄2(𝑡) ∗ 𝑄3(𝑡) (1.16) 

 By using (1.15) and (1.16) it is possible to compute the values of 𝑅(𝑡) and 𝐹(𝑡). Their time 

courses for 10,000 days are depicted in Fig. 1.3, where 𝑅(𝑡) is shown as a blue solid line 

and 𝐹(𝑡) is shown as a red dotted line. 

 

Fig. 1.3 Reliability and Unreliability function of the data storage system 

0.0

0.2

0.4

0.6

0.8

1.0

0 1,250 2,500 3,750 5,000 6,250 7,500 8,750 10,000

P
ro

b
ab

il
it

y

Time [days]

Reliability function Unreliability function



FRI UNIZA 

25 

 

 

1.2 Logic Differential Calculus 

Definition (1.1) of the structure function corresponds to the definition of Boolean 

function [13]. This means it is possible to use mathematical methodology of Boolean algebra 

in reliability analysis based on structure function. One useful part of this methodology, which 

can be used to analyze how failure of a component affects the system operation, is logic 

differential calculus [25]. The central term of this methodology is logic derivative defined 

as follows [13], [25]: 

𝜕𝜙(𝒙)

𝜕𝑥𝑖
= 𝜙(𝑥𝑖, 𝒙) ⊕ 𝜙(�̅�𝑖, 𝒙) = 𝜙(0𝑖, 𝒙) ⊕ 𝜙(1𝑖 , 𝒙), (1.17) 

where the first operand of XOR ⊕ is the structure function of the system when component 

𝑖 is in state 0, and the second is the structure function when component 𝑖 is in state 1. For 

example, a logic derivative for (1.2) according to variable 𝑥2 has the following form: 

𝜕𝜙(𝑥1, 𝑥2, 𝑥3)

𝜕𝑥2
= 𝜙(𝑥1, 0, 𝑥3) ⊕ 𝜙(𝑥1, 1, 𝑥3) = (𝑥1 ∧ 0 ∨ 𝑥3) ⊕ (𝑥1 ∧ 1 ∨ 𝑥3)

= 𝑥3 ⊕ (𝑥1 ∨ 𝑥3) = 𝑥1 ∧ 𝑥3̅̅ ̅. 

(1.18) 

From the resulting logic derivation for variable 𝑥2 it is possible to say, that the change of 𝑥2  

value will result in change of the value of the Boolean function 𝜙 if the variable 𝑥1 has value 

1 and the variable 𝑥3 has value 0. Logic derivative (1.18) can be graphically represented as 

shown in Fig. 1.4, where each state vector and its corresponding function value is on the left 

side of the picture, result of the logic derivative is on the right side of the picture and each 

node represents the Boolean operation XOR. 

 

Fig. 1.4 Graphical representation of the logic derivative (1.18) 
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The logic derivative (1.17) can be used to analyze how a change of component state 

affects the system state [8], [13]. However, in order to analyze direction of component state 

change, a direct partial logic derivative (DPLD) is needed. DPLD can be used to analyze 

how a specific change of component state (from 0 to 1 or from 1 to 0) affects the system 

functionality (from 0 to 1 or from 1 to 0). This DPLD is defined as follows [26]: 

𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
=

𝜕𝜙(0 → 1)

𝜕𝑥𝑖(0 → 1)
= 𝜙(0𝑖, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ 𝜙(1𝑖 , 𝒙), (1.19) 

where ∧ denotes Boolean operation AND and ̅  is a negation of the argument interpreted 

as a Boolean function. There is also another type of partial logic derivative known as inverse 

partial logic derivative that can be used to analyze how a specific change of component state 

(from 0 to 1 or from 1 to 0) affects the system functionality (from 1 to 0 or from 0 to 1) and 

is defined as follows [26]:  

𝜕𝜙(1 → 0)

𝜕𝑥𝑖(0 → 1)
=

𝜕𝜙(0 → 1)

𝜕𝑥𝑖(1 → 0)
= 𝜙(1𝑖, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ 𝜙(0𝑖 , 𝒙). (1.20) 

Given the Boolean function (1.2), the direct and inverse partial logic derivatives with respect 

to variable 𝑥2 have following forms:    

𝜕𝜙(1 → 0)

𝜕𝑥2(1 → 0)
= (𝑥1 ∧ 0 ∨ 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ (𝑥1 ∧ 1 ∨ 𝑥3) = 𝑥3̅̅ ̅ ∧ (𝑥1 ∨ 𝑥3) = 𝑥1 ∧ 𝑥3̅̅ ̅; 

𝜕𝜙(0 → 1)

𝜕𝑥2(0 → 1)
= (𝑥1 ∧ 0 ∨ 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ (𝑥1 ∧ 1 ∨ 𝑥3) = 𝑥3̅̅ ̅ ∧ (𝑥1 ∨ 𝑥3) = 𝑥1 ∧ 𝑥3̅̅ ̅; 

 
𝜕𝜙(1 → 0)

𝜕𝑥2(0 → 1)
= (𝑥1 ∧ 0 ∨ 𝑥3) ∧ (𝑥1 ∧ 1 ∨ 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑥3 ∧ (𝑥1 ∨ 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0;            

𝜕𝜙(0 → 1)

𝜕𝑥2(1 → 0)
= (𝑥1 ∧ 0 ∨ 𝑥3) ∧ (𝑥1 ∧ 1 ∨ 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑥3 ∧ (𝑥1 ∨ 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0.            

(1.21) 

It is possible to see, that DPLDs are same as the derivation (1.18) and the inverse partial 

logic derivatives are 0. DPLDs computed in (1.21) can be also graphically represented like 

in case of logic derivative, which is shown in Fig. 1.5. It is important to point out, that the 

logic derivative (Fig. 1.4) is composed of direct and inverse partial logic derivatives (Fig. 

1.5) that are connected using Boolean operation OR [8] and inverse partial logic derivatives 

have zero values, because the storage system represented by (1.2) is coherent.  
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Fig. 1.5 Graphical representation of the DPLDs (1.21) 

A DPLD can be computed not just with respect to change of state of one component, 

but also with respect to simultaneous change of state of two or more components. The latter 

is known as a DPLD with respect to a vector of changes and has the following form [8]:  

𝜕𝜙(1 → 0)

𝜕(𝑥𝑖, 𝑥𝑗 , … )(1,1, … ) → (0,0, … )
= 𝜙(0𝑖, 0𝑗, … , 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ 𝜙(1𝑖 , 1𝑗 , … , 𝒙). (1.22) 

This kind of DPLD can be used to analyse not just the same direction of changes of states of 

components and the system but also the opposite changes or even different changes. For 

example, for the structure function (1.2) the DPLDs with respect to a vector of changes 

(1,1) → (0,0) and (1,0) → (0,1) of components 𝑥2, 𝑥3 have following forms: 

𝜕𝜙(1 → 0)

𝜕(𝑥2, 𝑥3)(1,1) → (0,0)
= (𝑥1 ∧ 0 ∨ 0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∧ (𝑥1 ∧ 1 ∨ 1) = 1 ∧ 1 = 1; 

𝜕𝜙(0 → 1)

𝜕(𝑥2, 𝑥3)(1,1) → (0,0)
= (𝑥1 ∧ 1 ∨ 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∧ (𝑥1 ∧ 0 ∨ 0) = 0 ∧ 0 = 0; 

𝜕𝜙(1 → 0)

𝜕(𝑥2, 𝑥3)(0,1) → (1,0)
= (𝑥1 ∧ 1 ∨ 0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∧ (𝑥1 ∧ 0 ∨ 1) = 𝑥1̅̅̅ ∧ 1 = 𝑥1̅̅̅; 

(1.23) 
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𝜕𝜙(0 → 1)

𝜕(𝑥2, 𝑥3)(0,1) → (1,0)
= (𝑥1 ∧ 0 ∨ 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∧ (𝑥1 ∧ 1 ∨ 0) = 0 ∧ 𝑥1 = 0. 

From DPLDs (1.23), it is possible to conclude that the only interesting change of states of 

the components 𝑥2, 𝑥3 is (1,1) → (0,0) but only when the function 𝜙 changes its state from 

1 to 0. All computed DPLDs (1.23) are graphically represented in Fig. 1.6. 

 

Fig. 1.6 Graphical representation of the DPLDs (1.23) 

 In reliability analysis, all previously mentioned DPLDs can be mostly used to find 

critical states of the system [8], [13], which describe situations in which a failure/repair of 

one or more system components results in a failure/repair of the system. They can also be 

used to compute importance measures, which will be presented later. 

 

1.3 Survival Signature 

Structure function provides an useful and elegant description of the system design, 

but it has some limitations. For example, in case of system design comparisons, it is more 

challenging to use this approach, especially with the greater number of system components 
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[1], [16]. In order to solve this problem, an 𝑛-dimensional probability vector known as 

system signature 𝐬𝜏 of a coherent system τ with 𝑛 components can be used [15], [16]. This 

vector is defined as follows: 

𝐬𝜏 = (𝑠1, 𝑠2, … , 𝑠𝑛), (1.24) 

where 𝑠𝑖 = 𝑃(𝑇 = 𝑋𝑖:𝑛) for 𝑖 = 1,2, … , 𝑛 represents the probability that the 𝑖-th successive 

component failure at time 𝑋𝑖:𝑛 results in system failure at time 𝑇. It is possible to define 𝑠0, 

but in coherent systems its value will always be 0, therefore, it will not be taken into account. 

Because the comparison between designs of topologies of systems with different component 

characteristics is not a main focus in system signature [16], the Independent and Identically 

Distributed (IID) assumption for components lifetimes is made.  

For example, we will extend the analysis of the data storage system represented by 

(1.2) as follows: we have to compare the use of RAID 0 (marked as 𝜏1) or RAID 1 (marked 

as 𝜏2) in the upper branch in case of system reliability. In RAID 1, data is written into two 

drives identically, which means that data can be read from any drive. In addition, RAID 1 

will operate successfully as long as at least one drive is functioning [27]. Therefore, the 

structure function that will represent the second topology with RAID 1 has the following 

form: 

𝜙𝜏2
(𝑥1, 𝑥2, 𝑥3) = (𝑥1 ∨ 𝑥2) ∨ 𝑥3. (1.25) 

According to the topologies 𝜏1 and 𝜏2 represented by (1.2) and (1.25), we can compute the 

system signature for each topology and then compare them. The failure times of all 

components of each topology of the data storage system can be ordered in 6 ways and thanks 

to the IID, they have the same chance to occur. The time 𝑋𝑖:𝑛 for each permutation of the 

component failure times can be seen in Tab. 1.1. It follows that the system signature for 𝜏1 

is 𝒔𝜏1
= (0,2/3,1/3) and for 𝜏2 is 𝒔𝜏2

= (0,0,1). It is clear from those system signatures 

that the topology 𝜏2 is superior because in this case the system will fail only during the third 

successive component failure and not mostly during the second successive component 

failure as in topology 𝜏1. 
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Tab. 1.1 The ordered component failure time which causes failure of both system topologies 

Ordered Component Failure 

Times 
Time 𝑋𝑖:𝑛 in 𝜏1 Time 𝑋𝑖:𝑛 in 𝜏2 

𝑥1 < 𝑥2 < 𝑥3 𝑋3:3 𝑋3:3 

𝑥1 < 𝑥3 < 𝑥2 𝑋2:3 𝑋3:3 

𝑥2 < 𝑥1 < 𝑥3 𝑋3:3 𝑋3:3 

𝑥2 < 𝑥3 < 𝑥1 𝑋2:3 𝑋3:3 

𝑥3 < 𝑥1 < 𝑥2 𝑋2:3 𝑋3:3 

𝑥3 < 𝑥2 < 𝑥1 𝑋2:3 𝑋3:3 

System signature 𝐬𝜏 can be used for topology comparison, but if the IID probabilities 

of components to be in working state 𝑝 or components lifetimes distribution that has 

cumulative distribution function 𝑄(𝑡) are known, then 𝐬𝜏 can be used to compute reliability 

𝑅 or reliability function 𝑅(𝑡) as follows [15], [16]:  

𝑅 = ∑ 𝑠𝑖 ∗ ∑ (
𝑛

𝑗
) ∗ 𝑝𝑗 ∗ 𝑞𝑛−𝑗

𝑛

𝑗=𝑛−𝑖+1

𝑛

𝑖=1

; (1.26) 

𝑅(𝑡) = ∑ 𝑠𝑖 ∗ ∑ (
𝑛

𝑗
) ∗ (1 − 𝐹(𝑡))

𝑗
∗ (𝐹(𝑡))𝑛−𝑗

𝑛

𝑗=𝑛−𝑖+1

𝑛

𝑖=1

. (1.27) 

It is clear from (1.26) and (1.27) that the lifetime of a coherent system with IID components 

depends on the system topology only through the system signature. 

For example, we will continue with the previous topologies 𝜏1 and 𝜏2 of the data 

storage system. If we want to compute their reliability 𝑅 and reliability function 𝑅(𝑡), we 

need to know the probability 𝑝 and lifetime distribution 𝑄(𝑡) of the components. In this 

example, we will be working with values 𝑝 = 0.8 and components failure times will have 

exponential distribution with 𝜆 = 1/5,000 days. We will firstly compute the reliability of 

each topology by using previously mentioned 𝑝 as follows: 
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𝑅𝜏1
= 0 ∗ (

3

3
) ∗ 0.83 ∗ 0.20 +

2

3
∗ ((

3

3
) ∗ 0.83 ∗ 0.20 + (

3

2
) ∗ 0.82 ∗ 0.21) +

1

3

∗ ((
3

3
) ∗ 0.83 ∗ 0.20 + (

3

2
) ∗ 0.82 ∗ 0.21 + (

3

1
) ∗ 0.81 ∗ 0.22)

= 0.928; 

(1.28) 

𝑅𝜏2
= 0 ∗ (

3

3
) ∗ 0.83 ∗ 0.20 + 0 ∗ ((

3

3
) ∗ 0.83 ∗ 0.20 + (

3

2
) ∗ 0.82 ∗ 0.21) + 1

∗ ((
3

3
) ∗ 0.83 ∗ 0.20 + (

3

2
) ∗ 0.82 ∗ 0.21 + (

3

1
) ∗ 0.81 ∗ 0.22)

= 0.992. 

(1.29) 

From the calculated reliability 𝑅𝜏1
 and 𝑅𝜏2

, it is oblivious that the topology 𝜏2 is more 

reliable than the topology 𝜏1, which corresponds with the results of the comparison of both 

system signatures. The next step is computation of the reliability function for the both 

topologies by using (1.27). Time courses of 𝑅𝜏1
(𝑡) and 𝑅𝜏2

(𝑡) are depicted in Fig. 1.7, where 

𝑅𝜏1
(𝑡) is shown as a blue dotted line and 𝑅𝜏2

(𝑡) is shown as a yellow solid line. It is possible 

to see that the topology 𝜏2 has always same or better reliability as the days flow and the 

value of 𝑅𝜏2
(𝑡) decreasing much slower and smoother that in case of 𝑅𝜏1

(𝑡). 

 

Fig. 1.7 Reliability function of both topologies 

The system signature is a useful approach to assist reliability analysis for systems with 

𝑛 components with IID failure times, in which the structure of the system is separated from 

the random failure times of the components. But this approach has its limitations. The system 

signature was introduced solely for system with a single type of components with IID failure 

times. In [15] authors showed the generalization of system signature for systems with several 

types of components, but deriving this generalization is complex and it does not separate the 

system structure and the failure time distributions as it was for a single type of components. 
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Therefore, an alternative to the system signature which can fulfil a similar role known as 

survival signature was proposed in [15]. Survival signature Φ(𝑙) for 𝑙 = 0,1, … , 𝑛 is defined 

as the probability that the system with 𝑛 components is working if exactly 𝑙 system 

components are in working state [15]. For coherent systems the survival signature has the 

following form: 

Φ(𝑙) = (
𝑛

𝑙
)

−1

∗ ∑ 𝜙(𝒙)

𝒙∈𝑆𝑙

, (1.30) 

where 𝑆𝑙 is a set of all state vectors 𝒙 with exactly 𝑙 working system components, i.e. 

∑ 𝑥𝑖
𝑛
𝑖=1 = 𝑙. In case of 𝑙 = 0 for the coherent systems, the survival signature will always 

have value 0, and in case of 𝑙 = 𝑛, the survival signature will have value 1. As it was with 

system signature, it is possible to compute the reliability 𝑅 and the reliability function 𝑅(𝑡) 

using survival signature. If the IID probabilities of components to be in working state 𝑝 or 

components lifetimes distribution that has cumulative distribution function 𝐹(𝑡) are known, 

as follows: 

𝑅 = ∑ Φ(𝑙) ∗ 𝑃(𝐶 = 𝑙) = ∑ Φ(𝑙) ∗  (
𝑛

𝑙
) ∗ 𝑝𝑙 ∗ 𝑞𝑛−𝑙

𝑛

𝑙=0

𝑛

𝑙=0

; (1.31) 

𝑅(𝑡) = ∑ Φ(𝑙) ∗ 𝑃(𝐶𝑡 = 𝑙)

𝑛

𝑙=0

= ∑ Φ(𝑙) ∗ (
𝑛

𝑙
) ∗ (1 − 𝐹(𝑡))

𝑙
∗ (𝐹(𝑡))𝑛−𝑙

𝑛

𝑙=0

, (1.32) 

where 𝐶 and 𝐶𝑡 represents the number of components in the system that are in working state 

or that are in working state at specified time point 𝑡 > 0, i. e. 𝐶, 𝐶𝑡 ∈ {0,1, … , 𝑛}.  

 For example, consider the two topologies 𝜏1 and 𝜏2 of the data storage system marked 

as it was in case of computation of the system signature. We can easily compute their 

survival signatures according to the (1.30) for each 𝑙 ∈ {0,1,2,3}. For example, in case of 

𝑙 = 1, there are three state vectors (1,0,0), (0,1,0) and (0,0,1) that represent the situation 

with exactly one working component. In case of topology 𝜏1, only for one state vector 

(0,0,1) is system in working state, which means that Φ(1) =
1

3
. In case of topology 𝜏2, the 

system will be in working state for all state vectors, which means that Φ(1) =
3

3
= 1. 

Computed values of survival signatures for both topologies can be seen in Tab. 1.2.  
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Tab. 1.2 Computed survival signatures for both topologies 

Number of working 

components 𝑙 
Φ(𝑙) of 𝜏1 Φ(𝑙) of 𝜏2 

0 0 0 

1 1/3 1 

2 1 1 

3 1 1 

In order to compute the reliability 𝑅 and reliability function 𝑅(𝑡) of both topologies, we will 

use the previously stated values of probability 𝑝 and lifetime distribution 𝐹(𝑡) of the 

components, i.e. 𝑝 = 0.8 and lifetime distribution will have exponential distribution with 

𝜆 = 1/5,000 days. The reliability of each topology can be computed using (1.31) as follows:  

𝑅𝜏1
= 0 ∗ (

3

0
) ∗ 0.80 ∗ 0.23 +

1

3
∗ (

3

1
) ∗ 0.81 ∗ 0.22 + 1 ∗ (

3

2
) ∗ 0.82 ∗ 0.21 + 1

∗ (
3

3
) ∗ 0.83 ∗ 0.20 = 0.928; 

(1.33) 

𝑅𝜏2
= 0 ∗ (

3

0
) ∗ 0.80 ∗ 0.23 + 1 ∗ (

3

1
) ∗ 0.81 ∗ 0.22 + 1 ∗ (

3

2
) ∗ 0.82 ∗ 0.21 + 1

∗ (
3

3
) ∗ 0.83 ∗ 0.20 = 0.992. 

(1.34) 

As we can see, the results are same as in case of system signature. The same apply for the 

computation of the reliability function for the both topologies by using (1.32). 

 The survival signature (1.30) can be easily generalized to systems with 𝐾 ≥ 2 types 

of components [15]. Survival signature Φ(𝑙1, 𝑙2, … , 𝑙𝐾), 𝑙𝑘 = 0,1, … , 𝑛𝑘 is defined as the 

probability that the system with 𝑛 components is working if exactly 𝑙𝑘 system components 

of type 𝑘 are in working state for each 𝑘 = 1,2, … , 𝐾 and has the following form: 

Φ(𝑙1, 𝑙2, … , 𝑙𝐾) = [∏ (
𝑛𝑘

𝑙𝑘
)

−1
𝐾

𝑘=1

] ∗ ∑ 𝜙(𝒙)

𝒙∈𝑆𝑙1,𝑙2,…,𝑙𝐾

, (1.35) 

where 𝑆𝑙1,𝑙2,…,𝑙𝐾
 is a set of all state vectors 𝒙 with exactly 𝑙1, 𝑙2, … , 𝑙𝐾 working system 

components. If the IID probabilities of components of type 𝑘 to be in working state 𝑝𝑘 or 

components lifetimes distribution of type 𝑘 that has cumulative distribution function 𝐹𝑘(𝑡)  

for each 𝑘 = 1,2, … , 𝐾 are known and 𝑝𝑘 or 𝐹𝑘(𝑡) of components with different types are 
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independent, then 𝑅 and 𝑅(𝑡) of the system with 𝐾 ≥ 2 types of system components can be 

computed as follows: 

𝑅 = ∑ ∑ ⋯ ∑ Φ(𝑙1, 𝑙2, … , 𝑙𝐾) ∗ 𝑃 (⋂{𝐶𝑘 = 𝑙𝑘}

𝐾

𝑘=1

)   

𝑛𝐾

𝑙𝐾=0

𝑛2

𝑙2=0

𝑛1

𝑙1=0

 

= ∑ ∑ ⋯ ∑ [Φ(𝑙1, 𝑙2, … , 𝑙𝐾) ∏ 𝑃(𝐶𝑘 = 𝑙𝑘)

𝐾

𝑘=1

]

𝑛𝐾

𝑙𝐾=0

𝑛2

𝑙2=0

𝑛1

𝑙1=0

     

                       = ∑ ∑ ⋯ ∑ [Φ(𝑙1, 𝑙2, … , 𝑙𝐾) ∏ (
𝑛𝑘

𝑙𝑘
) ∗ (𝑝𝑘)𝑙𝑘 ∗ (𝑞𝑘)𝑛𝑘−𝑙𝑘

𝐾

𝑘=1

]

𝑛𝐾

𝑙𝐾=0

𝑛2

𝑙2=0

𝑛1

𝑙1=0

; 

(1.36) 

𝑅(𝑡) = ∑ ∑ ⋯ ∑ [Φ(𝑙1, 𝑙2, … , 𝑙𝐾) ∏ 𝑃(𝐶𝑡
𝑘 = 𝑙𝑘)

𝐾

𝑘=1

]

𝑛𝐾

𝑙𝐾=0

𝑛2

𝑙2=0

𝑛1

𝑙1=0

                                          

       = ∑ ∑ ⋯ ∑ [Φ(𝑙1, 𝑙2, … , 𝑙𝐾) ∏ (
𝑛𝑘

𝑙𝑘
) ∗ (1 − 𝐹𝑘(𝑡))

𝑙𝑘
∗ (𝐹(𝑡))𝑛𝑘−𝑙𝑘

𝐾

𝑘=1

]

𝑛𝐾

𝑙𝐾=0

𝑛2

𝑙2=0

𝑛1

𝑙1=0

, 

(1.37) 

where 𝐶𝑘 and 𝐶𝑡
𝑘 represents the number of components of type 𝑘 in the system that are in 

working state or that are in working state at time 𝑡 > 0, i. e. 𝐶𝑘 , 𝐶𝑡
𝑘 ∈ {0,1, … , 𝑛𝑘} for 𝑘 =

1,2, … , 𝐾. Computation (1.36) and (1.37) may not be straightforward, but they are much 

easier than in case system signature as is shown in [15] and the information about system 

structure is fully separated from the information about the failure times of the components. 

For illustration, we will use the previous example, but in this case we will use two 

types of HDDs in data storage system. Components represented by Boolean variables 𝑥1 and 

𝑥3 will be of type 1 with 𝑝1 = 0.8 and lifetime distribution 𝐹1(𝑡) will have exponential 

distribution with 𝜆 = 1/5,000 days. Component represented by Boolean variable 𝑥2 will be 

of type 2 with 𝑝2 = 0.9 and lifetime distribution 𝐹2(𝑡) will have exponential distribution 

with 𝜆 = 1/8,000 days. Firstly, we will compute the survival signatures according to the 

(1.30) for each 𝑙1 ∈ {0,1,2} and 𝑙2 ∈ {0,1}. For example, in case of 𝑙1 = 1 and 𝑙2 = 0, there 

are two state vectors (1,0,0) and (0,0,1) that represent the situation with exactly one working 

component of type 1 and zero working components of type 2. In case of topology 𝜏1, the 

system is in working state only for one state vector (0,0,1), which means that Φ(𝑙1, 𝑙2) =
1

2
. 

In case of topology 𝜏2, the system will be in working state for all state vectors, which means 
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that Φ(𝑙1, 𝑙2) =
2

2
= 1. Computed values of all survival signatures for both topologies can 

be seen in Tab. 1.3. 

Tab. 1.3 Computed survival signatures for both topologies with two types of components 

Number of working 

components 𝑙1 

Number of working 

components 𝑙2 
Φ(𝑙1, 𝑙2) of 𝜏1 Φ(𝑙1, 𝑙2) of 𝜏2 

0 0 0 0 

0 1 0 1 

1 0 1/2 1 

1 1 1 1 

2 0 1 1 

2 1 1 1 

As a next step we will compute 𝑅 for each topology using (1.36) and it is shown in (1.38) 

and (1.39). As we can see, 𝑅𝜏1
 is less than 𝑅𝜏2

 as it was in previous examples, but both values 

are greater in contrast to the previous examples, which is caused by more reliable type of 

HDD added as a component 𝑥2.  

𝑅𝜏1
= 0 ∗ ((

2

0
) ∗ 0.80 ∗ 0.22 ∗ (

1

0
) ∗ 0.80 ∗ 0.21) + 0

∗ ((
2

0
) ∗ 0.80 ∗ 0.22 ∗ (

1

1
) ∗ 0.81 ∗ 0.20) +

1

2

∗ ((
2

1
) ∗ 0.81 ∗ 0.21 ∗ (

1

0
) ∗ 0.80 ∗ 0.21) + 1

∗ ((
2

1
) ∗ 0.81 ∗ 0.21 ∗ (

1

1
) ∗ 0.81 ∗ 0.20) + 1 ∗

∗ ((
2

2
) ∗ 0.82 ∗ 0.20 ∗ (

1

0
) ∗ 0.80 ∗ 0.21) + 1 ∗

∗ ((
2

2
) ∗ 0.82 ∗ 0.20 ∗ (

1

1
) ∗ 0.81 ∗ 0.20) = 0.944; 

(1.38) 
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𝑅𝜏2
= 0 ∗ ((

2

0
) ∗ 0.80 ∗ 0.22 ∗ (

1

0
) ∗ 0.80 ∗ 0.21) + 1

∗ ((
2

0
) ∗ 0.80 ∗ 0.22 ∗ (

1

1
) ∗ 0.81 ∗ 0.20) + 1

∗ ((
2

1
) ∗ 0.81 ∗ 0.21 ∗ (

1

0
) ∗ 0.80 ∗ 0.21) + 1

∗ ((
2

1
) ∗ 0.81 ∗ 0.21 ∗ (

1

1
) ∗ 0.81 ∗ 0.20) + 1 ∗

∗ ((
2

2
) ∗ 0.82 ∗ 0.20 ∗ (

1

0
) ∗ 0.80 ∗ 0.21) + 1 ∗

∗ ((
2

2
) ∗ 0.82 ∗ 0.20 ∗ (

1

1
) ∗ 0.81 ∗ 0.20) = 0.996 . 

(1.39) 

Lastly, we will compute the reliability function for the both topologies by using (1.37). Time 

courses of 𝑅𝜏1
(𝑡) and 𝑅𝜏2

(𝑡) are depicted in Fig. 1.8, where 𝑅𝜏1
(𝑡) is shown as a blue dotted 

line and 𝑅𝜏2
(𝑡) is shown as a yellow solid line. As it was in the previous example, the 

topology 𝜏2 has always same or better reliability as the days flow and the value of 𝑅𝜏2
(𝑡) 

decreasing much slower and smoother that in case of 𝑅𝜏1
(𝑡). But in this case, adding more 

reliable HDD resulted in the improvement in the system reliability, especially in the case of  

𝑅𝜏2
(𝑡). 

 

Fig. 1.8 Reliability function of both topologies with two types of components 
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2 Importance Measures and DPLD 

In previous chapter, the theoretical background for reliability analysis like structural 

function, system signature, survival signature, reliability, unreliability were presented. 

Reliability and Unreliability are useful measures of the system for reliability analysis, but 

they do not measure the importance of components for the functioning of the system. Logic 

differential calculus was also introduced in this chapter as an approach that can be used for 

structure function to determine, how failure of a system component affects the system 

operation. 

In this chapter, the IMs will be presented as well as standard computation and 

computation that uses DPLD for structure and reliability IMs. In case of lifetime IMs, they 

are standardly computed by using the reliability function. The new approach that has been 

developed for lifetime IMs computation based on the structure function and DPLDs will be 

shown. The efficiency of new approach will be shown on selected systems in next chapter. 

This part is based on results presented in [28]. In the second part of this chapter the definition 

of the DPLDs for the survival signature is considered. Their computation and usability will 

be demonstrated on the selected systems in next chapter.  

 

2.1 Importance Measures 

An important part of reliability analysis is an estimation of influence of a component 

or a group of components on system operation. Such estimation is implemented by 

importance measures (IMs) [14] and can be used, for example, to optimize system reliability 

or to plan its maintenance. There are many IMs, and each of them takes into account different 

factors that make a system component more important than others. According to [14], IMs 

can be divided into three categories: structure, reliability, and lifetime IMs.  

 

2.1.1 Structure Importance Measures 

These IMs are used to calculate importance of components according to their 

placement in the system, what means they do not take the reliability of components into 

account [14]. One of the most commonly known structure IMs is known as Structure 
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Importance (SI). SI is defined as a relative number of state vectors at which a failure of 

component 𝑖 results in system failure. This measure can be computed as [14]: 

SI𝑖 =
∑ (𝜙(1𝑖 , 𝒙) − 𝜙(0𝑖, 𝒙)){(0𝑖,𝒙)}

2𝑛−1
=

∑ (𝜙(1𝑖, 𝒙) − 𝜙(0𝑖, 𝒙)){(1𝑖,𝒙)}

2𝑛−1
, (2.1) 

where {(0𝑖, 𝒙)} represent the set of state vectors and those state vectors have the 𝑖-th element 

0 and 1 for {(1𝑖, 𝒙)}. Let us consider the data storage system represented by (1.2) as an 

example for SI calculation. If we want to compute SI for each HDD, we need to find all the 

state vectors, for which their second value has value 0 and we need to compute 𝜙(1𝑖, 𝒙) −

𝜙(0𝑖 , 𝒙) for them. For HDD 2 that is represented by Boolean variable 𝑥2 is SI2 =
1

4
= 0.25, 

because for one state vector (1,0,0) out of four (0,0,0),(0,0,1),(1,0,0),(1,0,1) has 

expression 𝜙(1𝑖, 𝒙) − 𝜙(0𝑖 , 𝒙) value 1. As for the other HDDs, SI1 =
1

4
= 0.25 and SI3 =

3

4
= 0.75. It is possible to see that the most important component according to its placement 

is HDD 3 with SI3 = 0.75. 

By using logic differential calculus, especially DPLDs, it is possible to compute SI 

as follows [13]: 

SI𝑖 = TD (
𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
), (2.2) 

where TD(. ) represents the truth density of the argument interpreted as a Boolean function. 

This value agrees with the relative number of vectors for which the argument takes a nonzero 

value. Let us consider the data storage system represented by (1.2) as an example for SI 

calculation. If we want to compute SI for each HDD, we need firstly to compute DPLDs for 

each HDD by using (1.19) and then compute their truth density. For HDD 2 that is 

represented by Boolean variable 𝑥2, its DPLD 
𝜕𝜙(0→1)

𝜕𝑥2(0→1)
 is 𝑥1 ∧ 𝑥3̅̅ ̅, which means that SI2 =

TD(𝑥1 ∧ 𝑥3̅̅ ̅) = 0.25. This is due to the fact that only one out of four DPLDs has value 1, 

and that is when the variable 𝑥1 has value 1, i.e. HDD 1 is working and the variable 𝑥3 has 

value 0, i.e. HDD 3 is not working. As for the other HDDs, SI1 = 0.25 and SI3 = 0.75. 

 

2.1.2 Reliability Importance Measures 

Reliability IMs, unlike the Structure IMs, take into account not only system structure 

in form of structure function but also the probabilities of the components functioning and 
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failure [14]. The most known reliability IM is Birnbaum’s Importance (BI), which takes into 

account system topology and the probabilities of the components functioning and failed. 

This measure can be computed using reliability as follows [14]: 

BI𝑖 =
𝜕𝑅

𝜕𝑝𝑖
, (2.3) 

and it agrees with the probability that a failure of component 𝑖 results in system failure, i.e., 

with the probability that the component is critical for the system. We will show its 

computation at the data storage system represented by (1.2) with same type of HDD with 

probability 𝑝 = 0.8 of functioning during mission time. As a first step, we will compute 

partial derivative for each HDD and then use it to compute BI according to (2.3). For HDD 

2 that is represented by Boolean variable 𝑥2, its 
𝜕𝑅

𝜕𝑝2
 is 𝑝1 − 𝑝1 ∗ 𝑝3 and therefore BI2 = 0.8 −

0.8 ∗ 0.8 = 0.16. As for the other HDDs, BI1 = 𝑝2 − 𝑝2 ∗ 𝑝3 = 0.16 and BI3 = 1 − 𝑝1 ∗

𝑝2 = 0.36. From those values we can conclude, that a failure of HDD 3 is the most 

problematic, because this failure will result in system failure with the highest probability. 

Alternatively, BI can be also computed using DPLD as follows [13]: 

BI𝑖 = Pr {
𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
= 1}. (2.4) 

We will show its computation at the data storage system represented by (1.2) with same type 

of HDD with probability 𝑝 = 0.8 of functioning during mission time. As it was in case of 

SI, we will firstly compute DPLD (1.19) for each HDD and then use it to compute BI 

according to (2.4). For HDD 2 that is represented by Boolean variable 𝑥2, its DPLD 
𝜕𝜙(0→1)

𝜕𝑥2(0→1)
 

is 𝑥1 ∧ 𝑥3̅̅ ̅ and by transforming it into a probabilistic form we get BI2 = 𝑝1 − 𝑝1 ∗ 𝑝3 = 0.16. 

As for the other HDDs, BI1 = 𝑝2 − 𝑝2 ∗ 𝑝3 = 0.16 and BI3 = 1 − 𝑝1 ∗ 𝑝2 = 0.36.  

Another useful type of reliability IM is Criticality Importance (CI). This IM extends 

the BI and it corresponds to the probability that system failure has been caused by a failure 

of component 𝑖 given that the system has failed [14]. This is shown by following formula: 

CI𝑖 = BI𝑖

𝑞𝑖

𝐹
, (2.5) 

 and it can be used to find components whose failures have resulted in system failure with 

the greatest probability when we know that the system has failed. It is typically used in 

system maintenance to identify components whose repairs will result in system repair with 
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the greatest probability [3], [14]. As it was for BI, we will compute the CI for each HDD in 

the data storage system represented by (1.2). In case of HDD 1, by using its BI1 = 0.16, the 

probability of HDD failure during mission time 𝑞 = 1 − 𝑝 = 0.2 and system unreliability 

𝐹 = 0.072, we can then compute CI1 = 0.16 ∗
0.2

0.072
= 0.444. As for the other HDDs, CI2 =

0.444 and CI3 = 1, which means that if we choose to repair HDD 3 if it is in non-working 

state, the system will start to work given that the system was failed. 

BI and CI are very useful in importance analysis of a single system component and 

a lot of other measures are derived from them [13], [14]. However, it is not usable for 

importance analysis of a pair of the components. In order to perform importance analysis 

that provides additional information, which the IMs of a single component cannot convey, 

IMs of pairs of system components are used. One such IM is the joint reliability importance 

(JRI), which can be computed for two components 𝑖 and 𝑗 in the following manner [14], [29]: 

JRI𝑖,𝑗 =
𝜕2𝑅

𝜕𝑝𝑖𝜕𝑝𝑗
. (2.6) 

The JRI is useful for analyzing the interactions of two components with each other 

when their reliabilities change. This IM may produce negative or positive values, where sign 

represents the type of the interaction, and the absolute value quantifies the degree of the 

interaction between the two components with respect to reliability of the system [14], [29]. 

If JRI𝑖,𝑗 < 0, then component 𝑖 (𝑗) is more important with respect to the system reliability 

when component 𝑗 (𝑖) is failed than when component 𝑗 (𝑖) is functioning. However, if  

JRI𝑖,𝑗 > 0, then component 𝑖 (𝑗) is more important for system operation when component 

𝑗 (𝑖) is functioning than when component 𝑗 (𝑖) fails. As an example, we will continue with 

data storage system with reliability (1.12) and we will compute JRI for each possible pair of 

HDDs. In case of HDDs 1 and 2, JRI1,2 =
𝜕2𝑅

𝜕𝑝1𝜕𝑝2
= 1 − 𝑝3 = 0.2, which means that HDD 1 

is more important for the system reliability if HDD 2 is functioning. This agrees with their 

serial placement in the given topology of the system. On the other hand, JRI1,3 =
𝜕2𝑅

𝜕𝑝1𝜕𝑝3
=

−𝑝2 = −0.8 and JRI2,3 =
𝜕2𝑅

𝜕𝑝2𝜕𝑝3
= −𝑝1 = −0.8 are both negative, which means that HDD 

1 and 2 are more important for the system reliability if HDD 3 is failed. This corresponds to 

their placement in different branches in parallel topology of the analysed system. 
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The previously mentioned IMs can be used to find the most important components 

according to the selected criterion or to see how two components interact with each other 

when their reliability changes. However, if there is a need to analyse how a simultaneous 

failure of two system components can affect the system, these measures cannot be used. For 

this purpose, we developed a new IM [30]. This new IM is based on DPLD (1.22) that can 

find situations, in which a simultaneous failure of two components results in system failure. 

In order to evaluate importance of two components with respect to their simultaneous failure, 

the probability of these situations must be computed. Therefore,  the new importance 

measure, which can be named as a Failure Importance (FI), is computed as follows: 

FI𝑖,𝑗 = Pr {
𝜕𝜙(1 → 0)

𝜕(𝑥𝑖, 𝑥𝑗)((1,1) → (0,0))
= 1}. (2.7) 

This measure helps to understand how a simultaneous failure of system components 

𝑖 and 𝑗 influences system operation. As an example, we will again use the data storage system 

represented by (1.2) for computation of  FI for each combination of two HDDs. For HDDs 

1 and 2,  their DPLD 
𝜕𝜙(1→0)

𝜕(𝑥1,𝑥2)((1,1)→(0,0))
= 𝑥3̅̅ ̅, therefore, their FI1,2 = 1 − 𝑝3 = 0.2, which 

shows that the simultaneous failure of the HDD 1 and 2 slightly affect the system 

functionality. On the other hand, for combinations HDD 1 with HDD 3 and HDD 2 with 

HDD 3, FI1,3 = FI2,3 = 1, which means that the system will surely fail with simultaneous 

failure of those HDDs. 

 

2.1.3 Lifetime Importance Measures 

Reliability IMs assume that the state probabilities 𝑝𝑖 and 𝑞𝑖 of the components are 

known, and they do not depend on time. If we know how these probabilities changes in time, 

we can investigate how BI and CI of the components vary during system mission. For this 

purpose, lifetime IMs are used [14]. These IMs depend on the positions of components 

within the system and the components lifetime distributions. 

First IM, that will be presented in this chapter is time-dependent BI for component 𝑖 

at time 𝑡. This IM agrees with the probability that the system is in a state at time 𝑡 in which 

component 𝑖 is critical for the system, and it is standardly computed by partial differentiation 

of reliability function 𝑅(𝑡) according to 𝑃𝑖(𝑡) [14]: 
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BI𝑖(𝑡) =
𝜕𝑅(𝑡)

𝜕𝑃𝑖(𝑡)
. (2.8) 

We will show its computation at the data storage system represented by (1.2) with 

same type of HDD that are independent and they have exponential distribution with 𝜆 =

1/5,000 days as lifetime distribution. By using this system reliability function (1.15) it is 

possible to compute derivation for each HDD and then use it to compute time-dependent BI 

according to the (2.8). Therefore, their time-dependent BI are BI1(𝑡) =
𝜕𝑅(𝑡)

𝜕𝑃1(𝑡)
= 𝑃2(𝑡) −

𝑃2(𝑡) ∗ 𝑃3(𝑡), BI2(𝑡) =
𝜕𝑅(𝑡)

𝜕𝑃2(𝑡)
= 𝑃1(𝑡) − 𝑃1(𝑡) ∗ 𝑃3(𝑡) and BI3(𝑡) =

𝜕𝑅(𝑡)

𝜕𝑃3(𝑡)
= 1 − 𝑃1(𝑡) ∗

𝑃2(𝑡). Time courses of those IMs are depicted in Fig. 2.1, where BI1(𝑡) is represented by 

green dash line, BI2(𝑡) is represented by red dotted line and BI3(𝑡) is represented by blue 

solid line. From those time courses we can conclude that a failure of HDD 3 is the most 

problematic throughout the whole time, because this failure will result in system failure with 

the highest probability and its value raises sharply for 5,000 days. As for the other HDDs, 

their importance raises slightly for around 3,000 days and then it started slowly decreased. 

This is mostly caused by their placement in the series and by the fact, that the HDD 3 is with 

them in the parallel topology. 

 

Fig. 2.1 Time-dependent BI measures for HDDs of the storage system 

The previously mentioned approach for computation of the time-dependent BI uses 

reliability function that can be obtained by using transformation of the structure function. 

This process is shown in Fig. 2.2 on left side. Another possibility, that we suggest in this 

work, is to use DPLD for computation of the time-dependent BI. This approach will allow 

us to use other IMs that can be computed using DPLD in time-dependent reliability analysis 

as is shown in Fig. 2.2 on the right side and it will be defined as follows: 
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BI𝑖(𝑡) = Pr {
𝜕𝑍(1 → 0, 𝑡)

𝜕𝑥𝑖(1 → 0, 𝑡)
= 1}. (2.9) 

This new way for computation of the time-dependent BI is based on the same 

approach as was shown in section 1.1 in case of the structure function, thanks to the fact, 

that the structure function and the DPLD are both Boolean function and in case of DPLD, 

the meaning of the reliability (availability) function will change to time dependent BI. We 

will show its computation on the data storage system represented by (1.2). According to this 

approach, we need to compute DPLDs for each HDD. These DPLDs are shown in Tab. 2.1. 

In the next step, we transform them into time-dependent probability form and therefore we 

obtain the time-dependent BI for each HDD. These BIs are  BI1(𝑡) = 𝑃2(𝑡) ∗ 𝑄3(𝑡) =

𝑃2(𝑡) − 𝑃2(𝑡) ∗ 𝑃3(𝑡), BI2(𝑡) = 𝑃1(𝑡) ∗ 𝑄3(𝑡) = 𝑃1(𝑡) − 𝑃1(𝑡) ∗ 𝑃3(𝑡) and BI3(𝑡) =

𝑄1(𝑡) + 𝑄2(𝑡) − 𝑄1(𝑡) ∗ 𝑄2(𝑡) = 1 − 𝑃1(𝑡) ∗ 𝑃2(𝑡). As we can see, those time-dependent 

BIs are exactly same as in case of normally used approach. 

Tab. 2.1 DPLD for each HDD of the storage system 

Number of HDD DPLD  

1 𝑥2 ∧ 𝑥3̅̅ ̅ 

2 𝑥1 ∧ 𝑥3̅̅ ̅ 

3 𝑥2̅̅ ̅ ∨ 𝑥2̅̅ ̅ 

 

 

Fig. 2.2 Showing the new approach for computation of the time-dependent BI  
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Another useful time-dependent IM is CI𝑖(𝑡). This IM can be computed from BI𝑖(𝑡) 

as follows [14]: 

CI𝑖(𝑡) = BI𝑖(𝑡)
𝑄𝑖(𝑡)

𝐹(𝑡)
, (2.10) 

and it corresponds to the probability that component 𝑖 has failed by time 𝑡 and that 

component 𝑖 is critical for the system at time 𝑡, given that the system has failed by time 𝑡 

[14]. We will show its computation on the data storage system represented by (1.2). By using 

the previous computed time-dependent BI and by using (2.10), the time-dependent CI for 

each HDD are CI1(𝑡) = BI1(𝑡)
𝑄1(𝑡)

𝐹(𝑡)
=

𝑄1(𝑡)∗𝑄3(𝑡)−𝑄1(𝑡)∗𝑄2(𝑡)∗𝑄3(𝑡)

𝑄1(𝑡)∗𝑄3(𝑡)+𝑄2(𝑡)∗𝑄3(𝑡)−𝑄1(𝑡)∗𝑄2(𝑡)∗𝑄3(𝑡)
, CI2(𝑡) =

BI2(𝑡)
𝑄2(𝑡)

𝐹(𝑡)
=

𝑄2(𝑡)∗𝑄3(𝑡)−𝑄1(𝑡)∗𝑄2(𝑡)∗𝑄3(𝑡)

𝑄1(𝑡)∗𝑄3(𝑡)+𝑄2(𝑡)∗𝑄3(𝑡)−𝑄1(𝑡)∗𝑄2(𝑡)∗𝑄3(𝑡)
 and CI3(𝑡) = BI3(𝑡)

𝑄3(𝑡)

𝐹(𝑡)
=

𝑄1(𝑡)∗𝑄3(𝑡)+𝑄2(𝑡)∗𝑄3(𝑡)−𝑄1(𝑡)∗𝑄2(𝑡)∗𝑄3(𝑡)

𝑄1(𝑡)∗𝑄3(𝑡)+𝑄2(𝑡)∗𝑄3(𝑡)−𝑄1(𝑡)∗𝑄2(𝑡)∗𝑄3(𝑡)
= 1. Their time courses can be seen in Fig. 2.3, where 

CI1(𝑡) is represented by green dash line, CI2(𝑡) is represented by red dotted line and CI3(𝑡) 

is represented by blue solid line. From those time courses, we can conclude that repair of the 

HDD 3 will surely results in system repair in any time point if we know that the system has 

failed because its value is always 1. This is caused by its placement in one branch in the 

parallel topology of the system. As for the other HDDs, their value of time-dependent CI 

slowly decreases as time flows, which means that repair of one of those HDDs will result in 

system repair with less probability at a later time.   

 

Fig. 2.3 Time-dependent CI measures for HDDs of the storage system 

As in the case of other reliability IMs mentioned in the previous chapter, JRI and FI 

can be defined as time-independent (if state probabilities 𝑝𝑖 or 𝑞𝑖 of the components are 

known) or time-dependent (if functions 𝑃𝑖(𝑡) or 𝑄𝑖(𝑡) defining behavior of the components 

over time are known). 
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2.2 Logic Differential Calculus in Survival Signature 

In previous section we showed how the DPLD can be used for computation of the 

lifetime IMs such as BI and CI. As we presented, the IMs based on DPLDs allow computing 

all types of IMs: structure, reliability and lifetime, logic differential calculus can be viewed 

as a mathematical methodology unifying these three core concepts of importance analysis 

into one complex framework. However, a main problem behind the approach presented 

above is a fact that the number of possible state vectors in structure function can be really 

big in case of systems composed of huge amount of components, therefore, some analysis 

presented above can be really time-consuming. This implies it is important to develop new 

approaches that allow represent the system under investigation in a more compact way. One 

such approach is System Signature. If we want to use the mathematical apparatus presented 

above in reliability analysis based on System Signature we have to expand the concept of 

DPLDs and its applications on such a representation. This issue is addressed in the rest of 

the chapter. 

DPLD for Boolean function with respect to variable xi according to (1.19) allows us 

to indicate state vector (𝑥1, 𝑥2, … , 𝑥𝑛) of the function for which the specified change of the 

variable xi results the specified change of the function. In terms of reliability analysis this 

derivative allows indicating critical states of system that agree with state vectors of 

components for which the breakdown of the 𝑖-th component cause the failure of the system. 

In case of the survival signature (1.35), the DPLD can have interesting interpretations. In 

this part, the new possible derivatives are considered, which are focused on the case of the 

component breakdown and system degradation. 

The first DPLD for survival signature indicates the possibility of the system failure 

for fixed number of working components of the specified type if one of components of this 

type breakdowns: 

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘(𝑎𝑎 − 1)
= {

1, Φ(𝑙1, … , 𝑎𝑘, … , 𝑙𝐾) > Φ(𝑙1, … , 𝑎𝑘 − 1, … , 𝑙𝐾) 
0, otherwise                                                                

 (2.11) 

where 𝑎 ∈ {1,2, … , 𝑛𝑘} is a number of working components of the type 𝑘 ∈ {1,2, … , 𝐾}. This 

derivative is defined only for (𝑙1, … , 𝑎𝑘, … , 𝑙𝐾) working components of each type and its 

value is non-zero if Φ(𝑙1, … , 𝑎𝑘, … , 𝑙𝐾) > Φ(𝑙1, … , 𝑎𝑘 − 1, … , 𝑙𝐾) and otherwise its value is 

zero. This derivation is based on the integrated direct partial logic derivatives of type 2 that 

are shown in [31]. This comes from the fact, that the survival signature can be seen as a 
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multi-valued mathematical representation of the analysed system. It is also possible to 

compute SI𝑘,𝑎
↓  for such system by taking definition of the SI𝑖,𝑠

↓  in [31] into account as follows: 

SI𝑘,𝑎
↓ = TD (

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘(𝑎𝑎 − 1)
), (2.12) 

where TD(. ) represents the truth density of the argument interpreted as a Boolean function. 

SI𝑘,𝑎
↓  represents a relative number of situations in which a number of working components 

𝑎 of type 𝑘 is critical for the system degradation. 

We will show how this DPLD and SI𝑘,𝑎
↓  are computed on the example of data storage 

system represented by (1.2) with two types of components that was first described in section 

1.3 for survival signature with 𝐾 types of components. In this system, there are two 

components 1 and 3 of type 1 and one component 2 of type 2. This means that it is possible 

to compute first DPLD for change from 2 working components to one and from 1 working 

components to zero for 𝑙1 and for change from 1 working components to zero for 𝑙2. 

According to the (2.11), we can conclude that the value of DPLD 
𝜕𝛷(𝑙1,𝑙2)↓

𝜕𝑙1(21)
 has value 1 in 

situation, where only two components of type 1 are working because (Φ(2,0) = 1) >

(Φ(1,0) = 0.5) and has value 0 in situation when all system components are working because 

(Φ(2,1) = 1) ≯ (Φ(1,1) = 1). As for the SI𝑘,𝑎
↓  computation, by using (2.12) and computed 

DPLDs their values are SI1,2
↓ = TD (

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1(21)
) = 0.5, SI1,1

↓ = TD (
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1(10)
) = 1 and SI2,1

↓ =

TD (
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙2(10)
) = 0.333. Values of all DPLDs and SI𝑘,𝑎

↓  can be seen in Tab. 2.2. It is possible 

to see that the most crucial change is change of type 1 from one working type to zero because 

it will always result in decrease of the system signature’s value. This can be proved by 

SI1,1
↓ = 1.  On the other hand, the change of type 2 from one working type to zero is the least 

Tab. 2.2 First DPLD for data storage system  

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(21)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(10)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(10)
 

0 0 0 - - - 

0 1 0 - - 0 

1 0 0.5 - 1 - 

1 1 1 - 1 1 

2 0 1 1 - - 

2 1 1 0 - 0 

SI𝑘,𝑎
↓

 0.5 1 0.333 
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crucial change because it is significant only in one of the three possible situations, which can 

be verified by SI2,1
↓  value 0.333.  

The second DPLD for survival signature indicates the possibility of the system 

failure if one of the system components of specified type breakdowns: 

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘 ↓
= {

1, Φ(𝑙1, … , 𝑙𝑘 , … , 𝑙𝐾) > Φ(𝑙1, … , 𝑙�̃�, … , 𝑙𝐾) 

0, otherwise
 (2.13) 

or  

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘 ↓
= ⋃

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘(𝑎𝑎 − 1)

𝑛𝑘

𝑎=1

 (2.14) 

where 𝑙𝑘 ∈ {1,2, … , 𝑛𝑘}, and 𝑙�̃� = 𝑙𝑘 − 1. From (2.14) it is possible to see, that this DPLD 

can be obtained by conjunction of (2.11) for each 𝑎 = 1,2, … , 𝑛𝑘. This DPLD can be used 

to compute SI𝑘
↓  as follows: 

SI𝑘
↓ = TD (

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘 ↓
) =

∑ SI𝑘,𝑎
↓𝑛𝑘

𝑎=1

𝑛𝑘
, (2.15) 

and this definition corresponds with the computation of the SI𝑖
↓ defined in [31]. SI𝑘

↓  represents 

a relative number of situations in which decrease in the number of working components of 

type 𝑘 results in system degradation. 

We will show how this DPLD and SI is computed by using the same example as we 

used for the first DPLD. By using (2.13), the DPLD 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1↓
  for 𝑙1 = 1, 𝑙2 = 0 has value 1 

because (Φ(1,0) = 0.5) > (Φ(0,0) = 0) and the DPLD 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙2↓
 for 𝑙1 = 0, 𝑙2 = 1 has value 

0 because (Φ(0,1) = 0) ≯ (Φ(0,0) = 0). As for the SI𝑘
↓  computation, by using (2.15) and 

computed DPLDs their values are SI1
↓ = TD (

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1↓
) = 0.75 =

0.5+1

2
 and SI2

↓ =

TD (
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙2↓
) = 0.333 =

0.333

1
. All values of the second DPLD and SI𝑘

↓  can be seen in Tab. 

2.3. From those values it is possible to see that the most crucial type is type 1 because in 

only one situation out of four is the value of the second DPLD 0 and as for the second type, 

it has only one situation out of three, in which the system signature’s value will degrade with 

failure of component with such a type.  
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Tab. 2.3 Second DPLD for data storage system 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1 ↓
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2 ↓
 

0 0 0 - - 

0 1 0 - 0 

1 0 0.5 1 - 

1 1 1 1 1 

2 0 1 1 - 

2 1 1 0 0 

SI𝑘
↓

 0.75 0.333 
 

The third and final DPLD for survival signature shows measure of the system 

failure if the one of the components of specified type breakdowns: 

𝜕Φ(𝑙1, … , 𝑙𝐾) ⇓

𝜕𝑙𝑘 ↓
= {

, Φ(𝑙1, … , 𝑙𝑘 , … , 𝑙𝐾) > Φ(𝑙1, … , 𝑙�̃�, … , 𝑙𝐾) 

0, otherwise
 (2.16) 

where  = Φ(𝑙1, … , 𝑙𝑘, … , 𝑙𝐾) − Φ(𝑙1, … , 𝑙�̃�, … , 𝑙𝐾) for 𝑙𝑘 = 1, 2, .., nk, 𝑙𝑘 > 𝑙�̃� and 𝑙�̃� = 𝑙𝑘 −

1. Another formulation of this DPLD is as follows: 

𝜕Φ(𝑙1, … , 𝑙𝐾) ⇓

𝜕𝑙𝑘 ↓
= (𝑛𝑘)−1 ∙ ∑ Φ (

𝜕𝜙(10)

𝜕𝑥𝑖(10)
)

𝑥𝑖∈𝑁𝑘

 (2.17) 

where Φ (
𝜕𝜙(10)

𝜕𝑥𝑖(10)
) is transformation of each DPLD 

𝜕𝜙(10)

𝜕𝑥𝑖(10)
 based on the rules of the 

survival signature (1.35) and 𝑁𝑘 is a set of all components of type 𝑘. The SI for this 

derivation represents an average degradation in the value of the survival signature by taking 

into account a decrease in the number of functioning components of type 𝑘. This can be 

represented as follows: 

SI𝑘
⇓ =

∑
𝜕Φ(𝒍) ⇓

𝜕𝑙𝑘 ↓𝒍∈𝑆𝑘

𝑛𝑘 ∗ ∏ (𝑛𝑖 + 1)𝑖∈𝑀𝑘

, (2.18) 

where 𝒍 = (𝑙1, … , 𝑙𝐾) represents a vector of variables that represent number of working 

components of each type, 𝑆𝑘 is a set of all vectors 𝒍 in which 𝑙𝑘 ∈ {1, 2, . . , 𝑛𝑘} and 𝑙𝑖 ∈

{0,1, 2, . . , 𝑛𝑖} for 𝑖 = 1, … , 𝑘 − 1, 𝑘 + 1, … , 𝐾 and 𝑀𝑘 is a set  {1, … , 𝑘 − 1, 𝑘 + 1, … , 𝐾}. 

We will show how this DPLD and SI𝑘
⇓ are computed by using the same example as 

for previous DPLDs. By using (2.16), the DPLD 
𝜕Φ(𝑙1,𝑙2)⇓

𝜕𝑙1↓
  for 𝑙1 = 1, 𝑙2 = 0 has value 

(Φ(1,0) = 0.5) − (Φ(0,0) = 0) = 0.5 because (Φ(1,0) = 0.5) > (Φ(0,0) = 0) and the DPLD 

𝜕Φ(𝑙1,𝑙2)⇓

𝜕𝑙2↓
 for 𝑙1 = 0, 𝑙2 = 1 has value 0 because (Φ(0,1) = 0) ≯ (Φ(0,0) = 0). In case of SI𝑘

⇓, by 
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using (2.18) their values for each type are SI1
⇓ =

(0.5+1+0.5+0)

2∗2
= 0.5 and SI2

⇓ =
(0+0.5+0)

1∗3
=

0.167. All values of the third DPLD and SI𝑘
⇓ can be seen in Tab. 2.4. From those values it is 

possible to see, that the most crucial type is type 1 as it was in case of second DPLD, which 

is further proved by the SI1
⇓. However, from the third DPLD we can clearly see, that the most 

critical situation is when one component of the first type fails for 𝑙1 = 1, 𝑙2 = 1, because 

system will surely fail (value of the 
𝜕Φ(1,1)⇓

𝜕𝑙1↓
 is 1) and other non-zero values of the third DPLD 

for type 1 has value 0.5. 

Tab. 2.4 Third DPLD for data storage system 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ⇓
𝜕𝑙1 ↓

 
𝜕Φ(𝑙1, 𝑙2) ⇓

𝜕𝑙2 ↓
 

0 0 0 - - 

0 1 0 - 0 

1 0 0.5 0.5 - 

1 1 1 1 0.5 

2 0 1 0.5 - 

2 1 1 0 0 

SI𝑘
⇓

 0.5 0.167 
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3 Case Studies 

In the previous chapter, the IMs were introduced and described. For structure and 

reliability IMs, the alternate computation using the logic differential calculus was shown. As 

for the time-dependent IMs, the new approach for computation of the BI using logic 

differential calculus was introduced as an continuation from [13], [14]. The FI was also 

introduced  as a new IM, that can be used to investigate how simultaneous failure of two 

system components can affect the system performance. In the first section in this chapter, 

the  new approach of  time-dependent IMs computation based on DPLDs will be presented 

alongside other described IMs on reliability analysis of three different systems. 

In second part in the previous chapter, the new approach for computation of the 

DPLDs for survival signature was introduced. By using this approach, it is possible to define 

IMs that do not investigate how a specific component of the system affects the system 

performance, but how the type of component affect the system performance. This was shown 

for the SI for each DPLD. In the second section in this chapter, the usage of logic differential 

calculus for reliability analysis based on survival signature will be shown on four selected 

systems. 

 

3.1 Case Studies for Lifetime Importance Measures 

In this section we will show how the new approach of  time-dependent IMs 

computation based on DPLDs can be used in reliability analysis of three different systems, 

namely storage system, in which all presented reliability and lifetime IMs are computed, 

drone fleet, in which we focus on reliability function for homogenous and heterogeneous 

drone fleet and time-dependent BIs and Cis for each drone in heterogeneous fleet, and 

surveillance system, in which we compute reliability function and time-dependent BIs and 

CIs. It is needed to point out that the results from new approach and the result from the 

standard approach are the same, which was showed in 2.1.3. 
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3.1.1 Case Study for Storage System  

Firstly, we will perform the reliability evaluation of storage system (Fig. 3.1) by the 

calculation of reliability function of a system based on its structure function and JRI, BI, FI 

and CI measures with the use of DPLDs. 

 

Fig. 3.1 Analysed storage system 

The analyzed storage system is composed of two storage units parallel connected in 

communication network. These units have two HDDs organized in a specific structure called 

RAID. The first unit, which is in the upper path, consists of two HDDs in RAID 1 and the 

second unit, which is in the lower path, consists of two HDDs organized in configuration 

RAID 0. Each of both units has capacity 6 TB, and they are parallel connected to the network 

and used to store the same data. The HDDs WDC WD30EZRX and HGST 

HDS5C3030ALA are used in RAID 0, because they have lower read and write speeds than 

HDDs in RAID 1 and RAID 0 allows us to increase read and write speeds. Thanks to this 

the storage system is functioning (data can be stored to it or load from it) if at least one unit 

is working. 

In reliability analysis of the storage system, we will focus mostly on storage units, 

specifically their HDDs, and we will not consider network reliability. According to the 

description of the storage system, the system can be in one of two possible states: state 0 - 

agrees with a situation in which data cannot be stored or retrieved; state 1 - it is possible to 

store data or retrieve them. The components are HDDs, and they can be in one of two states: 

state 1 represents functioning HDD; state 0 represents HDD failure. 

System topology expressed in the form of RBD can be seen in Fig. 3.2. Block 𝑥1 

denotes a variable defining state of HDD SEAGATE ST6000DX000 in RAID 1, 𝑥2 is a state 
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variable for HDD WDC WD60EFRX in RAID 1, 𝑥3 represents a variable defining state of 

HDD SEAGATE ST3000DM001 in RAID 0, and 𝑥4 agrees with state of HDD HGST 

HDS5C3030ALA in RAID 0. The reliability block diagram, constructed based on the 

previously introduced description of the storage system, allows us to obtain the structure 

function of the system: 

𝜙(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1 ∨ 𝑥2) ∨ 𝑥3 ∧ 𝑥4. (3.1) 

If we know the probabilities that the system components are working, i.e., 𝑝𝑖 for 𝑖 =

1,2,3,4, we can transform this function into probabilistic function [14], which allows us to 

compute the probability that the system is functioning: 

(𝑥1 ∨ 𝑥2) ∨ 𝑥3 ∧ 𝑥4 → (𝑝1 + 𝑝2 − 𝑝1𝑝2) + 𝑝3𝑝4 −  (𝑝1 + 𝑝2 − 𝑝1𝑝2)𝑝3𝑝4  

=  𝑝1 + 𝑝2 − 𝑝1𝑝2 + 𝑝3𝑝4 − 𝑝1𝑝3𝑝4 − 𝑝2𝑝3𝑝4 + 𝑝1𝑝2𝑝3𝑝4. 
(3.2)  

This formula can be used as a base for finding reliability function 𝑅(𝑡) of the system. 

For this purpose, we simply replace probabilities 𝑝𝑖 by functions 𝑃𝑖(𝑡), for 𝑖 = 1,2,3,4. 

Function 𝑃𝑖(𝑡) defines the probability that component 𝑖 will operate correctly throughout 

interval 〈0, 𝑡〉 given that it worked at time 0. Reliability function 𝑃𝑖(𝑡) of component 𝑖 can 

be obtained from lifetime distribution 𝑄𝑖(𝑡) using relationship 𝑃𝑖(𝑡) = 1 − 𝑄𝑖(𝑡). So we can 

write: 

𝑅(𝑡) = (1 − 𝑄1(𝑡)) + (1 − 𝑄2(𝑡)) − (1 − 𝑄1(𝑡))(1 − 𝑄2(𝑡))

+ (1 − 𝑄3(𝑡))(1 − 𝑄4(𝑡))

− (1 − 𝑄1(𝑡))(1 − 𝑄3(𝑡))(1 − 𝑄4(𝑡))

− (1 − 𝑄2(𝑡))(1 − 𝑄3(𝑡))(1 − 𝑄4(𝑡))

+ (1 − 𝑄1(𝑡))(1 − 𝑄2(𝑡))(1 − 𝑄3(𝑡))(1 − 𝑄4(𝑡)). 

(3.3) 

In this example we will assume that lifetime distributions 𝑄𝑖(𝑡) of the HDDs agree 

with exponential distribution [3] with parameter 𝜆 = 1/MTTF, where MTTF denotes mean 

time to failure. We obtained MTTF in days for each HDD from data published by Backblaze 

 

Fig. 3.2 Reliability block diagram of the storage system 
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Storage company in 2016 [32]. The company publishes quarterly statistics about HDDs that 

they use in their storage solutions. Based on them, the company estimates Annualized Failure 

Rate (AFR) for individual models of HDDs. AFR is an estimation of the probability that a 

device (HDD) will fail during a full year of use [33], and its relation to MTTF in days is as 

follows [34]:  

MTTF =
−365.25

ln(1 − AFR)
. (3.4)  

AFRs of the HDDs estimated by the company based on data from April 2013 to 

December 2016 are shown in Tab. 3.1. MTTFs in days, which we need to obtain lifetime 

distributions 𝑄𝑖(𝑡) of the HDDs, were obtained from AFRs by transforming (3.4) into the 

following form: 

AFR = 1 − 𝑒
−365.25

MTTF . (3.5) 

Based on MTTFs presented in Tab. 3.1, we can obtain the reliability function of the 

storage system. Its time course is presented by the blue dashed curve in Fig. 3.3. In this 

graph, we can see how reliability of the storage system with increasing time gradually 

degrades. Using the reliability function, we can compute, for example, that after 1,572 days, 

the reliability of the system decreases below 0.99. 

Tab. 3.1 Properties of HDDs used in the Storage System 

Component 

Component data 

HDD name Capacity [TB] AFR MTTF [days] 

1 SEAGATE ST6000DX000 6 0.0143 25,359 

2 WDC WD60EFRX 6 0.0568 6,246 

3 SEAGATE ST3000DM001 3 0.2672 1,175 

4 HGST HDS5C3030ALA 3 0.0082 44,360 

 

 

Fig. 3.3 Reliability function of the storage system 
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Reliability function 𝑅(𝑡) can also be used to find failure function 𝐹(𝑡) of the storage 

system as shown in (1.14). Time course of this function for the storage system is presented 

as the red solid line in Fig. 3.4. Based on its shape, we can find the same results as in the 

case of the reliability function, i.e., the unreliability of the storage system gradually increases 

with increasing time and, for example, after 1,572 days, it exceeds 0.01, what means that the 

system will become highly unreliable [35] according to the experts. 

 

Fig. 3.4 Failure function of the storage system 

By using functions 𝑅(𝑡) and 𝐹(𝑡), we can see how the system reliability and 

unreliability will change in time, but we are unable to conclude how the components are 

important for system operation. Therefore, we compute several importance measures for 

every component in the next step. All these computations can be done by using structure 

function (3.1) and logic differential calculus. 

In the first step, we compute BI of each component. Because the system is coherent, 

we can compute BI using DPLDs and by their transformation into a probabilistic form 

according to (2.4). For this purpose, let us firstly compute DPLD for the first HDD of the 

storage system. This can be done by using formula (1.19) as: 

𝜕𝜙(1 → 0)

𝜕𝑥1(1 → 0)
= ((0 ∨ 𝑥2) ∨ 𝑥3 ∧ 𝑥4))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ ((1 ∨ 𝑥2) ∨ 𝑥3 ∧ 𝑥4)

= (𝑥2 ∨ 𝑥3 ∧ 𝑥4)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ 1 = �̅�2 ∧ (�̅�3 ∨ �̅�4). 

(3.6) 

This result implies that HDD 1 is critical for the system, i.e., its failure results in a 

failure of the system, if HDD 2 and at least one from HDDs 3 and 4 fails. Using the same 

procedure that was used to obtain the reliability from the structure function, we can transform 

Boolean formula (3.6) into probabilistic form, which agrees with the probability that HDD 

1 is critical for the system, i.e., with the BI of HDD 1: 

BI1 = 1 − 𝑝2 − 𝑝3𝑝4 + 𝑝2𝑝3𝑝4. (3.7)  
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Using the same procedure as above, we can compute BI measures of the remaining 

components: 

BI2 = 1 − 𝑝1 − 𝑝3𝑝4 + 𝑝1𝑝3𝑝4,
BI3 = 𝑝4 − 𝑝1𝑝4 − 𝑝2𝑝4 + 𝑝1𝑝2𝑝4,
BI4 = 𝑝3 − 𝑝1𝑝3 − 𝑝2𝑝3 + 𝑝1𝑝2𝑝3.

 (3.8) 

BI measures (3.7) and (3.8) do not depend on time, and they allow us to compute and 

compare importance of the components only for given values of the state probabilities of the 

components. However, the probabilities of individual states of the system components 

change as time flows, what implies that the importance of the components also changes over 

the time. If we want to investigate how these changes are, we have to compute time-

dependent versions of BI measures by using (2.9). This can be done by using DPLD and 

transform it for the time dependent analysis. For example, application of this procedure 

results in the following formula for computation of time-dependent BI measure for HDD 1: 

BI1(𝑡) = 1 − 𝑃2(𝑡) − 𝑃3(𝑡)𝑃4(𝑡) + 𝑃2(𝑡)𝑃3(𝑡)𝑃4(𝑡). (3.9) 

Since probability 𝑃𝑖(𝑡) is defined as a complement of lifetime distribution 𝑄𝑖(𝑡) to value 1, 

for 𝑖 = 1,2,3,4, we can write: 

BI1(𝑡) = 𝑄2(𝑡) − (1 − 𝑄3(𝑡))(1 − 𝑄4(𝑡))

+ (1 − 𝑄2(𝑡))(1 − 𝑄3(𝑡))(1 − 𝑄4(𝑡)). 
(3.10) 

In the similar way, we can obtain time-dependent versions of BI measures of the rest 

of the components of the storage system. Time courses of all these measures are depicted in 

Fig. 3.5. In the figure we can see that all the components of the system have similar 

importance at the beginning of the system operation but at time 500+ days, BI of HDD 1 is 

much greater than BI measures of the remaining HDDs, and its importance grows about four 

times faster than the importance of HDD 2. We can also conclude that the component with 

the least importance is HDD 4 and its BI does not change during the time. These results are 

quite reasonable because HDD 4 is connected in series with HDD 3, which means it 

influences system operation if HDD 3 is working. Since HDD 3 is very unreliable (its MTTF 

presented in Tab. 3.1 is very low), it is very likely this HDD is not functioning. Therefore, a 

failure of HDD 4 can result in system failure only with a small probability. Furthermore, 

since HDD 3 penalizes activity of HDD 4, which is the most reliable HDD according to 

MTTFs, importance of HDDs 1 and 2 grows. From these two HDDs, the most important is 

HDD 1 because if it fails, then it is very likely that the system fails. This results from the 
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fact that a path composed of HDDs 3 and 4 (Fig. 3.2) is very unreliable since HDD 3 has 

little MTTF, and a path containing HDD 2 is less reliable than a path containing HDD 1 

since MTTF of HDD 2 is about four times less than MTTF of HDD 1. 

 

Fig. 3.5 Time-dependent BI measures for HDDs of the storage system 

The BI measures presented in Fig. 3.5 show how the probabilities that a failure of 

individual components results in system failure changes over time. However, these measures 

do not consider reliability of components for which they are computed, i.e., BI of component 

𝑖 does not depend on lifetime distribution 𝑄𝑖(𝑡). To avoid this problem, CI measures can be 

computed. As in the case of BI, static (without time) and dynamic (with time) version of CI 

can be computed. Time-dependent CI can be computed for HDD 1 based on (2.10) as: 

CI1(𝑡) = BI1(𝑡)
𝑄1(𝑡)

𝐹(𝑡)
= BI1(𝑡)

𝑄1(𝑡)

1 − 𝑅(𝑡)
, (3.11) 

where BI1(𝑡) is time-dependent BI of HDD 1 computed in (3.9), 𝑅(𝑡) is reliability function 

(3.3) of the storage system, and 𝑄1(𝑡) is lifetime distribution of component 𝑖 defining the 

probability that the component fails throughout interval 〈0, 𝑡〉 given that it worked at time 0. 

After substituting all functions by their formula, we obtain the following result: 

CI1(𝑡) = 1, (3.12) 

which implies that CI of HDD 1 does not depend on time. This result agrees with our 

expectations because HDD 1 constitutes one path in reliability block diagram in Fig. 3.2 and, 

therefore, its repair surely results in system repair if we know that the system has failed. This 

corresponds to the meaning and usage of CI, because CI allows us to find components whose 

repair results in system repair with the greatest probability given that the system has failed. 

The similar procedure can be used to find time-dependent CI measures for the rest of 

the components. Their time courses are shown in Fig. 3.6. From the graph, we can conclude 
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that the most important components are HDDs 1 and 2, while a HDD with the least 

importance is HDD 4. This order of importance is similar to that obtained using the BI 

measures, but the values of CI measures are completely different from BI ones.  

 

Fig. 3.6 Time-dependent CI measures for HDDs of the storage system 

Until now the reliability analysis of the Storage system focuses on each component 

separately because it was necessary to compute how each component is important for the 

analysed system. Now we will also analyse how pair of HDDs can affect the system 

reliability. Using the computed structure and reliability functions, we can compute IMs for 

two HDDs to analyse how each HDD pair affects the storage system. For this purpose, we 

can use JRI and FI measures. 

Firstly, we will compute JRI using reliability function. For example, by using (3.2) 

we can easily compute JRI1,2 for HDD 1 and HDD 2 as follows: 

JRI1,2 =
𝜕2𝑅

𝜕𝑝1𝜕𝑝2
= −1 + 𝑝3𝑝4. (3.13) 

Since 𝑝3𝑝4〈0,1〉, the JRI1,2 ≤ 0. Based on the meaning of JRI, this result implies that HDD 

1 (HDD 2) is more important with respect to the system reliability when HDD 2 (HDD 1) is 

failed than when HDD 2 (HDD 1) is working. This is quite logical because HDDs 1 and 2 

are arranged in parallel and, therefore, if one of them fails, then another one becomes more 

important. Using the same procedure, the JRI measures of the remaining pairs can be 

computed, i.e.: 

JRI1,3 = −𝑝4 + 𝑝2𝑝4,

JRI1,4 = −𝑝3 + 𝑝2𝑝3,

JRI2,3 = −𝑝4 + 𝑝1𝑝4,

JRI2,4 = −𝑝3 + 𝑝1𝑝3,

JRI3,4 = 1 − 𝑝1 − 𝑝2 + 𝑝1𝑝2.

 (3.14) 
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Based on these results, it can be shown simply that all measures except JRI3,4 are nonpositive 

numbers. So the interaction between HDDs 1 and 3, 1 and 4, 2 and 3, and 2 and 4 can be 

interpreted same as in the case of interaction between HDDs 1 and 2 (formula (3.13)), i.e., 

if one of the HDDs in these pairs fails, then another HDD from the pair becomes more 

important. A special case is JRI3,4. Formula for computation of this measure can be rewritten 

as follows: 

JRI3,4 = 1 − 𝑝1 − 𝑝2 + 𝑝1𝑝2 = 1 − Pr{𝑥1 ∨ 𝑥2}. (3.15) 

This implies that JRI3,4 ≥ 0. According to the meaning of JRI, this fact indicates that HDD 

3 (HDD 4) is more important for system operation when HDD 4 (HDD 3) is functioning 

than when HDD 4 (HDD 3) fails. This result is also quite intuitive because HDDs 3 and 4 

are arranged in series and, therefore, a failure of one of them causes that the second one 

cannot contribute to system reliability. 

JRI measures (3.13) and (3.14) are computed regardless of time. If we want to 

investigate how interaction of two components evolves over time, we have to transform them 

into time-dependent versions. This can be done simply by replacing probabilities 𝑝𝑖 with the 

time-dependent probability functions 𝑃𝑖(𝑡), for 𝑖 = 1,2,3,4. Such a replacement causes that 

the JRI measures become time-dependent functions. For example, JRI (3.13), which 

measures interaction between HDDs 1 and 2 in the storage system, gets the next form: 

 JRI1,2(𝑡) = −1 + 𝑃3(𝑡)𝑃4(𝑡). (3.16) 

Using the same procedure, we can also obtain functions describing interactions between the 

remaining pairs of HDDs over time. These functions are depicted in Fig. 3.7. 

In Fig. 3.7, we can firstly notice that only JRI3,4 is nonnegative during the whole time 

captured in the figure, while the other JRI measures are non-positive. This agrees with the 

results obtained in static analysis performed in (3.13) – (3.15). Secondly, we can see that the 

absolute values of all JRI measures except JRI1,4 increase during the whole time. This means 

that interaction between the components increases over time. The biggest increase is in 

absolute value of JRI1,2 and JRI1,3. In case of JRI1,2, this result can be explained as follows: 

HDDs 3 and 4 constitutes one path in the reliability block diagram depicted in Fig. 3.2. 

However, this path is high unreliable because HDD 3 is the least reliable HDD (its MTTF is 

much lower than MTTFs of the remaining HDDs). Therefore, there is a big chance this path 



FRI UNIZA 

59 

 

fails as the first from the three paths depicted in Fig. 3.2. If this path fails, then the system 

can be functioning if and only if at least one of HDDs 1 and 2 is functioning. Therefore, a 

failure of one of these two HDDs causes that the second HDD becomes very important 

because it represents the last working path of the system. Similarly, the absolute value of 

JRI1,3 increases very fast because HDD 2, which constitutes the middle path in the reliability 

block diagram depicted in Fig. 3.2, is quite unreliable and, therefore, there is a big chance 

that this path fails soon. However, the probability of this event is less than the probability 

that the path composed of HDDs 3 and 4 fails, therefore, the absolute value of this JRI 

increases slower over time than the absolute value of JRI of HDDs 1 and 2. 

Next, the absolute values of JRI2,3 and JRI2,4 increase very slowly. This results from 

the fact that if one of the HDDs from the pairs of HDDs investigated by these measures fails, 

then the middle or the bottom path in Fig. 3.2 fails. However, these two paths are less reliable 

than the upper path containing HDD 1 (based on data presented in Tab. 3.1). This implies 

that a failure of one of these two paths causes that another path becomes more important, but 

its importance will be less than the importance of the upper path because the upper path has 

the biggest contribution to the system reliability. 

A special case is JRI1,4. The absolute value of this measure grows fast during the first 

1,000 days, but then the speed of growth begins decreasing and after 3,000 days, it begins 

stagnating. This can be explained as follows. During the first 1,000 days, it is highly probable 

that all HDDs are functioning. This implies all three paths in the reliability block diagram in 

Fig. 3.2 are functioning and have a similar contribution to the system reliability. Therefore, 

a failure of one of HDDs 1 and 4 causes that one path fails. However, it is very probable that 

 

Fig. 3.7 Time-dependent JRI measures for pairs of HDDs 
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the remaining two paths will be functioning. Because of that, JRI1,4 has little values at the 

beginning of the time. Furthermore, since the probability of a failure of any HDD grows over 

time, the probability that the both remaining path will be functioning decreases and, 

therefore, JRI1,4 increases. However, after 3,000 days, the probability that the bottom path 

containing HDD 4 is functioning will be very low (it tends to 0) and, therefore, an effect of 

a failure of HDD 4 on importance of HDD 1 cannot grow after this time. The same is true 

for HDD 1.  

Finally, the JRI of HDDs 3 and 4 grows very slowly over time. Based on the meaning 

of a nonnegative value of JRI, importance of one of these two HDDs for system operation 

increases over time when another HDD is functioning than when another HDD fails. This is 

quite logical because the probability that at least one of the upper and middle path in Fig. 3.2 

is functioning decreases over time and, therefore, importance of HDD 3 (HDD 4) has to 

grow over time if HDD 4 (HDD 3) is functioning. On the other hand, the value of JRI3,4 

grows very slowly because the probability that no path from the upper and middle is working 

is much less than the probability that the bottom path composed of HDDs 3 and 4 is working. 

We would like to point out that changes in components reliability can lead only to 

change of the absolute value of JRI but not to the change of the JRI polarity. The JRI 

measures presented in Fig. 3.7 show how a failure of one HDD in a pair influences the 

importance of another HDD in the storage system. However, if we want to compute how 

simultaneous failure of both HDDs will affect the system, we have to use another measure. 

For this purpose, we introduced the FI [30]. This measure is defined based on a DPLD 

computed with respect to a vector of values. Now, we use it in importance analysis of the 

storage system. 

Using DPLD (1.22), we can identify situations when a simultaneous failure of HDDs 

1 and 2 results in a failure of the storage system, i.e.: 

𝜕𝜙(1 → 0)

𝜕(𝑥1, 𝑥2)((1,1) → (0,0))
= 𝑥3̅̅ ̅⋁𝑥4̅̅ ̅. (3.17) 

This DPLD implies that a simultaneous failure of HDDs 1 and 2 results in system failure if 

at least one of HDDs 3 and 4 is failed. If we compute the probability that such situations 

occur, then we obtain the value of the FI, i.e.: 
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FI1,2 = Pr {
𝜕𝜙(1 → 0)

𝜕(𝑥1, 𝑥2)((1,1) → (0,0))
= 1} = 1 − 𝑝3𝑝4. (3.18) 

IM (3.18) allows us to compute the probability that a simultaneous failure of HDDs 

1 and 2 results in a failure of the system. If we replace probabilities 𝑝3 and 𝑝4 by time-

dependent functions 𝑃3(𝑡) and 𝑃4(𝑡) respectively, we can obtain the time-dependent version 

of this measure:  

FI1,2(𝑡) = 1 − 𝑃3(𝑡)𝑃4(𝑡). (3.19) 

Based on this formula, we can quantify consequences of a simultaneous failure of HDDs 1 

and 2 on the operation of the storage system over time. This function is depicted in Fig. 3.8 

as the blue dotted line. As we can see, this measure grows over time. This result can be 

explained as follows: HDDs 1 and 2 are arranged in parallel, and they correspond to two 

paths in the reliability block diagram in Fig. 3.2. Simultaneously, HDDs 3 and 4 constitutes 

another path. Since the reliabilities of HDDs decrease as time flows, the probability that the 

path composed of HDDs 3 and 4 is functioning has to decrease over time. This implies there 

is a little probability that the path composed of HDDs 3 and 4 will be working at a late stage 

of system operation. Therefore, a simultaneous failure of HDDs 1 and 2 results in system 

failure at a late stage with a greater probability than in the early phase. Using the same 

procedure as above, we can compute the FI for the other pairs of HDDs: 

FI1,3(𝑡) = FI1,4(𝑡) = 1 − 𝑃2(𝑡),

FI2,3(𝑡) = FI2,4(𝑡) = 1 − 𝑃1(𝑡),

FI3,4(𝑡) = 1 − 𝑃1(𝑡) − 𝑃2(𝑡) + 𝑃1(𝑡)𝑃2(𝑡).
 (3.20) 

 

Fig. 3.8 Time-dependent FI measures for pairs of HDDs 
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Time courses of these measures are shown in Fig. 3.8. As we can see, the relative 

importance of a simultaneous failure of the pairs of HDDs does not change over time. 

Therefore, we can conclude that the pairs of components, whose simultaneous failure has 

the greatest influence on system activity, are pairs containing HDD 1. This result agrees with 

the fact that a simultaneous failure of HDD 1 and another HDD results in a failure of the 

most reliable path in Fig. 3.2 (the path containing HDD 1) and some other path. Similarly, 

if HDD 1 does not fail, then the most reliable path will be working. Because of that, a 

simultaneous failure of two HDDs different from HDD 1 has less impact on system 

operation. 

 

3.1.2 Case Study for Drone Fleet 

We will continue with time dependent reliability analysis based on the structure 

function and time-dependent BI and CI measures with the use of DPLDs on the drone fleet 

that is depicted using RBD in Fig. 3.9. 

Analysed drone fleet is a part of the complex surveillance monitoring system. There 

are three types of components in this fleet. First type is control unit (CU) that control and 

manage 𝑛𝑑 drones in fleet. CU is the most crucial part of the fleet, because if this component 

fails, then all drones cannot perform any scheduled tasks. Second component type is main 

drone (MD). This type represents all 𝑘𝑑 main drones in the fleet that are used to perform 

scheduled tasks, which are set by CU. Last component type represents 𝑛𝑑 − 𝑘𝑑 redundant 

drones (RD) in the fleet. Those drones are back up for the main drones. This means that if 

some main drone fails, available redundant drone will continue to perform its duties. 

 

Fig. 3.9 RBD for the drone fleet 
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The main fleet as an analysed system can be in two states. If CU is functioning and at 

least 𝑘𝑑 drones are functioning, then the drone fleet can perform all scheduled tasks and, 

therefore, the system is functioning. If those conditions are not met, then the system is failed. 

It is needed to point out that in reliability analysis we will presume that CU and all drones 

are irreparable and at start all components are in working states. We will not take the 

recharge time for each drone into account because it is irrelevant for our analysis. 

We will consider the following settings for drone fleet. CU can control up to 5 drones at 

a time, which means that 𝑛𝑑 = 5. Because we want to have redundant drones in the fleet and 

we need at least two drones to be working, then the 𝑘𝑑 can have three values that are 2, 3, 

and 4. There are two possible configurations for drone fleet. Either all drones are the same 

type or the main drones have same type and the redundant drones have same type.  

According to the RBD and system description, we can conclude that this system can 

be seen as serial system with two modules, where first module is CU and the second module 

is 𝑘𝑑-out-of-5 system representing all drones in fleet for 𝑘𝑑 ∈ {2,3,4}.Therefore, the 

structure function for this system has the following form:  

𝜙(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = 𝑥1 ∧ ⋁ ⋀ 𝑥𝑗

𝑗∈S𝑖S𝑖∈S𝑘𝑑
5

. 
(3.21) 

This structure function is defined for all 𝑘𝑑 ∈ {2,3,4}. For example, if 𝑘𝑑 = 3, then 

the structure function (3.21) has the following form:   

𝜙(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)

= 𝑥1 ∧  (  𝑥2 ∧ 𝑥3 ∧ 𝑥4  ∨  𝑥2 ∧ 𝑥3 ∧ 𝑥5  ∨  𝑥2 ∧ 𝑥3 ∧ 𝑥6  ∨  𝑥2

∧ 𝑥4 ∧ 𝑥5  ∨  𝑥2 ∧ 𝑥4 ∧ 𝑥6  ∨  𝑥2 ∧ 𝑥5 ∧ 𝑥6  ∨  𝑥3 ∧ 𝑥4 ∧ 𝑥5  ∨  𝑥3

∧ 𝑥4 ∧ 𝑥6  ∨  𝑥3 ∧ 𝑥5 ∧ 𝑥6  ∨  𝑥4 ∧ 𝑥5 ∧ 𝑥6). 

(3.22) 

As next step in our analysis, we will compute time-dependent reliability measures using 

obtained structure function. In our analysis, we will assume that all system components are 

unrepairable and stochastically independent, and we will use the reliability measure Mean 

Time to Failure (MTTF) that represents average time, in which the system fails. All MTTFs 

needed for reliability analysis are obtained from [36] and their values are shown in Tab. 3.2. 

Those values will be used to compute parameters for lifetime distributions of system 

components. For them, we will use exponential and Weibull distribution [36]–[38]. 
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Firstly, we will analyse system settings in which all drones are same, therefore, they have 

the same lifetime distribution. In this case, we will focus on two major decisions. First 

decision is to choose the 𝑘𝑑. From definition of 𝑘-out-of-𝑛 system configuration we can 

conclude, that this drone configuration will be most reliable for the 𝑘𝑑 = 2, but having only 

two drones in main fleet will result in limitation of the concurrent tasks performance. Ideal 

𝑘𝑑 for concurrent tasks performace is 4, but the fleet reliability will be considerably 

decreased in this case. Therefore, we choose to compute time-dependent reliability measure 

for each 𝑘𝑑 according to the following formula obtained from structure function: 

𝑃𝐶𝑈(𝑡) ∗ ∑ ∏ 𝑃𝑖(𝑡)

𝑗∈S𝑖

∏ (1 − 𝑃𝑖(𝑡))

𝑗∈N−S𝑖S𝑖∈S𝑘𝑑/𝑛

, 
(3.23) 

where 𝑃𝐶𝑈(𝑡) represents probability function of CU functioning in time 𝑡 and 𝑃𝑖(𝑡) 

represents probability function of each drone to be in functioning state in time 𝑡. We will use 

exponential distribution to characterize CU and Drones lifetime distribution with 𝜆 =

1/MTTF for CU and basic drone. The result can be seen in graph on Fig. 3.10, in which the 

axis X represents the time in hours and the axis Y represents the values of the reliability 

function. From this graph we can conclude that if top priority for drone fleet is reliability, 

then the 𝑘𝑑 = 2. If the top priority is number of concurrent tasks, then the 𝑘𝑑 = 4. As for 

𝑘𝑑 = 3, this configuration represents appropriate compromise between reliability and the 

number of the concurrent tasks. Therefore, we choose 𝑘𝑑 = 3 for our next analysis.  

Tab. 3.2 MTTF for each component of the drone fleet 

Type of component MTTF [hours] 

Control unit 
500,000.00 

Basic Drone 
26,809.65 

Advanced Drone 
35,423.31 
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Fig. 3.10 Reliability function of the drone fleet for all values of 𝑘𝑑 

In the second step of the homogenous analysis, we will analyse how the change in MTTF 

for drones will affect the system reliability. In Tab. 3.2 we have two values of MTTF for 

drones. The first one is for basic drones and the second one represents more advanced and 

pricey drone. Therefore we choose to analyse, how the change in the MTTF affects the 

system reliability. This will be helpful for buying drones, that are not that pricey, but are 

reliable enough for our needs. There were 10 values of MTTF, that we consider for this 

analysis, where the first one was MTTF for basic drone, the last one was for the more reliable 

drone and all MTTFs between those two values are evenly distributed values between basic 

and more reliable drone. Result of our analysis can be seen on a 3D graph shown in Fig. 

3.11, in which time in hours is on the X axis, values of the reliability function are on the Y 

axis, and different MTTFs are on the Z axis. It is possible to see that in this graph the gradual 

increase in reliability is starting to be more visible in 4,000 hours after the system start point 

and in 50,000 hours the difference between reliability of basic and more reliable drone is 

around 6%.  

0

0.2

0.4

0.6

0.8

1

0

1
5
0

0

3
0
0

0

4
5
0

0

6
0
0

0

7
5
0

0

9
0
0

0

1
0
5

0
0

1
2
0

0
0

1
3
5

0
0

1
5
0

0
0

1
6
5

0
0

1
8
0

0
0

1
9
5

0
0

2
1
0

0
0

2
2
5

0
0

2
4
0

0
0

2
5
5

0
0

2
7
0

0
0

2
8
5

0
0

3
0
0

0
0

3
1
5

0
0

3
3
0

0
0

3
4
5

0
0

3
6
0

0
0

3
7
5

0
0

3
9
0

0
0

4
0
5

0
0

4
2
0

0
0

4
3
5

0
0

4
5
0

0
0

4
6
5

0
0

4
8
0

0
0

4
9
5

0
0

R
el

ia
b

il
it

y

Time [hours]

d=2 d=3 d=4



FRI UNIZA 

66 

 

 

Fig. 3.11 Reliability function of the system for different values of MTTF 

In the second part of the reliability analysis we will be focusing on the heterogeneous 

types for drones in drone fleet. We will assume that three drones will be more reliable drones  

with exponential lifetime distribution and remaining two drones will be basic drones with 

Weibull lifetime distribution with shape parameter 0.8. Using different types of drones in 

fleet is not a problem for reliability analysis using structure function, because we can easily 

use (3.23), where we just use correct 𝑃𝑖(𝑡) for each drone. The resulting reliability function 

is shown on graph in Fig. 3.12, where x-axis represents time in hours and y-axis represents 

the value of the reliability function. When we compare this result with the homogenous 

setting, we can easily see that in this case the value of the reliability function is decreasing 

slightly faster than in the homogenous settings but in more than 10,500 hours the decreasing 

starts vanishing. This is caused by Weibull shape parameter because its value is below 1 and 

that means that the fault rate will be decreasing over longer time period. 

 

Fig. 3.12 Reliability function of the heterogeneous drone fleet for each 𝑘𝑑 

As a next step in heterogeneous reliability analysis we will compute Birnbaum’s IM 

and Criticality IM for each drone (numbered from 1 to 5) by using structure function and 
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DPLDs as shown in (2.9), and therefore we will understand how each drone is important for 

system reliability.  

The Birnbaum’s IM time course for each drone can be seen in Fig. 3.13. From them 

we can see, at the beginning the most crucial components for the drone fleet are the basic 

type drones and in around 22,000 hours are all components equally important for the system 

reliability. From this point on, the most important components are advanced drones.  This is 

mostly caused by their MTTFs. 

 

Fig. 3.13 Time course of BIs for the heterogeneous drone fleet  

  After that we compute the Criticality IM for each drone by using (2.10) and its time 

course can be seen in Fig. 3.14. Here we can see, that failure of the advanced drones has the 

highest influence on the system failure on the beginning and then it rapidly decreases for 

500 hours and after this point their influence slowly decreased. On the other hand, basic 

drones have less influence at the beginning, but then their influence start to rise rapidly for 

500 hours. Then their influence gradually decreases. 

 

Fig. 3.14 Time course of CIs for the heterogeneous drone fleet 
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3.1.3 Case Study for Surveillance System 

Lastly, we will show how the time-dependent reliability analysis based on the 

structure function can be performed and time-dependent BI and CI measures can be 

computed with the use of DPLDs on the surveillance system. In this section, we will show 

how reliability analysis using structure function and DPLD can be performed using structure 

function of surveillance system that is shown in Fig. 3.15. This system is composed of four 

cameras that are connected to the network with one network switch and network-attached 

storage (NAS) with two hard disks. All four cameras are used for monitoring the same square 

shaped room. Records from all four cameras are send through the network switch to the 

NAS, where are those records duplicated and stored on two different hard drives. In order to 

provide the successful room monitoring, we need to have at least one camera in working 

state, at least one hard drive in NAS must be in working state and network switch must be 

in working state. In our reliability analysis, we will assume that the network cables are 

perfectly reliable and we will not take their reliability into account in our reliability analysis. 

 

Fig. 3.15 Illustration of the surveillance system 

According to the description of the surveillance system, we will define this system 

as a binary state system. The working state of the analysed system will correspond with the 

situation, in which the room is successfully monitored and if the room cannot be successfully 

monitored, then the system is failed. As for the system components, they are in the working 

state if they can perform their tasks for room monitoring and are in failed state otherwise. 

According to this system description, we can make the RBD for this system and it can be 

seen in Fig. 3.16.   
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Fig. 3.16 RBD of the surveillance system 

Taking the description of the surveillance system and its RBD into account, the 

structure function for the analysed system is as follows: 

𝜙(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) = (𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∨ 𝑥4) ∧ 𝑥5 ∧ (𝑥6 ∨ 𝑥7), (3.24) 

where 𝑥1, 𝑥2, 𝑥3, 𝑥4 are Boolean variables representing the state of all cameras in the room, 

Boolean variable 𝑥5 represents the state of the network switch and Boolean variables 𝑥6 and 

𝑥7 represents the state of the hard disk drives in the NAS.  

As a next step, we obtain reliability from (3.24) which has the following form: 

𝑅 = 𝑝5 − 𝑞1 ∗ 𝑞2 ∗ 𝑞3 ∗ 𝑞4 ∗ 𝑝5 − 𝑝5 ∗ 𝑞6 ∗ 𝑞7 + 𝑞1 ∗ 𝑞2 ∗ 𝑞3 ∗ 𝑞4 ∗ 𝑝5 ∗ 𝑞6

∗ 𝑞7, 
(3.25) 

where 𝑝𝑖 or 𝑞𝑖 for 𝑖 = 1,2, … ,7 represents the probability, that the 𝑖-th component is working 

or failed. If we want to take time into account for (3.25), we can simply replace the 

probabilities with lifetime distributions. Lifetime distribution for each component in this 

system agrees with the exponential distribution, where 𝜆𝑖 = 1/MTTF𝑖 for 𝑖 = 1,2, … ,7. 

MTTF for each component can be seen in Tab. 3.3. 

Tab. 3.3 MTTF for each component of the surveillance system 

Component 
Component data 

Component name MTTF [years] 

1-4 TK-C9200E(EX) 
10.61 

5 RUGGEDCOM M969 
97.1 

6 ST8000NM0055 
92.206 

7 HUH728080ALE600 
117.961 
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In order to see how each component is important for system reliability, we will 

compute Birnbaum’s IM and Criticality IM by using structure function and DPLDs 

according to (2.9). 

Firstly, we compute the Birnbaum’s IM. Its time course for each component can be 

seen in Fig. 3.17. As we can see, at the beginning, the most crucial component for the system 

is component 5. This can be explained by its placement in the system because its failure will 

surely result in the system failure. However, as we can see from Fig. 3.17, its importance 

decreases in around 4 years to 50 years quite rapidly. This is due to the small MTBF of the 

components 1, 2, 3, and 4. From start, their importance raises rapidly until the time reaches 

around 32 years. After this point, their importance slowly decreases. As for components 6 

and 7, their Birnbaum’s IM is small. This is caused by their high MTTFs and their parallel 

placement in the system.   

 

Fig. 3.17 Time course of BIs for the surveillance system 

After that we compute the Criticality IM and its time course can be seen in Fig. 3.18. 

Here we can see, that failure of the component 5 has the highest influence on the system 

failure at the beginning and then its influence starts to decrease. On the other hand, 

components 1, 2, 3, and 4 have almost none influence at the beginning, but then their 

influence start to rise rapidly until 19 years. Then their influence gradually decreases. As for  

the components 6 and 7, their influence is really small thanks to their great durability and 

their placement in the system. 
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Fig. 3.18 Time course of CIs for the surveillance system 

 

3.2 Case Studies Based on New DPLDs for Survival Signature 

In this section, we will demonstrate the usage of logic differential calculus for 

survival signature on four selected systems. Those systems are series-parallel system, where 

we will depict the computation and usage of the proposed DPLDs, data storage system used 

in 3.1.1, series system with bridge topology and the inside mechanism of the hydro power 

plant. 

 

3.2.1 Case Study for Series-Parallel System 

First system that is depicted by Reliability Block Diagram in Fig. 3.19 is series-

parallel system that is composed of 5 components, whose working states are represented by 

Boolean variables 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 and components represented by variables 𝑥1, 𝑥2 have 

same type (type 1) and 𝑥3, 𝑥4, 𝑥5 have same type (type 2). This is shown with label in top 

left corner and different colours in Reliability Block diagram in Fig. 3.19 (green – type 1 

and blue – type 2). The structure function representing this system has following form: 

𝜙(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥1 ∨ 𝑥2 ∧ 𝑥3) ∧ (𝑥4 ∨ 𝑥5). (3.26) 
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Fig. 3.19 Reliability block diagram of the series-parallel system 

Φ(𝑙1, 𝑙2) = [∏ (
𝑛𝑘

𝑙𝑘
)

−1
2

𝑘=1

] ∗ ∑ 𝜙(𝒙)

𝒙∈𝑆𝑙1,𝑙2

. (3.27) 

The flow-diagram for the calculation of system signature is shown in Fig. 3.20. 

Survival Signature for this system with the structure function (3.26) can be seen in Tab. 3.4.  

Tab. 3.4 Survival signature for analysed system represented by (3.26) 

 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

0 0 0 

0 1 0 

0 2 0 

0 3 0 

1 0 0 

1 1 0.333333 

1 2 0.833333 

1 3 1 

2 0 0 

2 1 0.666667 

2 2 1 

2 3 1 
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Fig. 3.20 Flow-diagram for survival signature of structure function (3.26) 

The derivatives (2.11) allow us to indicate system states for which the breakdown of 

one of components of fixed type causes the system failure for indicated numbers of working 

component of every types. The considered system has components of two types. The set of 

components of the first type includes two components. The set of the second types consists 

of three components. We can consider two possibilities for the system failure depending on 

the breakdown of component of the first type that are indicated by derivatives  

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1(21)
 and 

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1(10)
. The derivative 

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1(10)
 allows us to indicate system failure if one 

working component of the first type will breakdown when other was faulted. The possibility 

of the system failure depending of the breakdown of one of two working components of this 

type is investigated by the derivative 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1(21)
. From values of the SI1,2

↓  and SI1,1
↓  we can 

conclude, that the failure of the component of type 1 influence the system functionality more 

when there is only one working component of type 1. We have to consider three derivatives 

for the second type of components because the system failure can be resulted by the 
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breakdown of one component if: only one component is working (
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙2(10)
), two components 

of three are working (
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙2(21)
), all components are working (

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙2(32)
). From values of the 

SI2,3
↓ , SI2,2

↓  and SI2,1
↓  we can conclude, that the failure of the component of type 2 influence 

the system functionality more when there is two and one working component of type 2. The 

first DPLDs and SI𝑘,𝑎
↓  for the first and second type of component are shown in Tab. 3.5. The 

flow-diagram in Fig. 3.21 illustrates the calculation of these derivatives. 

Tab. 3.5 The first DPLDs and SI for survival signature of structure function (3.26) for components of the 

first and second types 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(21)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(10)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(32)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(21)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(10)
 

0 0 0 - - - - - 

0 1 0 - - - - 0 

0 2 0 - - - 0 - 

0 3 0 - - 0 - - 

1 0 0 - 0 - - - 

1 1 0.333333 - 1 - - 1 

1 2 0.833333 - 1 - 1 - 

1 3 1 - 1 1 - - 

2 0 0 0 - - - - 

2 1 0.666667 1 - - - 1 

2 2 1 1 - - 1 - 

2 3 1 0 - 0 - - 

SI𝑘,𝑎
↓

 0.5 0.75 0.333333 0.666667 0.666667 
 

For example, the derivative 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1(10)
 for 𝑙1 = 1 means the system failures if one of 

two working components of the second type breakdowns and one component of the first type 

is working. For the 𝑙1 = 0 this derivative has value 0 that means absent of any changes in 

the system states if the one of two working components of the second type breakdowns and 

all components of the first type are fault  (𝑙1 = 0). But need to take into account that the any 

changes does not mean the system functioning, because the system can be failure before this 

component breakdown. The value 1 for the derivatives of this types means the system failure 

is possible. 

The derivatives (2.13) are generalisation of the derivatives (2.11) and allow us to 

define system states for which the breakdown of one of components of fixed type causes the 

system failure for fixed number of working components of other types. It is possible to 

compute two derivatives for this system 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1↓
 and 

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙2↓
  and their values and SI𝑘

↓  are 

shown in Tab. 3.6. From SI1
↓ and SI2

↓  is possible to see that the failure of the component of 

type 1 influence the system functionality more that type 2. The flow-diagram in Fig. 3.22 



FRI UNIZA 

75 

 

illustrate these derivatives calculation according to (2.13). Note that the derivatives in Tab. 

3.6 can be calculated as the merge of derivatives in Tab. 3.5 for every variable according to 

(2.14).  

 

Fig. 3.21 Flow-diagram for the first DPLDs for survival signature of structure function (3.26) 
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Tab. 3.6 The second DPLDs and SI for survival signature of structure function (3.26) for components of 

the first and second types 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1 ↓
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2 ↓
 

0 0 0 - - 

0 1 0 - 0 

0 2 0 - 0 

0 3 0 - 0 

1 0 0 0 - 

1 1 0.333333 1 1 

1 2 0.833333 1 1 

1 3 1 1 1 

2 0 0 0 - 

2 1 0.666667 1 1 

2 2 1 1 1 

2 3 1 0 0 

SI𝑘
↓

 0.625 0.555556 
 

 

Fig. 3.22 Flow-diagram for the second DPLDs for survival signature of structure function (3.26) 

As an example, according to the non-zero values of the derivative 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1↓
 can be 

consider next scenarios of the system failure: 

- The breakdown of a single working component of two components of the second 

type can cause the system failure if one, two or three components of the second 

type are working; 

- The breakdown of one component out of two working components of the first 

type can cause the system failure if one or two components of the second type 

are working. 

The third DPLD for survival signature of structure function allows us to measure the 

system failure depending of the breakdown of one of components of the fixed type (Tab. 
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3.7). The non-zero values of these derivatives indicate the failure of the system depending 

on the component fault and shown the probability of this failure (Fig. 3.23). 

Tab. 3.7 The third DPLDs and SI for survival signature of structure function (3.26) for components of the 

first and second types 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ⇓

𝜕𝑙1 ↓
 

𝜕Φ(𝑙1, 𝑙2) ⇓

𝜕𝑙2 ↓
 

0 0 0 - - 

0 1 0 - 0 

0 2 0 - 0 

0 3 0 - 0 

1 0 0 0 - 

1 1 0.333333 0.333333 0.333333 

1 2 0.833333 0.833333 0.5 

1 3 1 1 0.166667 

2 0 0 0 - 

2 1 0.666667 0.333333 0.666667 

2 2 1 0.166667 0.333333 

2 3 1 0 0 

SI𝑘
⇓

 0.333333 0.222222 
 

 

Fig. 3.23 Flow-diagram for the third DPLDs for survival signature of structure function (3.26) 

For example we will consider the non-zero values of the  

𝜕Φ(𝑙1,𝑙2)⇓

𝜕𝑙1↓
.  This derivative has 5 non-zero elements corresponding to Φ(1,1) = 0.333, 

Φ(1,2) = 0.833, Φ(1,3) = 1, Φ(2,1) = 0.333 and Φ(2,2) = 0.167. These values have 

been computed as the difference of the survival signature of structure function value 

according to (2.16). But in the same time these derivatives can be calculated according to 

(2.17) based on the values of the DPLD of the structure function (3.26) (Fig. 3.24). This 

calculation shows that the values of the derivatives (2.17) depend on the number of the 
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system states for which the breakdown of the components of fixed type cause the system 

failure according to values of 
𝜕𝜙(1→0)

𝜕𝑥1(1→0)
 and 

𝜕𝜙(1→0)

𝜕𝑥2(1→0)
. We consider the derivatives with respect 

to variables 𝑥1 and 𝑥2 because these variables interpret the first and second components 

states and these components of the first type. 

 

Fig. 3.24 Flow-diagram for the third DPLDs for survival signature of structure function (3.26) 

For example, consider the calculation of the value of the third DPLD 
𝜕Φ(𝑙1,𝑙2)⇓

𝜕𝑙1↓
 for 

𝑙1  = 1 and 𝑙2  =  0 that has value 0. In this type of DPLD the system states with one 

functioning component of the first type should be considered (01000 and 10000). The 

DPLDs 
𝜕𝜙(1→0)

𝜕𝑥1(1→0)
 and 

𝜕𝜙(1→0)

𝜕𝑥2(1→0)
 have values 0 for this state (Fig. 3.24). The zero values of these 

derivatives mean that the system does not fail depending on the breakdown of the first or 

second components. But it is needed to point out that it does not mean that the system 
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functioning: the system can be no-functioning before the component state change (as is in 

this case). 

Consider next value of the 
𝜕Φ(𝑙1,𝑙2)⇓

𝜕𝑙1↓
 for 𝑙1  = 1 and 𝑙2  = 1. This value is calculated 

based on 3 values of DPLD  
𝜕𝜙(1→0)

𝜕𝑥1(1→0)
 and 3 values of DPLD 

𝜕𝜙(1→0)

𝜕𝑥2(1→0)
. Thanks to the fact that 

only two are non-zero, it is possible to see that there are only two system states among all 

possible 6 states of the one functioning component of the first type and one functioning 

component of the second type for which the breakdown of component of the first type results 

the system failure. This proportion for next value (𝑙1  = 2 and 𝑙2  = 1) is 5 out of 6. From  

SI1
⇓ and SI2

⇓ that are shown in Tab. 3.7 is possible to see that the failure of the component of 

type 1 influence the system functionality more that type 2. 

Therefore, we can propose the interpretation of the third DPLD for survival signature 

of structure function: 

 This derivative shows proportion of the system states among of all possible 

states of fixed numbers of functioning components of every type for which 

the breakdown of one specified component cause the system failure. 

 The probability of the system failure for indicated system state by numbers 

of functioning components of every type if one specified component 

breakdowns. 

 

3.2.2 Case Study for Storage System 

Next system, that will be analysed by proposed derivations and survival signature is 

the storage system (Fig. 3.1) described in 3.1.1. This specific system is interesting thanks to 

the fact, that each component (HDD) has different type. Therefore, the meaning of the 

Boolean variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 whose represent the state of the system components will 

change to the number of working components (either 1 or 0) of type 𝑘 ∈ {1,2,3,4} and the 

value of the survival signature will be either 1 or 0 depending on the state of the system for  

given number of working components of specific type. This means that the survival signature 

for this system is identical with structure function, and this can be seen in left part of Tab. 

3.8. As for the proposed DPLDs, they all have the same value for each type and this value 

corresponds with the DPLD (1.19) as can be seen in right part of Tab. 3.8. Same can be said 
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about SI. This can be explained by the fact that in this system each component has distinct 

type and the system signature will have only two values: 0 and 1.  

Tab. 3.8 Survival signature and DPLDs for storage system  

 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 

Type 3 

(𝑙3) 

Type 4 

(𝑙4) 
Φ(𝑙1, 𝑙2, 𝑙3, 𝑙4) 

𝜕Φ ↓

𝜕𝑙1 ↓
 

𝜕Φ ↓

𝜕𝑙2 ↓
 

𝜕Φ ↓

𝜕𝑙3 ↓
 

𝜕Φ ↓

𝜕𝑙4 ↓
 

0 0 0 0 0 - - - - 

0 0 0 1 0 - - - 0 

0 0 1 0 0 - - 0 - 

0 0 1 1 1 - - 1 1 

0 1 0 0 1 - 1 - - 

0 1 0 1 1 - 1 - 0 

0 1 1 0 1 - 1 0 - 

0 1 1 1 1 - 0 0 0 

1 0 0 0 1 1 - - - 

1 0 0 1 1 1 - - 0 

1 0 1 0 1 1 - 0 - 

1 0 1 1 1 0 - 0 0 

1 1 0 0 1 0 0 - - 

1 1 0 1 1 0 0 - 0 

1 1 1 0 1 0 0 0 - 

1 1 1 1 1 0 0 0 0 

SI𝑘 0.375 0.375 0.125 0.125 

Based on these facts, we will focus our analysis on same system, but with different 

types of HDDs, more precisely with two different types of HDDs. HDDs 1 and 3 will be 

SEAGATE ST6000DX000 and HDDs 2 and for will be WDC WD60EFRX. By taking this 

changes into account, the survival signature will be different from the previous one shown 

in Tab. 3.8 and its values can be seen in Tab. 3.9. 

Tab. 3.9 Survival signature for storage system with two types of HDDs 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

0 0 0 

0 1 0.5 

0 2 1 

1 0 0.5 

1 1 1 

1 2 1 

2 0 1 

2 1 1 

2 2 1 
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From this survival signature we can continue in our reliability analysis by computing 

all new DPLDs for each type of system components. The first DPLD and SI𝑘,𝑎
↓  for each type 

is shown in Tab. 3.10. From values of the first DPLDs and SI𝑘,𝑎
↓  it is possible to see, that 

they are symmetrical  for both types. This comes from the fact, that both types are distributed 

evenly in terms of system topology. For example, the DPLD 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1(10)
 for 𝑙1 has value 1 for 

𝑙2 ∈ {0,1} as the 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙2(10)
 for 𝑙2 when 𝑙1 ∈ {0,1}. This value of 

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1(10)
 indicates the 

decrease of the system survivability represented by system signature if number of working 

components of type 1 decrease from one working components to zero, with zero or one 

working components of type 2. This is understandable according to the system topology, 

because if component of type 1 fails when one component of type 2 is working, then the 

system can lose one path for data reading and writing (either if HDD 1 fails or HDD 3 fails 

if HDD4 is working) and if none component of type 2 is working, then the system will surely 

fail if it is not failed already. 

Tab. 3.10 The first DPLDs for storage system with two types of HDDs 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(21)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(10)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(21)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(10)
 

0 0 0 - - - - 

0 1 0.5 - - - 1 

0 2 1 - - 1 - 

1 0 0.5 - 1 - - 

1 1 1 - 1 - 1 

1 2 1 - 0 0 - 

2 0 1 1 - - - 

2 1 1 0 - - 0 

2 2 1 0 - 0 - 

SI𝑘,𝑎
↓

 0.333 0.667 0.333 0.667 
 

By using the first type of DPLDs and SI𝑘,𝑎
↓ , we can compute the second type of 

DPLDs according to (2.14) and SI𝑘
↓  according to (2.15) and their values can be seen in Tab. 

3.11. From this DPLD we can see the type influence for the system state more clearly. For 

example, if we take the DPLD 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1↓
  for type 1 we can see that in half cases the failure 

of the component of type 1 affects the system survivability represented by survival signature 

as in case of DPLD 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙2↓
. For  

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1↓
 it comes in the situations in which there is none 
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component of type 2 working or there is one component of type 1 and 2 working. In those 

situations the system survivability will decrease or the system will surely fail. 

Tab. 3.11 The second DPLDs for storage system with two types of HDDs 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1 ↓
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2 ↓
 

0 0 0 - - 

0 1 0.5 - 1 

0 2 1 - 1 

1 0 0.5 1 - 

1 1 1 1 1 

1 2 1 0 0 

2 0 1 1 - 

2 1 1 0 0 

2 2 1 0 0 

SI𝑘
↓

 0.5 0.5 
 

By using the second DPLD for each type, we can see where the system survivability 

changes with the decrease of the number of working components of type 1 or 2. But if we 

wanted to see this degradation and average degradation more precisely, then the third DPLD 

and SI𝑘
⇓ can be used and their values for each type can be seen in Tab. 3.12. This type of 

DPLD can help us to further understand, how critical is component failure of concrete type 

according to the actual number of working components of all types. For example, let us 

consider the DPLD 
𝜕Φ(𝑙1,𝑙2)⇓

𝜕𝑙1↓
 for type 1. From it we can see, that all the significant changes 

decreases the system survivability evenly by 0.5. This means that if any component of type 

1 fails, then the system survivability will decrease and in one situation the system will fail. 

Tab. 3.12 The third DPLDs for storage system with two types of HDDs 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ⇓
𝜕𝑙1 ↓

 
𝜕Φ(𝑙1, 𝑙2) ⇓

𝜕𝑙2 ↓
 

0 0 0 - - 

0 1 0.5 - 0.5 

0 2 1 - 0.5 

1 0 0.5 0.5 - 

1 1 1 0.5 0.5 

1 2 1 0 0 

2 0 1 0.5 - 

2 1 1 0 0 

2 2 1 0 0 

SI𝑘
⇓

 0.25 0.25 
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3.2.3 Case Study for System with Bridge Topology 

We will demonstrate the computation of the Survival Signature on the system that is 

described in [18] and its reliability block diagram is shown in Fig. 3.25. This specific system 

is composed of six components and we will represent their states by using Boolean variables 

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6. There are two different types of system components, especially 

components represented by Boolean variables 𝑥1, 𝑥2, 𝑥3 have same type (type1) and 

𝑥4, 𝑥5, 𝑥6 have same type (type 2). This is shown with label in top left corner and different 

colours in Reliability Block diagram in Fig. 3.25 (green – type 1 and blue – type 2). The 

structure function representing this system has following form: 

𝜙(𝒙) = 𝑥1 ∧ (𝑥2 ∧ 𝑥3 ∨ 𝑥2 ∧ 𝑥4 ∧ 𝑥6 ∨ 𝑥5 ∧ 𝑥6 ∨ 𝑥5 ∧ 𝑥4 ∧ 𝑥3). (3.28) 

Fig. 3.25 Reliability block diagram for the analysed system with bridge topology 

The survival signature for system can be seen in Tab. 3.13. The next step is 

computation of all new DPLDs for each type of system components. The first DPLD and 

SI𝑘,𝑎
↓  for each type is shown in Tab. 3.14. For example, the DPLD 

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1(32)
 for 𝑙1 has value 

1 for each 𝑙2 ∈ (3,2,1,0). This means that if number of working components of type 1 

decrease from three working components to two, with any number of working components 

of type 2 the system survivability represented by system signature will also decrease. This 

is understandable according to the system topology, because if component represented by 

variable 𝑥1 of type 1 fails, then the system will surely fail. On the other hand, the DPLD 

𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙2(10)
 for 𝑙2 has value 0 for each 𝑙1 ∈ (3,2,1,0). This means that if number of working 

components of type 2 decrease from one to none, the system survivability represents by the 

system signature will remain same with any number of working components of type 1. This 

is caused by fact, that if only one component of type 2 is working, then this type does not 



FRI UNIZA 

84 

 

influence the state of the system. This importance is further proved by values of SI1,3
↓  and 

SI2,1
↓ . 

Tab. 3.13 Survival signature for analysed system represented by (3.28) 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

0 0 0 

0 1 0 

0 2 0 

0 3 0 

1 0 0 

1 1 0 

1 2 0.11111 

1 3 0.33333 

2 0 0 

2 1 0 

2 2 0.44444 

2 3 0.66667 

3 0 1 

3 1 1 

3 2 1 

3 3 1 
 

Tab. 3.14 The first DPLDs for analysed system represented by (3.28) 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(32)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(21)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(10)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(32)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(21)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(10)
 

0 0 0 - - - - - - 

0 1 0 - - - - - 0 

0 2 0 - - - - 0 - 

0 3 0 - - - 0 - - 

1 0 0 - - 0 - - - 

1 1 0 - - 0 - - 0 

1 2 0.11111 - - 1 - 1 - 

1 3 0.33333 - - 1 1 - - 

2 0 0 - 0 - - - - 

2 1 0 - 0 - - - 0 

2 2 0.44444 - 1 - - 1 - 

2 3 0.66667 - 1 - 1 - - 

3 0 1 1 - - - - - 

3 1 1 1 - - - - 0 

3 2 1 1 - - - 0 - 

3 3 1 1 - - 0 - - 

SI𝑘,𝑎
↓

 1 0.5 0.5 0.5 0.5 0 
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From the first type of DPLDs we can compute the second type of DPLDs according 

to (2.14) and we can compute SI𝑘
↓  from SI𝑘,𝑎

↓  according to (2.15), which is shown in Tab. 

3.15. From this DPLD we can see the type influence for the system state more clearly. For 

example, if we take the DPLD 
𝜕Φ(𝑙1,𝑙2)↓

𝜕𝑙1↓
  for type 1 we can see, that in most cases the failure 

of the component of type 1 affects the system survivability represented by survival signature. 

Only exception are situations, in which two components of type 1 are working or one 

component of type 1 is working and one or none component of type 2 is working. In those 

cases, the system is in failed state, therefore the failure of component of type 1 does not have 

any influence on the system state. From values of SI1
↓ and SI2

↓  we can see that the decrease 

of the working components of type 1 is more significant for the system survivability. 

Tab. 3.15 The second DPLDs for analysed system represented by (3.28) 

Type 1 (𝑙1) Type 2 (𝑙2) Φ(𝑙1, 𝑙2) 
𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1 ↓
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2 ↓
 

0 0 0 - - 

0 1 0 - 0 

0 2 0 - 0 

0 3 0 - 0 

1 0 0 0 - 

1 1 0 0 0 

1 2 0.11111 1 1 

1 3 0.33333 1 1 

2 0 0 0 - 

2 1 0 0 0 

2 2 0.44444 1 1 

2 3 0.66667 1 1 

3 0 1 1 - 

3 1 1 1 0 

3 2 1 1 0 

3 3 1 1 0 

SI𝑘
↓

 0.75 0.25 
 

If we wanted to see precisely how the survivability changes with the decrease of the 

working components of type 1 or 2, then the third DPLD and SI𝑘
⇓ can be used and their value 

for each type can be seen in Tab. 3.16. This type of DPLD and SI𝑘
⇓ can help us to further 

understand, how critical is component failure of concrete type according to the actual 

number of working components for all types and how critical is concrete type for system 

survivability. For example, let us consider the DPLD 
𝜕Φ(𝑙1,𝑙2)⇓

𝜕𝑙1↓
 for type 1. From it we can see, 

that the most critical failure of component of type 1 is when there are 3 working components 
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of type 1 and one or none working component of type 2. In this situation, if any component 

of type 1 fails, then the system will surely fail. 

Tab. 3.16 The third DPLDs for analysed system represented by (3.28) 

Type 1 (𝑙1) Type 2 (𝑙2) Φ(𝑙1, 𝑙2) 
𝜕Φ(𝑙1, 𝑙2) ⇓

𝜕𝑙1 ↓
 

𝜕Φ(𝑙1, 𝑙2) ⇓
𝜕𝑙2 ↓

 

0 0 0 - - 

0 1 0 - 0 

0 2 0 - 0 

0 3 0 - 0 

1 0 0 0 - 

1 1 0 0 0 

1 2 0.11111 0.11111 0.11111 

1 3 0.33333 0.33333 0.22222 

2 0 0 0 - 

2 1 0 0 0 

2 2 0.44444 0.33333 0.44444 

2 3 0.66667 0.33333 0.22222 

3 0 1 1 - 

3 1 1 1 0 

3 2 1 0.55556 0 

3 3 1 0.33333 0 

SI𝑘
⇓

 0.25 0.083333 
 

 

3.2.4 Case Study for Hydro Power Plant 

Lastly, we will show how the proposed derivatives can be used in reliability analysis 

of the real world hydro power plant that is presented in [19]. We will be focusing on the 

inside mechanism of the hydro power plant, which can be seen in form of reliability block 

diagram in Fig. 3.26.  

Fig. 3.26 Reliability block diagram for the hydro power plant  

Firstly, the water comes from the reservoir through the gate (component 𝑥1 of type 

1) that controls the flow of the water to the two butterfly valves (components 𝑥2 and 𝑥6 of 

type 2). Then the water flows to the two turbines (components 𝑥3 and 𝑥7 of type 3) in which 

the kinetic energy of the water flow is used to move the turbine and to produce alternating 
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current in the two generators (components 𝑥4 and 𝑥8 of type 4).  Finally, there are three 

circuit breakers that protects the hydro power plant system (components 𝑥5, 𝑥9 and 𝑥10 of 

type 5) and two transformers (components 𝑥11 and 𝑥12 of type 6) used to obtain a higher 

voltage for the output electricity. The structure function representing this system has 

following form: 

𝜙(𝒙) = 𝑥1 ∧ (𝑥2 ∧ 𝑥3 ∧ 𝑥4 ∧ 𝑥5 ∨ 𝑥6 ∧ 𝑥7 ∧ 𝑥8 ∧ 𝑥9) ∧ 𝑥10 ∧ (𝑥11 ∨ 𝑥12). (3.29) 

The non-zero values of  the survival signature for system computed using (1.35) can 

be seen in Tab. 3.17. After obtaining the survival signature, we will compute all the DPLDs 

for each type. From the first, second DPLDs and SI𝑘
↓  (second DPLDs for the non-zero values 

of the survival signature and SI𝑘
↓  can be seen in Tab. 3.18) we can understand, that the most 

important type is type 1, which is caused by the fact, that this type has only one component 

and it’s the first component in series topology. 

In order to further understand, how critical is component failure of concrete type 

according to the actual number of working components for all types and how critical is 

concrete type for system survivability, the third type of DPLDs can be used and its values 

for each non-zero values of the system signatures that are shown in Tab. 3.17 and SI𝑘
⇓ values 

can be seen in Tab. 3.19. For example, let us consider the DPLD 
𝜕Φ⇓

𝜕𝑙5↓
 for type 5. This type is 

quite interesting, because according to the reliability block diagram in Fig. 3.26 the 

functionality of the component 𝑥10 of type 5 is crucial for the system functionality. This can 

be seen in situations, when only two components of type 5 is functioning and the system is 

functioning. In this situations, if one component of type 5 fails, then the system will surely 

fail. However, the most crucial type is type 1 which can be proved by the value of  SI𝑘
⇓. 
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Tab. 3.17 Non-zero values of the survival signature for analysed hydro power plant 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 

Type 3 

(𝑙3) 

Type 4 

(𝑙4) 

Type 5 

(𝑙5) 

Type 6 

(𝑙6) 
Φ(𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6) 

1 1 1 1 2 1 0.08333 

1 1 1 1 2 2 0.08333 

1 1 1 1 3 1 0.25 

1 1 1 1 3 2 0.25 

1 1 1 2 2 1 0.16667 

1 1 1 2 2 2 0.16667 

1 1 1 2 3 1 0.5 

1 1 1 2 3 2 0.5 

1 1 2 1 2 1 0.16667 

1 1 2 1 2 2 0.16667 

1 1 2 1 3 1 0.5 

1 1 2 1 3 2 0.5 

1 1 2 2 2 1 0.33333 

1 1 2 2 2 2 0.33333 

1 1 2 2 3 1 1 

1 1 2 2 3 2 1 

1 2 1 1 2 1 0.16667 

1 2 1 1 2 2 0.16667 

1 2 1 1 3 1 0.5 

1 2 1 1 3 2 0.5 

1 2 1 2 2 1 0.33333 

1 2 1 2 2 2 0.33333 

1 2 1 2 3 1 1 

1 2 1 2 3 2 1 

1 2 2 1 2 1 0.33333 

1 2 2 1 2 2 0.33333 

1 2 2 1 3 1 1 

1 2 2 1 3 2 1 

1 2 2 2 2 1 0.66667 

1 2 2 2 2 2 0.66667 

1 2 2 2 3 1 1 

1 2 2 2 3 2 1 
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Tab. 3.18 The second DPLDs for the non-zero values of the survival signature of hydro power plant 

𝜕Φ ↓

𝜕𝑙1 ↓
 

𝜕Φ ↓

𝜕𝑙2 ↓
 

𝜕Φ ↓

𝜕𝑙3 ↓
 

𝜕Φ ↓

𝜕𝑙4 ↓
 

𝜕Φ ↓

𝜕𝑙5 ↓
 

𝜕Φ ↓

𝜕𝑙6 ↓
 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 0 0 0 1 1 

1 0 0 0 1 0 

SI𝑘
↓

 0.098765 0.069444 0.069444 0.069444 0.065843 0.037037 
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Tab. 3.19 The third DPLDs for the non-zero values of the survival signature of hydro power plant 

𝜕Φ ⇓
𝜕𝑙1 ↓

 
𝜕Φ ⇓
𝜕𝑙2 ↓

 
𝜕Φ ⇓
𝜕𝑙3 ↓

 
𝜕Φ ⇓
𝜕𝑙4 ↓

 
𝜕Φ ⇓
𝜕𝑙5 ↓

 
𝜕Φ ⇓
𝜕𝑙6 ↓

 

0.08333 0.08333 0.08333 0.08333 0.08333 0.08333 

0.08333 0.08333 0.08333 0.08333 0.08333 0 

0.25 0.25 0.25 0.25 0.16667 0.25 

0.25 0.25 0.25 0.25 0.16667 0 

0.16667 0.16667 0.16667 0.08333 0.16667 0.16667 

0.16667 0.16667 0.16667 0.08333 0.16667 0 

0.5 0.5 0.5 0.25 0.33333 0.5 

0.5 0.5 0.5 0.25 0.33333 0 

0.16667 0.16667 0.08333 0.16667 0.16667 0.16667 

0.16667 0.16667 0.08333 0.16667 0.16667 0 

0.5 0.5 0.25 0.5 0.33333 0.5 

0.5 0.5 0.25 0.5 0.33333 0 

0.33333 0.33333 0.16667 0.16667 0.33333 0.33333 

0.33333 0.33333 0.16667 0.16667 0.33333 0 

1 1 0.5 0.5 0.66667 1 

1 1 0.5 0.5 0.66667 0 

0.16667 0.08333 0.16667 0.16667 0.16667 0.16667 

0.16667 0.08333 0.16667 0.16667 0.16667 0 

0.5 0.25 0.5 0.5 0.33333 0.5 

0.5 0.25 0.5 0.5 0.33333 0 

0.33333 0.16667 0.33333 0.16667 0.33333 0.33333 

0.33333 0.16667 0.33333 0.16667 0.33333 0 

1 0.5 1 0.5 0.66667 1 

1 0.5 1 0.5 0.66667 0 

0.33333 0.16667 0.16667 0.33333 0.33333 0.33333 

0.33333 0.16667 0.16667 0.33333 0.33333 0 

1 0.5 0.5 1 0.66667 1 

1 0.5 0.5 1 0.66667 0 

0.66667 0.33333 0.33333 0.33333 0.66667 0.66667 

0.66667 0.33333 0.33333 0.33333 0.66667 0 

1 0 0 0 0.33333 1 

1 0 0 0 0.33333 0 

SI𝑘
⇓

 0.049382 0.023148 0.023148 0.023148 0.023662 0.018518 
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Conclusion 

The current state and level of technology brings new challenges in the development 

of the reliability engineering, which has to be able to deal with analysis of complex systems, 

i.e. systems composed of many components with various behaviour. Investigation of such 

systems requires development of new approaches that allow describing their properties in an 

efficient way and new methods that allow analysing their properties in a reasonable time. A 

possible solution to the first task is application of survival signature [15], which represents 

a compact form of system structure function. A solution to the second problem can be use 

of methodology of logic differential calculus, whose application in time-independent 

reliability analysis has been considered in [13], [14]. However, for real-world problems, it 

is very important to be able to perform time-dependent analysis, which allows us to find how 

properties of the system change as time flows. In this thesis, we showed that logic differential 

calculus can also be used in time-dependent reliability analysis, which expands possibilities 

of its application in solving real-world problems, and we proposed the concept how the 

methodology of logic differential calculus can be combined with survival signature, which 

allows expanding its applicability on analysis of various properties of systems composed of 

a huge amount of various components. To achieve these two principal results, we had to: 

 investigate the theoretical basis of the reliability analysis based on structure function: 

 it was presented how the structure function can be used in reliability analysis 

and how methodologies like logic differential calculus, system signature, and 

survival signature can be used in reliability analysis based on the structure 

function (chapter 1); 

 analyse approaches proposed in [13], [14] for computation of time-independent IMs 

based on logic differential calculus: 

 it was shown how logic differential calculus can be used in computation of 

reliability and structure IMs (sections 2.1.1 and 2.1.2); 

 expand the approach for computation of time-independent IMs on calculation of 

time-dependent IMs: 

 it was shown how logic differential calculus can be used in computation of 

lifetime IMs, especially for BI (section 2.1.3), which is a base of many other 

lifetime IMs, such as CI, 
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 usability of the new approach was demonstrated on three case studies dealing 

with storage system, drone fleet and surveillance system (section 3.1); 

 define extensions of DPLDs for reliability analysis based on survival signature and 

present their meaning and application in reliability analysis: 

 three new types of DPLDs, which allow studying consequences of a failure 

of one or more same components for the system, were proposed (section 2.2), 

 three new SI measures, which allow quantifying importance of components 

of the same type for the system operation, that uses newly defined DPLDs 

were proposed (section 2.2), 

 usability of the new DPLDs and SIs proposed in this thesis was shown on 

four case studies dealing with series-parallel system, storage system, system 

with bridge topology and hydro power plant (section 3.2).  

As mentioned above the key contribution of this thesis lies in proving that the 

methodology of logic differential calculus can also be used in time-dependent reliability 

analysis and that it can be combined with survival signature to analyse how specific type of 

components (not a specific component) influences system operation. 

In this work, we primarily deals with IMs based on the concept of criticality (IMs 

such as SI, BI, or CI). However, there also exist other types of IMs, which are based on 

another concept known as a concept of minimal cut sets or minimal path sets. Typical 

example of such IMs is Fussell-Vesely’s importance [14], which quantifies how a failure 

(repair) of a component contributes to a failure (functioning) of the system. Therefore, in the 

further work, we would like to focus on the possibility of application of logic differential 

calculus in time-dependent analysis based on minimal cut sets and minimal path sets and 

whether an approach combining minimal cut or path sets with time-dependent analysis based 

on logic differential calculus can also be applied in reliability analysis based on survival 

signature.  
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Resume 

1. Úvod do predmetu výskumu 

Teória spoľahlivosti je multidisciplinárny vedený obor, ktorý poskytuje metódy 

potrebné na kvantifikáciu spoľahlivosti systému, testovanie návrhu systému, analýzu 

systému, analýzu jeho komponentov atď. Hlavné výzvy teórie spoľahlivosti je možné zhrnúť 

nasledovne [1]: 

 uplatňovanie teoretických vedomostí a matematických techník na zabránenie alebo 

zníženie pravdepodobnosti výskytu zlyhaní; 

 identifikácia a riešenie príčin zlyhaní, ktoré sa vyskytujú v systéme napriek snahe im 

predchádzať; 

 definovanie procesov, ktoré budú riešiť prípadné zlyhania, ak sa príčiny týchto 

zlyhaní nevyriešia; 

 uplatňovanie metód na odhad spoľahlivosti nového návrhu systému a analýza údajov 

o spoľahlivosti systému. 

Dôležitým krokom v hodnotení spoľahlivosti systému je vytvorenie jeho 

matematického vyjadrenia. Na základe [1], táto matematická reprezentácia musí umožniť 

preskúmať zlyhania systému, napr. mechanizmami na zistenie zlyhania a jeho dôsledkov; 

meranie spoľahlivosti systému; analyzovanie kritických stavov z hľadiska spoľahlivosti 

systému; vypracovanie spôsobu údržby systému, či diagnostika a prognóza porúch. 

Najčastejšie používanou matematickou reprezentáciou systému v analýze 

spoľahlivosti je model, ktorý zohľadňuje dva dôležité stavy systému: zlyhanie a fungovanie 

systému. Tento matematický model je známy ako dvojstavový systém (BSS) a používa 

hlavne dvojhodnotovú logiku, ktorá bola zavedená ako jedna z prvých [2]–[4] a bude sa 

používať aj v tejto práci. Ďalšou používanou matematickou reprezentáciou systému je model 

zvaný viacstavový systém (MSS). Táto matematická reprezentácia môže pracovať s viac ako 

dvoma úrovňami prevádzky systému a používa sa na definovanie viacerých stavov 

fungovania systému a jeho komponenty, čo sa využíva pre vykonanie podrobnejšej analýzy 

spoľahlivosti systému a jeho komponentov [5], [6].  

Na základe týchto matematických modelov existuje množstvo metód na 

vyhodnotenie spoľahlivosti a zlyhania systému. Všetky tieto metódy možno rozdeliť do 
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štyroch skupín v závislosti od použitého matematického prístupu [1], [3]: metódy založené 

na štruktúrnej funkcii, stochastické metódy, metódy založené na Monte Carlo simulácii a 

metódy založené na univerzálne generovanej funkcii. Metódy založené na štruktúrnych 

funkciách umožňujú matematicky reprezentovať systém akejkoľvek štrukturálnej zložitosti 

[2] a budú použité v tejto práci.  

Štruktúrna funkcia definuje ako závisí stav systému na stavoch jeho komponentov a 

používa sa na reprezentáciu systému zloženého z 𝑛 komponentov [7]. Štruktúrnu funkciu 

možno považovať za booleovskú funkciu pre BSS ktorú možno použiť pri analýze 

spoľahlivosti systému [7], [8]. Takáto matematická reprezentácia je nezávislá od času. 

Dôležitou výhodou tejto reprezentácie je možnosť použiť rozvinutý a pre analýzu vhodný 

matematický prístup Boolovej algebry pri hodnotení spoľahlivosti skúmaného systému. 

Efektívne metódy v analýze spoľahlivosti boli vyvinuté s použitím Boolovej algebry na 

definíciu minimálnych množín rezov a ciest [8], frekvenčných charakteristík spoľahlivosti 

systému [7] alebo výpočtu indexov dôležitosti [9]. Štruktúrna funkcia má svoju dôležitú 

úlohu v modernom vývoji v analýze spoľahlivosti, napríklad v prípade viacfunkčnej 

spoľahlivosti systému [10], všeobecné vyjadrenie štruktúrnej funkcie ľubovoľného semi-

koherentného systému [11] alebo grafové modely a algoritmy na hodnotenie spoľahlivosti 

[12]. Nevýhodou týchto metód je analýza systému bez riešenia času. Na druhej strane, 

štruktúrna funkcia vo forme booleovskej funkcie sa môže použiť na výpočet funkcie 

spoľahlivosti systému, ktorá predstavuje pravdepodobnosť, že systém bude vo funkčnom 

stave počas sledovaného obdobia alebo špecifického okamihu počas sledovaného obdobia. 

Hoci je v analýze spoľahlivosti dôležitá funkcia spoľahlivosti, neposkytuje úplný obraz o 

spoľahlivosti systému. Ďalším nevyhnutným prvkom hodnotenia spoľahlivosti je analýza 

dôležitosti. Metódy výpočtu indexov dôležitosti (IMs), ktoré kvantifikujú vplyv 

komponentov systému na celý systém reprezentovaný štruktúrnou funkciou za pomoci 

logického diferenciálneho počtu, boli predstavené v [13], [14], pričom nebrali do úvahy čas. 

Štruktúrna funkcia môže byť vytvorená pre systém s akoukoľvek štrukturálnou 

zložitosťou. Súčasne sa so zvyšujúcim počtom komponentov systému zvyšuje aj dimenzia 

štruktúrnej funkcie, čo robí prácu s ňou pre veľké systémy viac náročnou z pamäťového 

a výpočtového hľadiska, hlavne pri nejednoznačnosti správania komponentov. Preto sa pre 

štruktúrnu funkciu vyvíjajú metód, ktoré by riešili tento problém. Jedným z moderných 

prístupov je použitie podpisu prežitia (angl. Survival signature) [15], ktorý sa zameriava na 

schopnosť prežitia systému s 𝐾 typmi komponentov, pričom sa tento prístup dá použiť aj 
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v časovo orientovanej analýze spoľahlivosti [16]. Tento prístup sa naďalej rozširuje [17], 

[18] a tiež v [19] je navrhnutý prístup pre analýzu dôležitosti systému. Táto metóda je 

účinná, ale je náročná na výpočty. Metódy analýzy dôležitosti sa zvyčajne zakladajú na 

rôznych matematických prístupov [14]. Jedným z takýchto prístupov je logický 

diferenciálny počet [21], [22], ktorý sa štandardne používa na analýzu systému vyjadreného 

štruktúrnou funkciou a nie na podpis prežitia.  

Zohľadnením všetkých vyššie uvedených informácií je štruktúrna funkcia vo forme 

booleovskej funkcie matematické znázornenie systému používané v analýze spoľahlivosti, 

ktorá môže byť vytvorená pre systém akejkoľvek štrukturálnej zložitosti a umožňuje 

použitie metód používaných na booleovskej funkcie v analýze spoľahlivosti. Nevýhody tejto 

matematickej reprezentácie sú (a) vysoký rozmer pre systém s veľkým počtom komponentov 

a (b) nemožnosť časovo závislej analýzy. Hlavným cieľom tejto práce je vývoj nových 

prístupov pre analýzu spoľahlivosti systému založenej na štruktúrnej funkcii, ktoré umožnia 

časovo závislú analýzu systému a tiež ktoré riešia problém reprezentácie systému s veľkým 

počtom komponentov. Prvá časť tohto cieľa bude riešená použitím logického 

diferenciálneho počtu a druhá časť bude riešená pomocou podpisu prežitia pre reprezentáciu 

systému. Na dosiahnutie hlavného cieľa sú v tejto práci definované nasledujúce úlohy: 

 nadviazanie na výskum z [13], [14] a navrhnutie prístupu v časovo závislej analýze 

dôležitosti systému, ktorý bude založený na logickom diferenciálnom počte v 

Boolovej algebre; 

o demonštrácia použitia navrhovaného prístupu na vybraných systémoch; 

 definovanie parciálnych derivácií použiteľných v analýze spoľahlivosti systému 

založených na podpise prežitia systému [15]; 

o demonštrácia použitia navrhovaného prístupu na vybraných systémoch. 

 

2. Časovo závislá analýza dôležitosti s použitím logického 

diferenciálneho počtu 

Pro časovo závislej analýze dôležitosti bude používaná štruktúrna funkcia ako 

matematický popis dvojstavového koherentného [3], [14] neopraviteľného systému. 

Štruktúrna funkcia je mapovanie, ktoré definuje hodnotu stavu systému pre každú 

kombináciu stavov 𝑛 systémových komponentov, čo je definované nasledovne [3]:  
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𝜙(𝑥1, 𝑥2 … , 𝑥𝑛) = 𝜙(𝒙):   {0,1}𝑛 → {0,1}, (1) 

kde 𝑥𝑖 je booleovská premenná reprezentujúca stav komponentu 𝑖 pre 𝑖 = 1,2, … , 𝑛 a 𝒙 =

(𝑥1, 𝑥2, … , 𝑥𝑛) je vektor stavov všetkých systémových komponentov (stavový vektor). 

Napríklad, pre dátové úložisko zobrazené na Obr. 1 by štruktúrna funkcia vyzerala 

nasledovne: 

𝜙(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1 ∨ 𝑥2) ∨ 𝑥3 ∧ 𝑥4. (2) 

Dôvodom je, že dané úložisko obsahuje dve úložne jednotky zapojené paralelne, čo môžeme 

reprezentovať Boolovou operáciou OR. Prvá jednotka má dva pevné disky (HDDs) zapojené 

v RAID 1, čo je možné reprezentovať Boolovou operáciou OR a druhá jednotka ma dva 

HDDs zapojené v RAID 0, čo je možné reprezentovať Boolovou operáciou AND. Tiež je 

potrebné podotknúť, že tento systém je koherentný (každý HDD má vplyv na funkčnosť 

systému a štruktúrna funkcia je neklesajúca pre každý HDD) a tiež sa bude pokladať za 

neopraviteľný. 

 

Obr. 1 Dátové úložisko 

Štruktúrna funkcia nájde svoje využitie aj pri skúmaní topologických vlastností 

systému [8], [13], [17], [23], [24]. Avšak nie je stavaná pre vykonanie časovo závislej 

analýzy spoľahlivosti, ktorá sa zaoberá vyhodnotením spoľahlivosti systému v priebehu 

času. Na tieto účely sa používa stavová funkcia systému 𝑧(𝑡), ktorá je definovaná 

nasledovne: 

𝑧(𝑡) = 𝜙(𝒙(𝑡)) = 𝜙(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)): ⟨0, ∞) → {0,1}, (3) 
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kde 𝑥𝑖(𝑡) pre 𝑖 = 1,2, … , 𝑛 je funkcia, ktorá definuje stav 𝑖-tého komponentu v čase 𝑡. Aj 

keď stavová funkcia systému 𝑧(𝑡) úzko súvisí so štruktúrnou funkciou 𝜙(𝒙), tieto dve 

funkcie sa svojou povahou veľmi líšia, pretože prvá je funkciou času, zatiaľ čo druhá je 

funkciou definujúcou topológiu systému, ktorá je nezávislá od času. V prípade dátového 

úložiska by stavová funkcia vyzerala nasledovne [3]: 

𝜙(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡)) = (𝑥1(𝑡) ∨ 𝑥2(𝑡)) ∨ 𝑥3(𝑡) ∧ 𝑥4(𝑡). (4) 

Funkciu stavu systému je možné chápať ako spojenie štruktúrnej funkcie systému a 

jednej konkrétnej realizácie stavových funkcií všetkých komponentov systému, čo znamená, 

že stavovú funkcia systému 𝑧(𝑡) možno tiež považovať za jednu realizáciu nespočetného 

množstva stavových funkcií systému. To znamená, že vývoj systému v priebehu času možno 

považovať za nasledujúci stochastický proces: 

{𝑍(𝑡); 𝑡 ≥ 0}, (5) 

kde 𝑍(𝑡) je náhodná premenná modelujúca správanie systému v čase 𝑡. 

Definujme 𝑍(𝑡) vo fixnom čase. Získavame náhodnú premennú 𝑋, ktorá môže mať 

hodnoty 0 a 1 s pravdepodobnosťou 𝐴 alebo 𝑈, ktoré predstavujú dostupnosť, resp. 

nedostupnosť systému [3] a pri neopraviteľných systémoch zodpovedajú spoľahlivosti 𝑅, 

resp. nespoľahlivosti 𝐹 systému [3]. Pre jednotlivé komponenty systému sú to 

pravdepodobnosti 𝑝𝑖 and 𝑞𝑖, ktoré sú definované nasledovne [3]: 

𝑝𝑖 = Pr{𝑥𝑖 = 1}, 𝑞𝑖 = Pr{𝑥𝑖 = 0}, 

𝑝𝑖 + 𝑞𝑖 = 1. 
(6) 

Ak poznáme náhodnú premennú 𝑥𝑖, ktorá modeluje správanie sa komponentu 𝑖 vo fixnom 

čase pre každú zložku systému, t.j. pre 𝑖 =  1,2, . . . , 𝑛, a ak predpokladáme, že komponenty 

sú nezávislé, potom náhodnú premennú 𝑋 možno získať kombináciou náhodných 

premenných 𝑥𝑖 pomocou štruktúrnej funkcie. To umožňuje vypočítať pravdepodobnosti 

stavu systému nasledovne [3]: 

𝑝 = Pr{𝜙(𝒙) = 1}, 𝑞 = Pr{𝜙(𝒙) = 0}, (7) 

Na základe tejto definície je možné pokladať dostupnosť a nedostupnosť systému za funkciu 

pravdepodobností stavu komponentov [3]: 
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𝐴 = 𝐴(𝒑) = Pr{𝜙(𝒙) = 1}, 𝑈 = 𝑈(𝒒) = Pr{𝜙(𝒙) = 0}, 

𝐴 + 𝑈 = 1, 
(8) 

kde 𝒑 =  (𝑝1, 𝑝2, … , 𝑝𝑛) a 𝒒 =  (𝑞1, 𝑞2, … , 𝑞𝑛) sú vektory, ktorých prvky sú 

pravdepodobnosti stavov jednotlivých systémových komponentov. Toto môže byť použité 

na preskúmanie vplyvu špecifických zmien pravdepodobnosti stavu jedného alebo viacerých 

komponentov na pravdepodobnosti stavu systému alebo spoľahlivostné indexy [3], [14], 

avšak nie časovo závislú analýzu BSS. Pre časovo závislú analýzu je potrebné nahradiť 

náhodnú premennú 𝑋 za 𝑍(𝑡), ktorá definuje, ako sa menia vlastnosti náhodnej premennej 

𝑋 v čase. V tomto prípade je dostupnosť 𝐴(𝑡) a nedostupnosť 𝑈(𝑡) systému funkciou času, 

t.j.: 

𝐴(𝑡) = 𝐴(𝑷(𝑡)) = Pr{𝜙(𝒙(𝑡)) = 1}, 𝑡 ≥ 0, 

𝑈(𝑡) = 𝑈(𝑸(𝑡)) = Pr{𝜙(𝒙(𝑡)) = 0}, 𝑡 ≥ 0, 

𝐴(𝑡) + 𝑈(𝑡) = 1, 𝑡 ≥ 0, 

(9) 

kde 𝑷(𝑡) =  (𝑃1(𝑡), 𝑃2(𝑡), … , 𝑃𝑛(𝑡)) a 𝑸(𝑡) =  (𝑄1(𝑡), 𝑄2(𝑡), … , 𝑄𝑛(𝑡)) sú vektorové 

funkcie, ktorých prvkami sú funkcie, ktoré definujú pravdepodobnosť stavu jednotlivých 

komponentov systému v priebehu času, a 𝒙(𝑡) =  (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)) je vektor 

náhodných premenných, ktoré modelujú správanie sa komponentov systému v čase. To sa 

dá využiť na zistenie, ako sa mení spoľahlivosť systému alebo dôležitosť komponentov v 

čase.  

Najdôležitejším prínosom predchádzajúcich vzorcov je to, že pravdepodobnosti 

stavu systému možno vnímať ako funkciu pravdepodobností stavov komponentov 

kombinovanú s použitím štruktúrnej funkcie alebo ako spojenie funkcií definujúcich 

pravdepodobnosti stavu komponentov systému v čase so štruktúrnou funkciou. To znamená, 

že ak sú systémové komponenty nezávislé a poznáme štruktúrnu funkciu systému 

a pravdepodobnosti stavov komponentov (v čase), dokážeme nájsť pravdepodobnosti stavov 

systému (v čase). 

Definícia štruktúrnej funkcie zodpovedá definícii booleovskej funkcie [13], čo 

umožňuje použiť matematickú metodológiu booleovskej algebry v analýze spoľahlivosti 

založenej na štruktúrnej funkcii a jej časť známu ako logický diferenciálny počet, ktorá sa 

požíva napríklad na analýzu toho, ako zlyhanie komponentu ovplyvňuje fungovanie systému 
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[25]. Pokiaľ je potrebné analyzovať smer zmeny stavu komponentov, tak sa dá použiť 

priama smerová parciálna logická derivácia (DPLD) definovaná nasledovne [26]: 

𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
=

𝜕𝜙(0 → 1)

𝜕𝑥𝑖(0 → 1)
= 𝜙(0𝑖, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ 𝜙(1𝑖, 𝒙), (10) 

kde ∧ predstavuje Boolovu operáciu AND a ̅  je Boolova operácia NOT. Tu je potrebné 

podotknúť, že získaná DPLD je opäť booleovská funkcia. V prípade dátového úložiska by 

táto derivácia pre HDD 1 vyzerala nasledovne: 

𝜕𝜙(1 → 0)

𝜕𝑥1(1 → 0)
= ((0 ∨ 𝑥2) ∨ 𝑥3 ∧ 𝑥4))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ ((1 ∨ 𝑥2) ∨ 𝑥3 ∧ 𝑥4)

= (𝑥2 ∨ 𝑥3 ∧ 𝑥4)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ 1 = �̅�2 ∧ (�̅�3 ∨ �̅�4). 

(11) 

Táto DPLD naznačuje, že HDD 1 je pre systém kritický, t. j. jeho zlyhanie má za následok 

zlyhanie systému, ak zlyhá HDD 2 a aspoň jeden HDD z HDD 3 a 4. DPLD sa môže počítať 

nielen vzhľadom na zmenu stavu jednej zložky, ale aj vzhľadom na súčasnú zmenu stavu 

dvoch alebo viacerých komponentov, čo je smerová parciálna logická derivácia vypočítaná 

vzhľadom na vektor zmien a je definovaná nasledovne [8]: 

𝜕𝜙(1 → 0)

𝜕(𝑥𝑖, 𝑥𝑗 , … )(1,1, … ) → (0,0, … )
= 𝜙(0𝑖, 0𝑗, … , 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ 𝜙(1𝑖 , 1𝑗 , … , 𝒙). (12) 

Toto je možné využiť na analýzu toho istého smeru zmien stavov komponentov a systému, 

ale aj opačných zmien a dokonca aj rôznych zmien. Napríklad pri zlyhaní HDD 1 a HDD 2 

v dátovom úložisku by táto smerová parciálna derivácia vyzerala nasledovne:  

𝜕𝜙(1 → 0)

𝜕(𝑥1, 𝑥2)((1,1) → (0,0))
= 𝑥3̅̅ ̅⋁𝑥4̅̅ ̅, (13) 

čo znamená, že súčasné zlyhanie HDD 1 a 2 vedie k zlyhaniu systému, ak dôjde k zlyhaniu 

aspoň jedného HDD z HDD 3 a 4.  

V analýze spoľahlivosti sa všetky uvedené smerové parciálne derivácie používajú 

napríklad na nájdenie kritických stavov systému [8], [13], ktoré opisujú situácie, v ktorých 

zlyhanie, resp. oprava jedného alebo viacerých komponentov systému má za následok 

zlyhanie, resp. opravu systému, alebo pri výpočte IM, ktoré je potom možné použiť na 

optimalizáciu spoľahlivosti systému, hľadania kritických komponentov systému, či pri 

plánovaní údržby systému. Existuje mnoho IMs a každý z nich berie do úvahy rôzne faktory, 

vďaka ktorým je komponent systému dôležitejší ako ostatné a delia sa do troch kategórií 
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[14]: štruktúrne (structural, S), spoľahlivostné (reliability, R) a časovo závislé (lifetime, L) 

IMs.  Tabuľka 1 obsahuje prehľad vybraných IMs, pričom tiež uvádza vzorec pre štandardný 

výpočet daného IM a tiež výpočet založený na smerových parciálnych deriváciách. TD pri 

SI znamená hustota pravdy (angl. truth density) argumentu, ktorý je booleovskou funkciou. 

Tabuľka 1 Prehľad vybraných IMs 

 

Názov Typ Popis Štandardný výpočet Výpočet s DPLD 

Štruktúrny 

index (SI) 
S 

relatívny počet 

stavových vektorov, 

pri ktorých zlyhanie 

komponentu 𝑖 vedie 

k zlyhaniu systému 

∑ (𝜙(1𝑖 , 𝑥) − 𝜙(0𝑖 , 𝑥)){(0𝑖,𝑥)}

2𝑛−1
 TD (

𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
) 

Birnbaumov 

index (BI) 
R 

Pravdepodobnosť, 

že zlyhanie 

komponentu 𝑖 
spôsobí zlyhanie 

systému v 

definovanom čase 

𝜕𝑅

𝜕𝑝𝑖

 Pr {
𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
= 1} 

Kritický 

index (CI) 
R 

Pravdepodobnosť, 

že zlyhanie systému 

bolo spôsobené 

zlyhaním 

komponentu 𝑖 ak 

systém zlyhal 

CI𝑖 = BI𝑖

𝑞𝑖

𝐹
 CI𝑖 = BI𝑖

𝑞𝑖

𝐹
 

Časovo 

závislý 

Birnbaumov 

index 

L 

Pravdepodobnosť, 

že systém je v stave, 

v ktorom je 

komponent 𝑖 
rozhodujúci pre 

fungovanie systému 

v čase 𝑡 

BI𝑖(𝑡) =
𝜕𝑅(𝑡)

𝜕𝑃𝑖(𝑡)
 Pr {

𝜕𝑧(1 → 0, 𝑡)

𝜕𝑥𝑖(1 → 0, 𝑡)
= 1} 

Časovo 

závislý 

kritický 

index 

L 

Pravdepodobnosť, 

že komponent 𝑖 
zlyhal v čase 𝑡 a 

tento komponent je 

pre systém v čase 𝑡 

kritický ak systém 

už nie je funkčný v 

čase 𝑡 

CI𝑖(𝑡) = BI𝑖(𝑡)
𝑄𝑖(𝑡)

𝐹(𝑡)
 CI𝑖(𝑡) = BI𝑖(𝑡)

𝑄𝑖(𝑡)

𝐹(𝑡)
 

Tu je potrebné uviesť, že v tejto práci bol zavedený výpočet časovo závislého BI za použitia 

DPLD. BI bol zvolený hlavne preto, že predstavuje základ pre množstvo ďalších IMs, 

pričom jedným z nich je aj CI [14]. Obr. 2 ilustruje oba spôsoby výpočtu časovo závislého 

BI, pričom na ľavej strane sa nachádza štandardný prístup, v ktorom zo štruktúrnej funkcie 

získame spoľahlivostnú funkciu 𝑅(𝑡), ktorá pri neopraviteľných systémoch zodpovedá 

funkcie dostupnosti 𝐴(𝑡) a následne parciálne derivuje túto funkciu podľa 𝑃𝑖(𝑡). Novo 

navrhnutý spôsob tento princíp otáča a to tak, že najskôr sa vykoná smerová parciálna 

derivácia štruktúrnej funkcie podľa 𝑥𝑖, čím sa získa booleovská funkcia, ktorá popisuje 

situácie, v ktorých zlyhanie komponentu 𝑖 spôsobí zlyhanie systému. Tú je potom možné 
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použiť pre získanie pravdepodobnosti, že systém je v stave, v ktorom je komponent 𝑖 

rozhodujúci pre fungovanie systému v čase 𝑡 použitím (9), čím získame časovo závislý BI. 

 

Obr. 2 Spôsoby výpočtu časovo závislého BI 

V prípade dátového úložiska by to znamenalo, že miesto toho, aby sa z (2) získala 

spoľahlivostná funkcia 𝑅(𝑡), ktorá má tvar:  

𝑅(𝑡) = 𝑃1(𝑡) + 𝑃2(𝑡) − 𝑃1(𝑡)𝑃2(𝑡) + 𝑃3(𝑡)𝑃4(𝑡) − 𝑃1(𝑡)𝑃3(𝑡)𝑃4(𝑡)

− 𝑃2(𝑡)𝑃3(𝑡)𝑃4(𝑡) + 𝑃1(𝑡)𝑃2(𝑡)𝑃3(𝑡)𝑃4(𝑡), 
(14) 

 a následne sa táto funkcia parciálne derivovala napríklad podľa 𝑃𝑖(𝑡) pre HDD1, sa 

parciálne zderivuje najskôr (2) podľa 𝑥1 a pre výsledok (11) sa už získa časovo závislý BI 

použitím (9) a teda sa dostane časovo závislý BI pre HDD1, ktorý má tvar: 

BI1(𝑡) = 1 − 𝑃2(𝑡) − 𝑃3(𝑡)𝑃4(𝑡) + 𝑃2(𝑡)𝑃3(𝑡)𝑃4(𝑡). (15) 

V práci sa tiež nachádzajú 3 prípadové štúdie, v ktorých je ukázané využitie tohto prístupu 

pre dátové úložisko, dronovú letku a strážny sledovací systém. 

 

3.  Podpis prežitia systému s použitím logického diferenciálneho 

počtu 
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Štruktúrna funkcia predstavuje užitočný a elegantný opis návrhu systému, má však 

určité obmedzenia. Napríklad v prípade porovnania návrhu systému je použitie tohto 

prístupu náročnejšie, najmä pri väčšom počte komponentov systému [1], [16]. Z tohto 

dôvodu vzniklo viacero matematických prístupov, pričom jeden z nich je známy ako podpis 

prežitia systému [15]. Tento prístup je možné použiť pre systémy s 𝐾 ≥ 1 typmi 

komponentov v časovo závislej a aj nezávislej analýze spoľahlivosti systémov. Podpis 

prežitia Φ(𝑙1, 𝑙2, … , 𝑙𝐾), 𝑙𝑘 = 0,1, … , 𝑛𝑘 je definovaný ako pravdepodobnosť, že systém s 𝑛 

komponentmi je funkčný ak presne 𝑙𝑘 systémových komponentov typu 𝑘 je funkčných pre 

𝑘 = 1,2, … , 𝐾 a má nasledovný tvar: 

Φ(𝑙1, 𝑙2, … , 𝑙𝐾) = [∏ (
𝑛𝑘

𝑙𝑘
)

−1
𝐾

𝑘=1

] ∗ ∑ 𝜙(𝒙)

𝒙∈𝑆𝑙1,𝑙2,…,𝑙𝐾

, (16) 

kde 𝑆𝑙1,𝑙2,…,𝑙𝐾
 je množina všetkých stavových vektorov 𝒙 s presne 𝑙1, 𝑙2, … , 𝑙𝐾 pracujúcimi 

systémovými komponentmi. V prípade dátového úložiska sa zavedie nasledovný 

predpoklad: HDD 1 a 3 sú typu 1 a HDD 2 a 4 sú typu 2. Tabuľka 2 obsahuje všetky hodnoty 

podpisu prežitia dátového úložiska. Z týchto hodnôt je zjavné, že systém má najhoršiu 

pravdepodobnosť prežitia v situáciách, kedy funguje len jeden HDD. Tiež je možné si 

všimnúť, že podpis prežitia systému predstavuje popis MSS (v ojedinelých prípadoch BSS), 

ktorý ale vzniká na základe typu komponentov z BSS, čo je potom využiteľné pri definovaní 

nových smerových parciálnych derivácií pre podpis prežitia. 

Tabuľka 2 Podpis prežitia dátového úložiska 

Typ 1 (𝑙1) Typ 2 (𝑙2) Φ(𝑙1, 𝑙2) 

0 0 0 

0 1 0.5 

0 2 1 

1 0 0.5 

1 1 1 

1 2 1 

2 0 1 

2 1 1 

2 2 1 
 

Keďže bolo v predošlej časti ukázané, ako je možné využiť DPLD pri výpočtoch IMs, tak 

by bolo vhodné použiť DPLD aj pri podpise prežitia, čím rozšírime jeho použiteľnosť pre 

analýzu spoľahlivosti. Z toho dôvodu sú v tejto práci definované tri nové DPLDs pre podpis 

prežitia. 
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Prvá DPLD pre podpis prežitia indikuje možnosť zlyhania systému pre daný počet 

funkčných komponentov daného typu, ak jeden z komponentov tohto typu zlyhá: 

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘(𝑎𝑎 − 1)
= {

1, Φ(𝑙1, … , 𝑎𝑘, … , 𝑙𝐾) > Φ(𝑙1, … , 𝑎𝑘 − 1, … , 𝑙𝐾) 
0, inak                                                                           

 (17) 

kde 𝑎 ∈ {1,2, … , 𝑛𝑘} je počet pracujúcich komponentov typu 𝑘 ∈ {1,2, … , 𝐾}. Táto parciálna 

derivácia je definovaná len pre (𝑙1, … , 𝑎𝑘, … , 𝑙𝐾) pracujúcich komponentov každého typu 

a je nenulová iba ak Φ(𝑙1, … , 𝑎𝑘, … , 𝑙𝐾) > Φ(𝑙1, … , 𝑎𝑘 − 1, … , 𝑙𝐾). Na základe toho, že 

podpis prežitia je možné chápať ako MSS, je možné túto deriváciu chápať aj ako integrovanú 

smerovú deriváciu deriváciu typu 2, ktorá je popísaná v [31]. Tiež je možné definovať SI 

využívajúci túto DPLD, ktorý je nasledovný:   

SI𝑘,𝑎
↓ = TD (

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘(𝑎𝑎 − 1)
), (18) 

Pričom táto definícia zodpovedá definícii SI𝑖,𝑠
↓  v [31]. Tento SI predstavuje relatívny počet 

situácií, v ktorých je počet fungujúcich komponentov 𝑎 typu 𝑘 kritický pre degradáciu 

systému. Tabuľka 3 obsahuje všetky hodnoty prvej DPLD a tiež SI pre dátové úložisko. 

Z týchto hodnôt je možné usúdiť, že DPLD a SI sú symetrické pre oba typy. Toto je 

spôsobené tým, že oba typy sú rovnako rozmiestnené v topológii systému. Z hodnôt SI je 

možné tiež vidieť, že viac dôležité je zlyhanie komponentu typu 1 (resp. 2) vtedy, keď je 

funkčný už len jeden komponent daného typu.  

Tabuľka 3 Prvá DPLD a SI pre dátové úložisko  

Typ 1 

(𝑙1) 

Typ 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(21)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1(10)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(21)
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2(10)
 

0 0 0 - - - - 

0 1 0.5 - - - 1 

0 2 1 - - 1 - 

1 0 0.5 - 1 - - 

1 1 1 - 1 - 1 

1 2 1 - 0 0 - 

2 0 1 1 - - - 

2 1 1 0 - - 0 

2 2 1 0 - 0 - 

SI𝑘,𝑎
↓

 0.333 0.667 0.333 0.667 
 

 Druhá DPLD pre podpis prežitia naznačuje možnosť zlyhania systému, ak jeden zo 

systémových komponentov daného typu zlyhá: 
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𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘 ↓
= {

1, Φ(𝑙1, … , 𝑙𝑘 , … , 𝑙𝐾) > Φ(𝑙1, … , 𝑙�̃�, … , 𝑙𝐾) 

0, inak
 (19) 

alebo 

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘 ↓
= ⋃

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘(𝑎𝑎 − 1)

𝑛𝑘

𝑎=1

 (20) 

kde 𝑙�̃� = 𝑙𝑘 − 1. Z definície (20) je zrejmé, že táto derivácia je zjednotením (17)  pre každé 

𝑎 = 1,2, … , 𝑛𝑘. Druhú DPLD je možné použiť pre výpočet SI nasledovne:  

SI𝑘
↓ = TD (

𝜕Φ(𝑙1, … , 𝑙𝐾) ↓

𝜕𝑙𝑘 ↓
) =

∑ SI𝑘,𝑎
↓𝑛𝑘

𝑎=1

𝑛𝑘
, (21) 

pričom táto definícia zodpovedá definícii SI𝑖
↓ v [31]. Tento SI predstavuje relatívny počet 

situácií, v ktorých degradácia komponentu typu 𝑘 spôsobí degradáciu systému. Tabuľka 4 

obsahuje všetky hodnoty druhej DPLD a tiež SI pre dátové úložisko. Z týchto hodnôt 

a hlavne SI je ešte viac zrejmá symetrickosť typov komponentov. Táto derivácia a SI 

ponúkajú jasnejší pohľad na vplyv počtu pracujúcich komponentov daného typu na prežitie 

systému.  

Tabuľka 4 Druhá DPLD a SI pre dátové úložisko 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙1 ↓
 

𝜕Φ(𝑙1, 𝑙2) ↓

𝜕𝑙2 ↓
 

0 0 0 - - 

0 1 0.5 - 1 

0 2 1 - 1 

1 0 0.5 1 - 

1 1 1 1 1 

1 2 1 0 0 

2 0 1 1 - 

2 1 1 0 0 

2 2 1 0 0 

SI𝑘
↓

 0.5 0.5 
 

Tretia a posledná DPLD pre podpis prežitia ukazuje mieru zlyhania systému, ak zlyhá 

jeden z komponentov daného typu:  

𝜕Φ(𝑙1, … , 𝑙𝐾) ⇓

𝜕𝑙𝑘 ↓
= {

, Φ(𝑙1, … , 𝑙𝑘 , … , 𝑙𝐾) > Φ(𝑙1, … , 𝑙�̃�, … , 𝑙𝐾) 

0, inak
 (22) 

kde  = Φ(𝑙1, … , 𝑙𝑘, … , 𝑙𝐾) − Φ(𝑙1, … , 𝑙�̃�, … , 𝑙𝐾) pre 𝑙𝑘 = 1, 2, .., nk, 𝑙𝑘 > 𝑙�̃� a 𝑙�̃� = 𝑙𝑘 − 1. 

Ďalšia definícia tejto DPLD je nasledovná: 
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𝜕Φ(𝑙1, … , 𝑙𝐾) ⇓

𝜕𝑙𝑘 ↓
= (𝑛𝑘)−1 ∙ ∑ Φ (

𝜕𝜙(10)

𝜕𝑥𝑖(10)
)

𝑥𝑖∈𝑁𝑘

 (23) 

kde Φ (
𝜕𝜙(10)

𝜕𝑥𝑖(10)
) transformácia každej 

𝜕𝜙(10)

𝜕𝑥𝑖(10)
 na základe podpisu prežitia a 𝑁𝑘 je množina 

všetkých komponentov typu 𝑘. SI pre túto deriváciu predstavuje priemerný úpadok hodnoty 

podpisu prežitia za predpokladu zníženia počtu pracujúcich komponentov typu 𝑘 čo sa dá 

vyjadriť nasledovne: 

SI𝑘
⇓ =

∑
𝜕𝛷(𝒍) ⇓

𝜕𝑙𝑘 ↓𝒍∈𝑆𝑘

𝑛𝑘 ∗ ∏ (𝑛𝑖 + 1)𝑖∈𝑀𝑘

, (24) 

kde 𝒍 = (𝑙1, … , 𝑙𝐾) je vektor premenných, ktoré reprezentujú počet funkčných komponentov 

každého typu, 𝑆𝑘 je množina všetkých vektorov 𝒍, pre ktoré 𝑙𝑘 ∈ {1, 2, . . , 𝑛𝑘} a 𝑙𝑖 ∈

{0,1, 2, . . , 𝑛𝑖} pre 𝑖 = 1, … , 𝑘 − 1, 𝑘 + 1, … , 𝐾 a 𝑀𝑘 je množina  {1, … , 𝑘 − 1, 𝑘 + 1, … , 𝐾}. 

Tabuľka 5 obsahuje všetky hodnoty tretej DPLD a tiež SI pre dátové úložisko. Táto DPLD 

a SI vyjadrujú ešte jasnejší pohľad na dôležitosť typov komponentov pre fungovanie 

systému. 

Tabuľka 5 Tretia DPLD a SI pre dátové úložisko 

Type 1 

(𝑙1) 

Type 2 

(𝑙2) 
Φ(𝑙1, 𝑙2) 

𝜕Φ(𝑙1, 𝑙2) ⇓
𝜕𝑙1 ↓

 
𝜕Φ(𝑙1, 𝑙2) ⇓

𝜕𝑙2 ↓
 

0 0 0 - - 

0 1 0.5 - 0.5 

0 2 1 - 0.5 

1 0 0.5 0.5 - 

1 1 1 0.5 0.5 

1 2 1 0 0 

2 0 1 0.5 - 

2 1 1 0 0 

2 2 1 0 0 

SI𝑘
⇓

 0.25 0.25 
 

V práci sa tiež nachádzajú 4 prípadové štúdie, v ktorých je ukázané využitie tohto 

prístupu pre dátové úložisko, sériovo-paralelný systém, systém s mostovým zapojením 

a vodnú elektráreň.  
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4. Záver 

Súčasný stav a vývoj technológií prináša nové výzvy v teórii spoľahlivosti, ako  

analýza zložitých systémov zložených z mnohých komponentov s rôznym správaním. 

Skúmanie takýchto systémov vyžaduje vývoj nových prístupov, ktoré umožňujú vhodne 

popísať ich vlastnosti, a tiež nových metód, ktoré umožňujú analýzu ich vlastností. Možným 

riešením prvej úlohy je použitie podpisu prežitia [15], ktorý predstavuje kompaktnú formu 

štruktúrnej funkcie systému. Riešením druhej úlohy môže byť použitie metodiky logického 

diferenciálneho počtu, ktorého použitie v časovo nezávislej analýze spoľahlivosti bolo 

ukázané v [13], [14]. Avšak pre riešenie problémov reálneho sveta je veľmi dôležité, aby 

sme boli schopní vykonať časovo závislú analýzu, ktorá nám umožňuje zistiť, ako sa menia 

vlastnosti systému v priebehu času. V tejto práci bolo ukázané, že logický diferenciálny 

počet sa dá použiť aj v časovo závislej analýze spoľahlivosti, ktorá rozširuje možnosti jeho 

aplikácie pri riešení problémov v reálnom svete, a tiež bol navrhnutý koncept, ako je možné 

využiť metodiku logického diferenciálneho počtu pre podpis prežitia, ktorý umožňuje 

rozšíriť jeho uplatniteľnosť na analýzu vlastností systémov zložených z veľkého množstva 

komponentov rôznych typov. Pre dosiahnutie týchto výsledkov bolo potrebné: 

 preskúmať teoretické základy analýzy spoľahlivosti založenej na štruktúrnej funkcii: 

 bolo ukázané, ako je možné použiť štruktúrnu funkciu v analýze 

spoľahlivosti a ako je možné použiť metodológie ako logický diferenciálny 

počet, podpis systému a podpis prežitia, v analýze spoľahlivosti založenej na 

štruktúrnej funkcii; 

 analyzovať prístupy navrhnuté v [13], [14] na výpočet časovo nezávislých IMs na 

základe logického diferenciálneho počtu: 

 bolo ukázané, ako sa dá logický diferenciálny počet použiť pri výpočte 

spoľahlivostných a štruktúrnych IMs; 

 rozšíriť prístup pre výpočet IM nezávislých na čase pri výpočte časovo závislých 

IMs: 

 bolo ukázané, ako sa dá logický diferenciálny počet použiť pri výpočte 

časovo závislých IMs, najmä pre BI, ktorý je základom mnohých ďalších 

časovo závislých IMs, ako napríklad CI, 
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 použiteľnosť nového prístupu bola demonštrovaná na troch prípadových 

štúdiách týkajúcich sa dátového úložiska, flotily dronov a strážneho 

sledovacieho systému; 

 definovať DPLD pre analýzu spoľahlivosti založenej na podpise prežitia a ukázať  

ich význam a použitie v analýze spoľahlivosti: 

 boli navrhnuté tri nové typy DPLD, ktorými je možné skúmať následky 

zlyhania jedného alebo viacerých komponentov daného typu pre systém, 

 boli navrhnuté tri nové SIs, ktoré vyjadrujú dôležitosť komponentov daného 

typu pre fungovanie systému a používajú novo definované DPLD, 

 použiteľnosť nových DPLDs a SIs navrhnutých v tejto práci bola 

demonštrovaná na štyroch prípadových štúdiách zaoberajúcich sa sériovo-

paralelným systémom, dátovým úložiskom, systémom s mostnou topológiou 

a vodnou elektrárňou.  

Ako bolo uvedené vyššie, kľúčovým prínosom tejto práce je dokázanie, že metodika 

logického diferenciálneho počtu sa dá použiť aj v časovo závislej analýze spoľahlivosti a že 

ju možno kombinovať s podpisom prežitia na analýzu toho, ako daný typ komponentov (nie 

konkrétny komponent) ovplyvňuje fungovanie systému. 

Táto práca sa zameriava predovšetkým na IMs založené na koncepte kritickosti (SI, 

BI alebo CI). Existujú však aj iné typy IMs, ktoré sú založené na inom koncepte známom 

ako koncept minimálnych rezov alebo minimálnych ciest. Typickým príkladom takýchto 

IMs je Fussell-Veselyho IM [14], ktorý vyjadruje, ako zlyhanie (oprava) komponentu 

prispieva k zlyhaniu (fungovaniu) systému. Preto bude budúci vývoj zameraný na možnosť 

použitia logického diferenciálneho počtu v časovo závislej analýze založenej na 

minimálnych rezoch a minimálnych cestách a na to, či prístup kombinujúci minimálne rezy 

alebo cesty s časovo závislou analýzou na základe logického diferenciálneho počtu možno 

použiť aj v analýze spoľahlivosti založenej na podpise prežitia. 
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