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Abstrakt v statnom jazyku

Forgd¢ Andrej, Ing.: Analyza spolahlivosti systémov na zdklade pouzitia
viachodnotovej logiky (dizertat¢na praca). Zilinsk4 univerzita v Ziline. Fakulta riadenia a
informatiky. Katedra Informatiky. - Vediica prace: prof. Ing. Elena Zaitseva, PhD. - Zilina
FRI UNIZA, 2020. 102 s.

V tejto praci je navrhnuty rozvoj matematickych metdéd pre manipulaciu so
Struktarnou funkciou. Analyza 'ubovol'ného systému zacina definovanim poctu stavov a
potom pokracuje vyvojom matematického opisu systému. Preto su tieto dva kroky
najdoleZitejSie a aZ po ich spracovani méZeme vykonat’ d’al$iu analyzu zloZitych systémov.

Hlavnym cielom prace je vyvoj a zdokonal'ovanie matematického pristupu analyzy
spol'ahlivosti MSS v kroku vytvarania matematickej interpretacie skimaného systému vo
forme $truktirnej funkcie s uplatnenim matematického pristupu viachodnotovej logiky.

Tento ciel’ nas vedie k preskiimaniu a vyvijaniu metdd na zostrojenie minimalnej a
ortogonalnej formy Strukturnej funkcie dvojstavového a viacstavového systému. Takato
forma reprezentacie umoznuje priamy prechod od logického k pravdepodobnostnému

opisu a nasledne k spol'ahlivosti systému.

KTPicové slova: analyza spol'ahlivosti, Struktirna funkcia, viachodnotova logika



Abstrakt v cudzom jazyku

Forgac Andrej, Ing.: Reliability analysis of systems based on multiple-valued logic
[dissertation thesis]. - University of Zilina; Faculty of Management Science and
Informatics; Department of Informatics. - Supervisor: prof. Ing. Elena Zaitseva, PhD. -
Zilina FRI UNIZA, 2020. pp. 102

In this work, the development of mathematical methods for manipulation of structure
function is proposed. The analysis of any system starts by defining the number of states
and then proceeding to the development of a mathematical description of the system.
Therefore these 2 steps are the most important and only after their processing we can do
further analysis of complex systems.

The principal goal of this work is the development and improvement of mathematical
approach of multi state system reliability analysis in step of construction of mathematical
representation of investigated system in form of the structure function with the application
of the mathematical approach of Multiple-Valued Logic.

This goal causes the investigation for the development of methods to construct the
minimal and orthogonal form of the structure function of binary and multi state system.
Such a form of representation allows moving from a logical to a probabilistic description

and then gets to the reliability of the system.

Key words: Reliability Analysis, Structure Function, Multiple-Valued Logic



Contents

LISE OF FIQUIES ..ottt e e e et e e enneee s 7
LISt OF TADIES ... 8
USEA ACTONYIMS ...ttt ettt ettt ekttt e ettt ettt ettt e et e et e e beeenne e 9
INEFOTUCTION. ...ttt 10
1 Structure function based Methods .........ccooviiiiiiiii e 17
1.1 SEUCEUIE TUNCHION ... 17
1.2 Representation of system based on structure function ..............c.ccccceee. 21
1.2.1 Table repreSentation ...........cccviiieiiieniieiie e 22
1.2.2  Graphical repreSentation............ccoovuveriiiiieiiie e 23
1.2.3 Analytical (formulas) representation.............ccocveveeiiieniieiieenie s, 25

1.3 Reliability indices calculated based on SF..........ccccccovviiiiie i, 26
1.3.1 Availability for BSS.........coooiiiiieee e 26
1.3.2  Availability Tor MSS ... 27
1.3.3  IMpPOrtance MEASUIES ..........uuuriiiiieiiiiiiiiiiiiii e e 29

2 Methods for structure function CONSEIUCTION ..........cccoveiiviiiiieiie e 31
2.1 Boolean AlQehra.........ccoiieiiiie e 31
2.1.1 Basic concepts of sets theory and algebra of logic ............cccccoevveeinnnn, 31
2.1.2 Basic logical Operations.............ccoveeiiieeiiie e 33
2.1.3 Basic definitions and types.........ccceevueeeiiiieeiiiiee e 36

2.2 VIV L e 37
2.2.1 Operations of multivalued 10giC ............cccovveiiiieiii e, 38

2.3 Orthogonalization ............cooueeiiiie e 43
2.3.1 B00Iean fUNCLION ..........ooiiiiiiiie e 44
2.3.2 MVL FUNCHION ...t 45

2.4 MINIMANZATION ... 51
2.4.1 B00Iean fUNCLION ........cvviiiiiiicii e 51



2.4.2 MMV ..o 52

2.4.3 Incompletely specified fFUNCLION............cooiiiiiiiiei 61

3 EXPEIIMENLS. ..o 67
3.1 Minimization of MSS structure funcCtion .............cccocveviiie e 67
3.2 Results for minimalization of generate functions............cccccevvveiienncene 72
3.3 Orthogonalization of @ real SYStem...........cccoeiiiiiiiiniii 73
3.3.1  K-0ut-0f-n cONfIQUIAtioN .........cooiuiiiiiiiie e 73
3.3.2 Complex monitoring system with drone fleet ..............ccccooiviiiiiiennn, 74
3.3.3 Orthogonalization of system for drone fleet...........ccccooveviiiiiiiiennn, 75
CONCIUSION ...t 78
RESUME ...t 80
1 Predmet VYSKUMU .....cooiiiiiiiiiii e 80
2  Metddy zaloZené na Struktirnych funkciach.......ccoocoooiiiiiii, 86
2.1 Struktirna fUNKCIA ...eeeeeceeceeiciciceeee e 86

3 Metddy tvorby Struktirnych fUnKCIi.......coovviiiiiiiiiiiiiiicii e 88
3.1 Bo0leovskd algebra..........ccuieiiiiiiiiiiiiiiii 88
3.2 Viachodnotova algebra ............cooiiviiiiiiiiiiiiii e 88
3.3 OrtOZONAIZACIA ...vvvvvviiiiiie e 89
3.3.1 Bo00lovska fUnKCia........uueeviiiiiiiiiiiiiiiiiiiee i 90
3.3.2 IMVL FUNKCIA . 90

3.4 MiINIMALIZACIA....eeii it 91
3.4.1 Bo00leovsKa fUNKCIA . ...uuvviiiiiiiiiiiiiiiiiiiice st 91
3.4.2 IMVL FUNKCIA ..o 91

4 EXPEIIMENLY oottt ettt et ae e et e e et e e e eba e e ab e e arae e 92
RETEIENCES. ... 95
LiSt OF PUDHCALIONS: ......eeiieiiieeie s 101



List of Figures

Figure 1 Binary and multi State SYSTEM .........cooviiiiieiiiiie e 11
Figure 2 The transition from the logical form to the reliability of the system ................. 15
Figure 3 The MDD of the structure function of a laparoscopic surgery procedure success 24
Figure 4 The BDD of the structure function of laparoscopic surgery procedure success... 25

Figure 5 System wWith 3 COMPONENES ........ooiiiiiiiiie s 27
Figure 6 MSS With 3 COMPONENTS .......eiiiiiiieiiieiec e 28
Figure 7 Operation MAX for ternary (m = 3) two-variable elementary functions. ............ 39
Figure 8 Operation MIN for ternary (m = 3) two-variable elementary functions............... 39

Figure 9 Operation MOD-PROD for ternary (m = 3) two-variable elementary functions.. 39
Figure 10 Operation MODSUM for ternary (m = 3) two-variable elementary functions. .. 40
Figure 11 Operation TSUM for ternary (m = 3) two-variable elementary functions.......... 40
Figure 12 Operation TPROD for ternary (m = 3) two-variable elementary functions........ 40

Figure 13 Operation Complement for ternary (m = 3) two-variable elementary functions. 41

Figure 14 Parallel system with its truth table ............ccccoooiii e, 44
Figure 15 First Step Of @XPanSION .........eeiuireiiiiee e see e e e e e e 45
Figure 16 Second Step Of @XPANSION........cuuveiiiireiiiieeeiee e ciee e see e e e e e e e 46
Figure 17 Process Of @XPanSION .........ueeiuureiiiieeiiieeesieeesieeesiee e tee e s stae e snaeeesnaeeesneeesnnas 46
Figure 18 Final look of expansion of ternary VECIOr ...........cccccvveviieeiiiee e 47
Figure 19 Non-orthogonal form: matrix of ternary VEeCtors...........cccceevvveiiivecviie e, 47
Figure 20 Process of orthogonalization for second conjunction.............ccccccveeviveeiiieeennnen. 50
Figure 21 Process of orthogonalization for third conjunction .............ccccovvveeiiie e, 50
Figure 22 Structure function of a system with 3 truth sub-tables...............cc.ccoooeeiin. 68
Figure 23 Minimization of the truth sub-table for the structure function value O .............. 69
Figure 24 Minimization of the truth sub-table for the structure function value 1 .............. 70
Figure 25 Minimization of the truth sub-table for the structure function value 2 .............. 70
Figure 26 Multi-valued Decision Diagram...........cccccciueeeiiieeeiiiiee e 71
Figure 27 Decrease of implicants for generate functions............ccccceevveiviee e, 72
Figure 28 Processing of the system defined by structure function .............cc.ccceceeiieennn. 73
Figure 29 RBD for k-out-of-n configuration .............cccccoovieeiiii i 74
Figure 30 RBD for drone fleet.........c.vvviiiiiiiie e 75



List of Tables

Table 1 The Structure Function of Laparoscopic Surgery Procedure Success................... 18

Table 2 The completely specified Structure Function of Laparoscopic Surgery Procedure

........................................................................................................................................ 19
Table 3 Structure Function of Laparoscopic Surgery Procedure Success for BSS............ 19
Table 4 Availability for SPeCific VAIUES. ........c.cooiiiiiiiiii e 21
Table 5 Interpretation of the matrix R as DNF ..........cooiiiiiiiiiiccee e 23
Table 6 EXample OF IMISS ..o 30
Table 7 INItal MAITIX T ..viieie et e e nrae e e e eesneeeeas 49
Table 8 Result of orthogonalization of initial MAatrixX T.........cccevvviiiiiiieiie s 49
Table 9 Example of structure function defined by a truth table................cccooiiiiiinnn 56
Table 10 LOOKUP taADIE ........ooiiiiee e 57
Table 11 Implicants from the previous lookup table ..., 58
Table 12 New I00KUP tADIE ........ooiee et 58
Table 13 New lookup table in the last step of the procedure of searching of prime
1] o] L To%: g1 £ SRS 59
Table 14 Table Of IMPIICANTS........coiiieiie e 59
Table 15 Table OF COVEIING ...ccvvieiiiie et e e rea e 60
Table 16 Table of resulting imMPlICANES ..........ccoiiiiiiie e 60
Table 17 Example of structure function incompletely defined by a truth table.................. 62
Table 18 Redefined states in red CellS ...t 63
Table 19 LOOKUP tADIE ........oeeeeeecee e 63
Table 20 Implicants from the previous lookup table............cccooiiiiiiiii e, 64
Table 21 New I00KUP taDIE ........oooeii e 64
Table 22 Table of resulting IMPlICANES ..........ccoiiiiiiie e 65
Table 23 Table OF COVEIING ...cccvveiiiiie e 66
Table 24 Final orthogonal CONJUNCLIONS .........cccviiiiiee e 76
Table 25 Example Of XPANSION .........coiuiiiiiiec e 77
Table 26 Example Of XPANSION .........coiuiiiiiiec et 77



Used Acronyms

MSS - Multi-State System

BSS - Binary-State System

MVL - Multiple-valued logic

MDD - Multi-Valued Decision Diagram
BDD - Binary Decision Diagram

IM - Importance Measures

SI - Structural Importance

DNF - Disjunctive normal form

SDNF — perfect disjunctive normal form
ODNF — Orthogonal disjunctive normal form
BDNF - Non-repetitive disjunctive normal form
PF - Probabilistic function

RBD - Reliability block diagram

CU - Control unit

MD - Main drone

RD - Redundant drone



Introduction

The present status and level of technology cause new trends and conditions in the
development of Reliability Engineering. There is a wide range of tasks which are not
typically for the reliability engineering which cannot be decided by the application of
traditional methods. For example, such tasks are assessing the risk of a terrorist attack
(Levitin 2009), business analysis reliability (Solojentsev 2009), estimate the risk and
consequences of the technological accidents (Zio 2009), and many others. At the same
time modern technologies allow for a virtually fail-free operation of technical part of
complex systems. These conditions cause modification of traditional approaches and
methods and development of new methods in Reliability Engineering (Birolini 2014,
Ushakov 2006, Zio 2009). Prof. E. Zio in the review of Reliability Engineering (Zio 2009)
defined reliability engineering as “a well-established, multi-disciplinary scientific
discipline which aims at providing an ensemble of formal methods to investigate the
uncertain boundaries between system operation and failure, by addressing the following

questions:

e Why systems fail, e.g. by using the concepts of reliability physics to discover
causes and mechanisms of failure and to identify consequences;

e How to develop reliable systems, e.g. by reliability-based design;

e How to measure and test reliability in design, operation and management;

e How to maintain systems reliable, by maintenance, fault diagnosis and
prognosis.”

According to the analysis in (Zio 2009) old problems of reliability engineering as:
e the mathematical representation of the system;

e the system quantification analysis;
e the representation, propagation and quantification of the uncertainty in system
behavior,

should be considered for the new condition. Therefore we can see that the investigation of
mathematical representation of the system is a relevant problem of reliability engineering.
These problems cause that tasks have become actual again. Principal steps for the
development of the mathematical representation of the system in reliability engineering are
(Bris 2014, Aven 2017):
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the definition of the number of performance levels for a system model;
the mathematical representation of the system model;
the quantification of the system model (calculation of indices and measures);

Eal A

the measuring of the system behavior.

The first and second step in tasks of reliability analysis correlates with the initial
data. The goal of these steps is to construct the mathematical model for reliability
evaluation. Therefore these two steps are considered in this work first of all.

In the first step, the approach for a general representation of the system is defined.
There are two approaches (Figure 1) for system representation that are description based
on Multi-State System (MSS) (Barlow, 1978) and Binary-State System (BSS) (Barlow,
1975). BSS allows representing the initial system as a mathematical model with two
possible states that are a complete failure and perfect working. MSS permits to consider
more than only two states in the behavior of system reliability or availability.

According to (Lisnianski, 2003) conceptions as availability, reliability, and system
states can be expressed as “performance level” for MSS. The use of MSS allows analysis
of system reliability in more detail, but this analysis is more complicated (Natvig 2010,
Lisnianski 2003).

System reliability

Perfect functioning ========s%wii777 ; :
Functioning = (
Partly functioning h"’*. \
Completely failed L =
N~ time
Binary-State Svstem Multi-State System

Figure 1 Binary and multi state system

MSS doesn’t use in reliability analysis widely because it has two restrictions. First of
them is computational complexity (Lisnianski, 2003). The introduction in the analysis of
additional system performance levels and components states causes dramatically increase
in the dimension of this mathematical representation. The second is the lack of effective

methods and algorithms for estimation (qualitative and quantitative analysis) of MSS
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(Aven 2014, Birolini 2014, Zio 2009). Therefore the investigation and development of the
MSS reliability analysis is an actual problem in Reliability Engineering now.

The algorithms for MSS evaluation depend on the mathematical methods used for
system analysis. In (Lisnianski, 2003) authors have indicated four principal groups of
mathematical methods of MSS analysis that cause MSS type as structure function, Markov
model, universal generation function and mathematical model based on Monte-Carlo
simulation. Each of these types of MSS has some advantages. The important advantages of
structure function are simplicity of construction, the possibility of application for the
system with structural complexity, and simple methods for reliability indices calculation
based on the methods of Algebra logic.

A typical approach for MSS structure function analysis is a generalization of
methods for BSS structure function analysis that are based on Boolean logic as a rule
(Barlow 1975, Barlow 1978, Birolini 2014). However, this approach does not allow using
all details of MSS. Another approach is based on the application of Multiple-Valued Logic
(MVL) mathematical methods for MSS structure function analysis (Zaitseva 2017,
Zaitseva 2012, Kvassay 2017). According to this approach, the structure function is
explained as MVL function (Zaitseva 2017). The methods based on MVL mathematical
methods of MSS structure function manipulation and analysis are proposed and considered
for system availability calculation in (Zaitseva 2017, Zaitseva 2015), analysis of critical
system states in (Kvassay 2017, Kvassay 2014), importance analysis (Zaitseva 2012,
Zaitseva 2015).

The exact mathematical representation is developed in the second step in reliability
analysis that is caused by the mathematical methods that will be used for the evaluation of
the investigated object/system. Structure function methods of MSS and BSS reliability
analysis being older and are widely used in engineering practice and different applications
(Barlow 1978, Murchland 1975). Important advantages of the structure function are
(Kolowrocki 2014, Lisnianski 2018, Natvig 2010):

e the definition of univalent correlation of system performance level and
components states;
e the representation of the system of any structural complexity;

o the complexity of system representation is not dependent on its structure.

12



An important problem for further development and the use of MSS is the insufficient
mathematical basis for MSS analysis.

The structure function is one of the basic representations of MSS. However, the
dimension of the structure function increases critically depending on the number of system
components (Zaitseva, 2013). The development of structure function methods should be
based on orthogonalization and minimalization. In order to use the structural function
without complications with probability theory, the logical function of structure function
representation must be orthogonal and minimal (Solojentsev, 2009).

The mathematical representation type is caused by the detail (accuracy) of system
evaluation and mathematical approach that is used for the calculation of reliability indices
and measures.

The quantification of a system in the third step expects calculation of individual
system reliability indices and measures, such as Reliability function, failure rate, mean
time to failure, mean time to repair, mean time between failures, fault coverage,
availability, unavailability, importance measures, etc. (Lisnianski, 2010). The
mathematical representation of system and chosen methods in second step determine the
algorithms and methods for calculation of these indices and measures. Algorithms and
methods for computation of system reliability indices and measures depend on
representation by the structure function are considered in (Murchland, 1975; Barlow 1978;
Natvig 2010).

After we calculate system reliability indices and measures, we could analyze them.
Measurement and improvement of system reliability is done in the fourth step to develop
strategies for increasing system reliability, maintainability and other reliability properties
of the system.

As it follows from the analysis of the principal steps of mathematical representation
construction, the mathematical representation of any system is started by defining the
number of states and the development of a mathematical description of the system, which
closely correlates with the mathematical methods used for the system evaluation. Therefore
these 2 steps are the most important for us and only after their processing we can do further
analysis of complex systems.

In this work, the analysis of BSS and MSS are considered. The analysis of possible
mathematical descriptions proposed above allows us to choose the structure function,
because this mathematical description can be constructed for the system of any structural

complexity (Griffith 1980, Lisnianski & Levitin 2003). The structure function defines an
13



univalent correlation of a system performance level and component states. The structure
function based methods have been developed by many investigations (Levitin, 2009, Zio
2019, Ushakov 2006). The mathematical methods for the structure function evaluation are
often based on the methods of algebra logic. In case of BSS, these methods are developed
with the application of Boolean Logic (Wood 1985, Schneeweiss 2009, Ryabinin 1981).
The MSS structure function evaluation is implemented using Multiple-Valued Logic
(Zaitseva 2017, Rauzy, 2001). The important condition of most of the structure function
based methods is a representation of structure function as the orthogonal form
(Schneeweiss 2009, Ryabinin 1981, Rauzy, 2001). This form is important for the structure
function representation because it allows a very simple transformation of logical
interpretation of the structure function into the probability form (Ryabinin 1981, Griffith
1980, Reinske & Ushakov1988, Schneeweiss 2009, Sellers & Singpurwalla 2008). Most
reliability indices and measures (availability, unavailability, importance measures and
other) can be computed based on the probability form only (Figure 2). Therefore, the
computation of reliability indices and measures need the probability form of the structure
function, which can be obtained based on a logical orthogonal form of the structure
function. It causes the development of algorithms for orthogonalization of initial structure
function (Ryabinin 1981).

The problem of the orthogonalization of logical function is a typical problem in
algebra logic (Miller & Aaron 2008, Stankovic, Astola & Moraga 2012). There are some
orthogonal forms for logical functions. One of well-known forms is perfect disjunctive
normal form. The important disadvantage of this form is large dimension that agrees with a
number of non-zero values of Boolean function (Ryabinin 1981, Smirnov & Gajdamovich
2001, Rausand & Hoyland 2007). Therefore, the logical function is typically minimizing
and then orthogonalization is implemented for such function (Ryabinin 1981, Wood 1985).
There are some methods for the orthogonalization of Boolean function that can be
effectively used for the forming of a orthogonal structure function in reliability analysis of
BSS. In particular, it is a method proposed by Prof. A. Ryabinin in (Ryabinin 1981) based
on the construction of the special matrix transformation. But this method application
cannot be well used for the function of a large dimension. According to an evaluation in
(Ryabinin 1981), this method can be used for function with 20 variables, that means the
analysis of BSS with 20 components only. The analysis of other investigations in
orthogonalization of logical function shows, that the approach proposed by Prof. A.

Zakrevskij and Prof. Yu. Pottosin in (Zakrevskij & Pottosin 2005) can be used for function

14



with a large dimension and can be adopted for structure function reliability analysis. But
this method has been developed for the Boolean function only. We need to note that the
problem of orthogonalization in Multiple-Valued Logic is not decided.

The problem of orthogonalization in Multiple-Valued Logic correlates closely with
the problem of logical function minimization because the Multiple-Valued Logic functions
have large dimension (Petrik 2008). Therefore, the MSS structure function
orthogonalization should include the minimization of this function in case this function is
formed as a disjunctive normal form. Some adaptation and interpretation of the
orthogonalization problem similarly to Boolean logic have been proposed by Prof. M.
Perkowski (Perkowski 1992). These investigations should be developed for the application
in the reliability analysis of MSS. Therefore, orthogonalization is a relevant problem that
should be considered in the actual investigation of reliability engineering and first of all,
this problem should be considered in the analysis of MSS (Sellers & Singpurwalla 2008).

Completely
defined
function

Incompletely
defined
function

Logic form
Orthogonal
form
\ Probability

\ ﬁiﬁw

Y
\l' Reliability of the ]
system

Figure 2 The transition from the logical form to the reliability of the system

The principal goal of this work is the development and improvement of a
mathematical approach of MSS reliability analysis in step of the construction of
mathematical representation of investigated system in form of the structure function with
the application of the mathematical approach of Multiple-Valued Logic. This goal causes
the investigation for the development of methods to construct the orthogonal form of the
structure function of BSS and MSS. The development of such method results decision

tasks:
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continuation investigation in (Zakrevskij & Pottosin 2005) and development
algorithm for the orthogonalization of BSS structure function based on the method
proposed by authors in (Zakrevskij & Pottosin 2005);

analysis of the conception of orthogonal form for the Multiple-Valued Logic
function and definition of the conception of the orthogonalization for MSS
structure function;

development of algorithms for the MSS structure function minimization and
orthogonalization;

validation of the developed algorithms for BSS and MSS orthogonalization on
selected systems (BSS structure functions);

analysis of the efficiency of the proposed algorithms.

16



1 Structure function based methods

The quantitative reliability evaluation of any system is possible based on a
mathematical representation of the investigated system.

1.1 Structure function

Structure function as a mathematical model has historically been designed as the
first model, and the performance level of the system is defined depending on all
component states. The structure function is one of the possible mathematical models
representing real systems in the theory of Reliability Engineering. The structure function
declares a system performance level (reliability/availability) depending on its components
states (Natvig 2010, Zio 2009):

HX)=(Xe,..., X): £0,....mg -1}x...x{0,...,my -13—>10,....M -1}, (1)

where ¢(x) is the state of the system from its failure (¢#(x) = 0) to perfect functionality
(#(xX) =M - 1); x = (Xa,..., Xn) IS a State vector; x; is the state of the component that changes
from failure state (x; = 0) to perfect functionality (xj = m; -1).

A system with structure function (1) is a MSS and allows us to represent and explore
some performance levels of the system. If M = m; = 2 structure function (1) represents a
BSS that allows us to analyze two system states: failure and perfect functioning. The
structure function (1) can be represented as a classification model. According to this
representation, all vectors of system states (xi, ..., Xn) are divided into M classes (Zaitseva,
2016).

According to the mathematical definition (1) the variable of the structure function is
interpreted as a component of the system. The structure function allows the representation
of different systems.

The structure function has different properties depending on the type of system
examined. In this work, coherent systems are considered, i.e.:

» structure function is monotone: #((s -1)i, X) < #(si, X) for any i € {1,..., n}
ands € {1,..., m;-1};
» components contained in the system are not irrelevant, where ¢(s;,

x)=(x1,...,Xi-1,8,Xi+1,. . .,Xn).
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Evaluation of MSS based on the structural function expects an expression of the
probability of individual states for each component of the system.

For illustration how structure function can be used for the representation of human
impact let to represent a simple laparoscopic surgery procedure for reliability evaluation.
According to (Levashenko, 2016), this procedure can be interpreted as MSS that consists
of four components (n = 4): device (a laparoscopic robotic surgery machine (Patel, 2009)),
two doctors (anesthesiologist and surgeon) and a nurse. This system as MSS introduces the
numbers of states for every component and number of performance levels of the system.
The function of the simple laparoscopic surgery procedure can be interpreted as a multiple-
valued logic (MVL) function of four variables (n = 4) with three values (m = 3). Let this
system has three performance levels: 0 — non-operational (fatal medical error); 1 — partially
operational (some imperfection); 2 — fully operational (surgery without any complication).
The device (x1) has three states: 0 — failure; 1 — partially functioning; 2 — functioning. The
work of anesthesiologist (x2), surgeon (x3) and the nurse (x;) can be modeled both by 3
levels, i.e.: 0 — (the fatal error); 1 — (sufficient); 2 — (perfect or the work without any
complication).

The structure function of the system of this simplified version of laparoscopic
surgery is composed of 81 situations (state vectors). The structure function according to
expert knowledge and evaluations can be represented by Table 2 (Zaitseva, 2016). In the
case of incompletely specified initial data, some of the state vectors are not indicated. For
example, we can suppose that information about this system is incomplete and represented
by 66 states only (Table 1).

Table 1 The Structure Function of Laparoscopic Surgery Procedure Success

X3Xs4 00 01 02 10 11 12 20 21 22
X1X2

00
01
02
10
11
12
20
21
22

¥ X X DN O OO

OO O OO OOO0OOo
OO * OO OO %O
PP O O 0O0O0O0O0
PP O PFPOOOOO
* PO PP OOO %
NNEFE ¥ O OO0 *
PP O *$OO0O0O0O0O
NN NN OO %
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Table 2 The completely specified Structure Function of Laparoscopic Surgery Procedure

Success
X3Xs 00 01 02 10 11 12 20 21 22

X1X2

00 0 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0 0 0
02 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 1
11 0 0 0 0 1 2 0 2 2
12 0 0 0 1 1 1 1 2 2
20 0 0 0 0 0 1 0 0 1
21 0 0 1 1 1 2 1 2 2
22 0 0 1 1 1 2 1 2 2

One more definition of the structure function Laparoscopic Surgery Procedure
Success can be in the form of BSS. In this case, all system components (a laparoscopic
robotic surgery machine, anesthesiologist, surgeon and nurse) behavior have two states

only: that means successful function or error. This BSS is shown in Table 3.

Table 3 Structure Function of Laparoscopic Surgery Procedure Success for BSS

X3Xs 00 01 10 11

X1X2

00 0 0 0 0
01 0 0 0 1
10 0 0 0 0
11 0 0 1 1

Methods of assessing the reliability of a system based on the representation of
structure functions are firmly established. These methods are deterministic and are used in
quantitative and qualitative analysis. The structure function can be created based on fully
specified data that indicates the correlations of all components and their states. Such data
for most real-world systems is incomplete and uncertain. A typical example is human
factor analysis and evaluation.

The BSS structure function is interpreted as the Boolean function. This function
describes the logical linking of elements in the system, but does not allow analyzing

probability conditions - it is a logic function - the exact function does not allow us to say
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anything about system reliability — the probability that system performs its functions
during a defined time assuming that it worked at the beginning. It is important to move
from logical form through an orthogonal form to probability form and get to the reliability
of the system. MSS will be interpreted as a function of multi-value logic.

The probability of system performance level is defined for every performance level
as:

A =Prip() =j},j=1,..,.M~-1. )

In papers (Barlow 1978, Hudson 1983, Lisnianski 2003) authors showed that any
system state s (j = 1,..., M -1) for fixed components state vector of a coherent MSS
according to the assumption can be calculated as the product of probabilities of
components states:

pis = Pr{x; =s},s =0,..,m; — 1. (3)

As was shown in the investigation (Barlow 1978, Hudson 1983), the structure
function (1) can be used to calculate the system availability (2) if the variables of the
structure function describe the independent events. It is possible if the structure function is
canonical and orthogonal form. Two theorems of probability theory are used for the
calculation of the system availability (2):

1. The probability of the product of independent events a and b (simultaneous
happening) is equal to the product of the probabilities of these events:
Pr(ab) = Pr(a)Pr(b). 4)

2. The probability of the sum of incompatible events a and b (at least one of them
happening) is equal to the sum of the probabilities of these events:
Pr(a + b) = Pr(a) + Pr(b). (5)

Practical application of two theorems (4) and (5) supposes the change of the
variables x; (i = 1, ..., n) of the structure function (1) by the probabilities of system
components states (3) if the structure function is described as canonical and orthogonal
form. In (Caldarola, 1980) it is shown that in the interpretation of coherent MSSs, the
probability of system state j (j = 0, ..., m—1) can be computed for fixed state vector x =
(x1,...,xn) as a product of probabilities Pr{x;= s} of components states, where s =0, ...,
m;—1 defines possible states of component i. One of the conditions of the non-coherent

system is that the variables are independent of each other. As we consider the variables,
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their functionality is independent of each other and therefore we can use the rule (4) to
analyze them. That means that if we work with 2 variables and calculate the probability of
the state when the first variable failed and the second variable is in state 1 (working), we
just use the probability of the first variable (failed) and the probability of the second
variable (working) and we apply multiplication because these variables are independent
events. If it is considered to take all possible states for which the system will fail, these
states must be incompatible (5) among each other and that means one variable cannot be in
the same state for a working and fail system.

For example, the availability of the Laparoscopic Surgery Procedure Success for
BSS is defined according to Table 3:

A1 = P1o-P21-Par-Par + P11-P21-P3r-Pao + P11-P21-P3i-Par = P21-Par- (P11 + Par - P11-Pazy  (6)

Availability (6) can be calculated for various probability values of the components in

structure function, for instance in Table 4 is shown for specific values.

Table 4 Availability for specific values.

P21 | P31 | P1r | Par | Availability (A;)
0,2 |0,15| 0,3 | 0,25 0,01425

030501 01 0,03325
0,7 { 03] 09 | 0,55 0,20055
085| 06 [0,15] 0,3 0,20655

0,2 {0,15|0,75| 0,85 0,028875

Therefore, an important aspect of the system availability calculation is the
construction of the canonical and orthogonal form of the structure function. This aspect can
be considered based on the methods of the Boolean Logic for BSS and based on the
Multiple-Valued Logic for MSS.

1.2 Representation of system based on structure function
The structure function can be represented in different forms. As a rule, for the
structure function we use the typical tree representations in Reliability Engineering:
e Table
e Graphical

e Analytical (formulas)
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1.2.1 Table representation

The table representation of the Boolean or BSS structure function is possible in a
form of the truth table or truth table column vector. The table form of representation of a
structure function is orthogonal. The truth table is a representation of all possible values of
functions depending on all possible values of function variables. For example, Table 1, 2
(for MSS), and 3 (for BSS) are typical truth tables for the structure function of
Laparoscopic Surgery Procedure Success. More steps that contain an approach to the
Boolean truth table (Mohd, 2006) are:

1. Identify all major system components where the fault leads to a system failure
and its collapse.

2. Creating a reliability model for a system that demonstrates how the components
or modules are connected.

3. Determining the probability of success, P (Success) and the probability of
failure, P (Failure) components or modules from its failure rate, (A).

4. The state of the system is identified in relation to the states of its components. If
the system identifies success, the result is that system up, or system identifies

failure, the result is that system down.

Another representation of a structure function of BSS by table could be by a ternary
matrix. Consider a certain technical system, the correct functioning of which is influenced
by certain events, called a set of basic events D = {d;, dy, ..., dn}. They are mapped by
Boolean variables di, d, ..., dn, Which take the value 1 if and only if the related event
happens. On the set D of basic events, the critical sets Ki, Ky, ..., K; are defined, the
minimal subsets of D such events, the simultaneous occurrence of which breaks the correct
functioning of the system. Let the events forming a certain set of K be realized
simultaneously. The system fails if and only if among the given critical sets there is a set K;
of them that is contained in K: Kj < K. From the minimality of critical sets, it follows that
they do not absorb each other. Each critical set Kj can be represented as a positive
elementary conjunction of k; variables from the set D = {d1, dy, ..., dw }. Then the complex

event R we expressed by disjunction of these conjunctions:

R=kivkyv..vk. (7)

This formula represents a monotonic Boolean function. It is suitable to represent it

by a ternary matrix T whose columns correspond to basic events and the rows represent (by
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units) distinct critical sets K;. They can also be interpreted as the corresponding positive
elementary conjunctions k; and their characteristic sets are given by intervals of the space
of Boolean variables di, d, ..., dm.

For example, in such an interpretation, the matrix R can be considered as DNF.

Table 5 Interpretation of the matrix R as DNF

dy ds ds da ds ds dr

] ] ] 1 - 1 - 1

- - - 1 1 - - 2
R= 1 1 - ; - ; 1 3

- 1 1 1 - ; ; 4

1 ] 1 - - 1 1 5

- 1 - - 1 1 - 6

This DNF contains information that the operability of the technical system in

question depends on the events dj, d, ds, d4, ds, ds, d7 forming critical sets:
{dsds}, {ds, ds}, {ds,dp,d7}, {do,d3 s}, {di,ds, s, 07}, {do,ds5, 6} (8)

For example, if d;, dp, and d; occur at the same time, the system will continue
properly. If ds;, d4, and ds occur, the system fails because a critical set {ds, ds} is
performed.

1.2.2 Graphical representation

Graphical representation of the structure function can be as:

» Multi-Valued networks
» Cube-based representation

» Decision trees and diagrams
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One of often the used representations of a structure function in Reliability
Engineering is a decision diagram. In the case of MSS, it is Multi-Valued Decision
Diagram (MDD) and for the BSS structure function is used Binary Decision Diagram
(BDD). These representations in Algebra Logic have been introduced by (Akers, 1978).
Both BDD and MDD form of representation of structure function is orthogonal.

An MDD is a directed acyclic graph of structure function representation (Zaitseva,
2012). The graph has m sink nodes, labelled from 0 to (m-1), representing m corresponding
constant from 0 to (m-1). As a rule, these nodes show as a rectangular block in MDD. Each
non-sink node is labelled with a structure function variable x and has m outgoing edges.
Variables are in a round block of MDD. In an MSS reliability analysis, the sink node is
interpreted as a system reliability state from 0 to (m-1) and the non-sink node presents
either a system component. Each non-sink node has m edges, and the first (left) is labelled
the “0” edge and agrees with component fail, and the m-th last outgoing edge is labelled
“m-1” edge and presents the perfect operation state of system component.

Paths from the top non-sink node to zero-sink node are used to analyse an MSS
failure. Paths from the top non-sink node to another sink node are considered for system
repair by means of MDD. The example of MDD for a laparoscopic surgery procedure

Success is shown in Figure 3. The BDD of this system is presented in Figure 4.

Figure 3 The MDD of the structure function of a laparoscopic surgery procedure

SUCCesS
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Figure 4 The BDD of the structure function of laparoscopic surgery procedure

SUCCesSs

1.2.3 Analytical (formulas) representation
The next type of a structure function representation is the description of the structure

function by the different types of formulas:

» Multi-Valued sum-of-product
» Reed-Muller Expansion

» Arithmetic representation

We need to note that the analytical representation of MSS structure function is a
complex problem because the dimension of this function increases extremely depending on
the number of component states and the number of components. For example, the structure
function of laparoscopic surgery procedure success is represented by the logical

polynomial form as:

P(x) = x5 x3 X2 + 22, X35 + 2x5x5 x4 + X5XEXZ + 2x; X5 X3 + 2X; X, X3 X, +
2X1X,X3X5 + 2X1X,X5 4+ 2X1 Xy X3x,4 + Xq X5X5XZ 4 Xy X5x3 + Xy X5x3 X1 X5X5 X5 +
Xy X5x5 4+ x; X5x3x, + 2xPx3 X, + 2xExg xZ 4 2xPx35x, + 2xF7xy x5 +

2X%x, X3 X4 + X¥xy X3 X2+ 2xFx, X3x, 4+ xTxy X5xF + xPxixs + 2xPxEx3 x, +

2xixix3x, + 2x¥x5x2xZ (mod 3), 9)

and at the same the structure function of BSS for this system in logical polynomial form is:
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P (X) = x1x3%4 + X1X3X4 + X1X2X3%, (MO 2). (10)

Therefore, BSS is acceptable for the system representation if the detailed behavior of
the components and the system reliability is not required. The analytical form for a BSS
structure function must be canonical and orthogonal. The canonical form guarantees a
single-valued mathematical representation and the orthogonal form permits us to use a
probabilistic evaluation. The orthogonal form is required in order to calculate the
reliability.

The BSS structure function is interpreted as a Boolean function (Schneeweiss 2009,
Dutuit 2001). Therefore, the background of the Boolean algebra for reliability analysis
should be considered in this work.

1.3 Reliability indices calculated based on SF

1.3.1 Availability for BSS

The system availability is a significant reliability measure, characterized as a
probability that system works. For a BSS availability can be computed build on structure

function as:

A =Pr{¢(x) = 1}. (12)

In reverse, a system unavailability is defined as a probability that the system fails.

Unavailability of the system can be calculate based on a structure function as:
U=1-A=Pr{¢(x) = 0}. (12)

Example: We have a system with 3 components x4, x,, x5 , which is defined in Figure 5 by

a structure function represented in the form of table.
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Figure 5 System with 3 components

1. First we need to indicate the structure function values 1: ¢(x) =1
Inour case, itis ¢(x) =1: (1,0, 1), (1,1,0)and (1, 1, 1).
2. Then we add the state vectors (sets of variables values) to the sum: (x;...x,)=1.
Pr {Z(x1...xn)=1}: Pr{(1,0,1) + (1,1,0) + (1,1,1)}
3. Then we compute the probability of every state vector: Pr{(xi...xn)}
Pr{(xi...xn)} = Pr{x}- ... - Pr{x,}
Pr{xi}= pi, if x;=1 and Pr{xi}= q;, if x=0
Inour case, it is: Pr{(1,0,1)} = p1- Gz- ps, Pr{(1,1,0)} = pa- p2- 43 Pr{(1,1,1)} = p1- p2- ps
4. Finally, we can computed the availability as:
A = P10z P3 + Pr- P2r Qs + P1- P2r P3 = P1- G2- P3 + Pr P2 (s + Ps) = Pr (G2 Ps + P2)
A =pr- (P2 + ps + P2 P3)

1.3.2 Availability for MSS
Availability for MSS must be calculated separately for each system performance
level. The probability of the system performance level can be computed by a formula (2).
Then, the unavailability of the system can be defined as the probability of the
performance level when system fails, it is for j=0 and for this reason, the unavailability of

the system can be represented as follows:

U= A, =Pr{¢p(x) = 0}. (14)
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Availability for MSS is the probability that system reliability is greater than or equal to the

system performance level j:
A =Pr{p(x) = j}= ¥/ _ A, forj=1,..,m—1. (15)

Example:
We have an MSS with 3 components x,, x,, x5, which is defined in Figure 6 by a
structure function represented in form of a table. We want to calculate the availability A,

of for the performance level j=2.

Xy | X2 | X3 ('P(x)

0 [0 |0 |0
0 [0 |1 |0
0 |1 |0 |0
X, 0 [T |1 |0
¥, I |0 [0 |0
R
x3
I |1 [0 |1

1 1 1 2
2 10 0 0
2 10 1 1
2 1 0 1
2 1 1 2

Figure 6 MSS with 3 components

1. First, we must calculate the probability of system for each performance level it is
for P, and P,
For instance, P, is computed as follows:
1.1  First, we indicate the structure function values j: ¢(X) = j
Inour case, itis ¢(x) =2: (1, 1, 1) and (2, 1, 1).
1.2 Then we add to sum the state vectors (sets of variables values):
(X1...%n) = J.
Pr{Z(x1...xn)=2}: Pr{(1,1,1) + (2,1,1) }

1.3  Finally, we compute the probability of every state vector: Pr{(xi...x)}
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Pr{(X1...xn)} = Pr{x:}- ... - Pr{x,}

Pr{x}= pis, If X=s,s={0, ..., m;-1}

In our case, it is: Pr{(1,1,1)} = p11- p21- pa1, Pr{(2,1,1)} = p12- po1- pa1
1.4 Finally, P = p11- P21+ Pa1 + Pr2* P21+ Par = Par- Par-( Purt P12)

With the same procedure we calculate:

P1 = (P11t p12) (P20 P31 + P21- P3o)

2. Now we can represent the availability A;, A,:
A1 =Py = (put p12) -(P20- P31 + P21- Pso)
Az = Py + P2 =( pu1t P12) -(P20- P31 + P21+ Pot Pa1- Psi)
3. We can also calculate Py and then represent the unavailability U:

U = Po = p1ot+ P2o- P30 -(P11 + P12)

1.3.3 Importance Measures

Every component of the system has various impacts on system performance.
Importance analysis analyzes the calculation of the impact of these components on the
system performance. Importance analysis could be quantitative and qualitative. The
qualitative analysis examines situations which can improve or downgrade of the system
performance. Quantitative analysis is focused on evaluating the importance of system
components regarding system performance. Determination of components with the highest
impact on system performance is significant in the planning the system maintenance or
optimization of system availability (Kvassay, 2017). Indices for the estimation of the
influence of component states change into the system reliability are named in reliability
analysis as Importance Measures (IM). IMs are probabilities that characterize how to
change system reliability if the i-th system component state changes.

Structural Importance (SI) is one of the simplest measures of component
importance, because it ignores any consideration of the individual reliability of
components; instead it concentrates topological characteristics of the system based on its
structure function. It is used for analyzing systems under design when we do not know the
entire structure of the system. Sl of the MSS for i-th component state s is the probability
that this system performance level j decrements if the component state changes from s; to

s;_, depending on the topological properties of the system:
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sj _ p’
SIS =2
Ps

(16)

)

where pis’j is the number of system states when a change of the i-th component state
from s to s-1 causes a change of performance level of the system from j to j-1 and py is the

number of system states for which ¢ (s;, x) = j.
Example: We have MSS defined by structure function represents by Table 6:

Table 6 Example of MSS

X1 | X | d(x)

| | R O Ol O
N | o N k| o
NN R | e

It is expected that the states of components and system can downgrade only by one
performance level. For example, if we want to calculate SI for a condition when
component 1 downgrade by one level from 1 to O and system performance level
downgrade from 2 to 1 it can be computed as:

1,2
sh?="t-=2=1 (17)

Another example could be the degradation of component 2 from state 2 to 1 and also

system performance level downgrade from 2 to 1:

2,2
SP?2=0_-2-9 (18)

D2 0

It means that the condition when component 2 downgraded by one level has no

impact on system performance.
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2 Methods for structure function construction

2.1 Boolean Algebra

The Boolean algebra in abstract algebra is defined as a complementary and
distributive union. This type of algebraic structure contains the basic properties of both set
and logical operations.

Boolean Logic is a form of algebra which is centered around three simple words
known as Boolean Operators: “Or,” “And,” and “Not”. In Boolean algebra there are
defined operations of conjunction and intersection, and unary complement operation is also
defined here (Verma, 2010).

2.1.1 Basic concepts of sets theory and algebra of logic

It is important to investigate and solve many issues that arise in reliability theory, the
methods of theory sets and algebra of logic, probability theory and mathematical statistics.
In the set theory, the sets are formed from elements that have certain properties and are
among themselves or with elements of other sets in some relations. A special section of the
general set theory - algebra of sets - considers various operations on sets with any elements
(Zaitseva, 2003).

If we want to specify that an object a is one of elements of the set A, we use the

sign €:
a€EA (19)

a is included or contained in the set A. If the object a does not occur among the elements

of the set A, then write:
agA, (20)

a is not included or not contained in the set A. Let two sets A and B be considered. If each
element of the set A also belongs to the set B, then A is a part or a subset of the set B. This

is written down with a sign of inclusion:
A cB. (21)

Equal sets (for example A, B) are called identical sets that are sets consisting of the

same elements. It is obvious that for equal sets simultaneously A c BaB c A.
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Sometimes, when determining a set, you can not know if it contains at least one
element.
The notion of an empty set that does not contain a single element is denoted by @. An
empty set is considered a subset of any set that is the inclusion @ < A and it is valid for
any set A.

The union of two sets A and B is called set, denoted by

A 1B, (22)

which consists of all elements entering at least one of the sets A or B. The intersection (or
common part) of two sets A and B is called set, denoted by:

A B, (23)

consisting of all elements that enter both A and B.
Two sets A and B are said to be disjoint (or incompatible), if they do not have
common elements. Incompatibility condition (or orthogonality) of the set A to B

symbolically is denoted by A ['1B = @.
A\B (24)

is a subset of the set A consisting of all elements of A that do not occur in B. Moreover,
the definition of the difference A \ B does not need to be contained in B c A.

The use of concepts and symbols of set theory allows us to give a clearer and concise
mathematical description of the foundations of the theory reliability. The algebra of logic,
which includes the calculus of propositions, or Boolean algebra, is a branch of
mathematical logic. Mathematical logic operates on statements and studies questions of
representation and transformation of binary functions from binary arguments through some
logical operations, called logical connections. The function f (xy, ..., x,) defined on sets of
the form (xy, ..., Xn), in which the variables x; can take the values 0 or 1, and variety on
these values, is called the function of the algebra of logic. Simple statements through
logical connections can be used to make complex statements that have the meaning of
truth: "true” (1) or "false™ (0) - depending on the truth values of simple statements.
Connections between statements can be represented as operations on binary variables. The
basic logical operations are defined in the next subchapter. Different dependencies between

statements, considered in mathematical logic can be divided into two groups: elementary

32



and complex logical functions. The latter are obtained from the first by their repeated use
in a wide variety of combinations. The sequence of elementary logic functions is usually
written using parentheses. In the algebra of logic (more precisely, in the algebra of
propositions) we consider three basic logical operations: negation, conjunction
(multiplication) and disjunction (addition). Subtraction and division in the algebra of logic
are absent. Using the algebra of logic equations, we can describe the conditions of the
technical system, including digital devices. The equations show which elements and which
compounds can create a specific digital device. It's obvious that the latter is directly related
to the solution of various tasks from the field reliability of technical systems (Ryabinin I.
A., 1981).

2.1.2 Basic logical operations

It is necessary to define certain basic concepts. The union L is formed by a partially
ordered set IL, where for each two elements x, y of the set IL is defined a minimum

(minimum value) and a maximum (maximum value). We can write (Dunn, 2001):

(vx,y € L)(3i,s € L)((i = min(x,¥)) A (s = max(x,y))). (25)

The minimum operation is also called an intersection and it is marked with a A, while
the maximum is used to denote v and to name the conjunction. The union L can then be
written in the form (IL,A,V).

A distributive union is such a union in which for all x, y and z belonging to the set L

the following relations apply:
xAN(yVvz)=xAy)V(xAz) xV(Az)=xVYy)A(xV2) (26)

The bounded union L = (IL,A,v,0,1) is a union (IL,A,V), where for the constants 0,1

belonging to the set LL relations are valid:

Vx € L,x A0 =0 and at the same time xVvV0 = x (27)
Vx € L,x A1l =x and at the same time xV1= 1 (28)

Constant 1 is called an upper boundary or maximum of the union L and constant O is

called a lower boundary or minimum of union L.
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The complementary union is the algebraic structure (L,A,v,—,0,1), where (L,AV
,—,0,1) is a bound union and for each element x belonging to the set L there is a

complementary element —x belonging to set L, and:

XA =x=0 (29)
xV ax=1 (30)

Based on all previous definitions, it is possible to define Boolean algebra as follows:

The Boolean algebra is arranged by sixths (A,A,v,—5,0,1), where A is the set on which the

binary operations of the intersection are denoted by the symbol A and the conjunction

denoted by the symbol v, the complementary operation of the complement marked with

the symbol — and the two elements 0 and 1 (called minimum and maximum, also denoted

by the symbol L or T), that for all elements a and b of the set A the following axioms
apply (Hilary, 2002):
1. Associativity

xAN(YAz)=((xXAy)Az xV(yvz)=((xVy)Vz (31)
2. Commutativity

XAy =YAX avb=yVx (32)
3. Law of absorption

XAN(xVy)=x xXVEAy) =x (33)

4. Neutral element

xAN1l=x xV0=x (34)

5. Distributivity
xAN(yVvz)=&Ay)V(xAz) xV(yAz)=(xVy)A(xVz) (35)

6. Complement
XxXAN-x=0 xV-x=1 (36)

It is clear that Boolean algebra uses binary operations of intersection (also known as
AND), conjunction (also called OR) and unary complement operation (also known as
NOT). However, in Boolean algebra, other operations are also used, which can be

expressed by a combination of three basic operations. These operations are representations
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that transform the two input variables x,y € {0,1} into the third output variable z =
f(x,y) € {0,1}, with a total of 16 different possible views because for each combination
of input f (0,0), f(0,1), f(1,0) and f (1,1) there are 2 options for the output variable values
(Donald, 2008).

Operation NOT, i.e. negation or complement operation, is a unary operation whose
output is a complement to the operand, which in Boolean algebra means that negating the
value 0 is 1 and negating the value 1 is 0. However, the negation can also be used for other
operations (NAND, NOR, ...).

AND operation in Boolean algebras is a binary operation of intersection whose
output is the minimum of two operand values. This means that this operation has a value of
1 at output when both operands have a value of 1, otherwise the output is 0.

The OR operation in Boolean algebra is a binary operation of conjunction whose
output is the maximum of two operand values. Obviously, this operation has a value of 0 at
the output just when both operands have a value of 0, otherwise the operation is a value of
1.

Operation NOR, also known as Pierce's function, is a Boolean algebras binary
operation that is a negation of an OR operation. This means that this operation has an
output value of 1 just when both operands have a value of 0. Otherwise, it has a value of 1
at the output.

NAND operation, also known as Sheffer's function, is a Boolean algebras operation
in the Boolean algebras, which is a negation of the AND operation. Therefore, it is obvious
that this operation gives the value 0 at the output only if the value of both operands is equal
to 1, otherwise the output is 1.

The operation of equivalence is a binary operation defined in Boolean algebra that
compares the value of two operands, and if their values are equal, the output is 1, otherwise
the output is 0.

Last, the XOR operation, which is a binary operation defined in the Boolean algebra,
represents the opposite of the operation of equivalence. This means that the output of this
operation is a value 1 just when the values of its operands are different, otherwise the
output is 0.

Boolean algebra finds its use in a number of industry disciplines such as logic
circuits in electrical engineering and computer engineering, working with statements in
propositional logic, or assessing the state of the system and its components in the reliability

analysis (Crama, 2011).
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2.1.3 Basic definitions and types

Consider the degree of the argument x, which will be xf" where L;is a binary

variable, then we can write:
xlFi= x;, ifL; =1,

L
We call the variables x; and their negations x, (i =1, 2, ..., n) as a letters, and i — as the
number or index of a variable.

DEFINITION 1. An expression of the form:

xlixte | xtr 38
1 2 r

is called an elementary conjunction (K) of rank r. Due to the fact that x;x, = 0and

x;x; ... x; = x;,all the letters in the elementary conjunction are different.
DEFINITION 2. An expression of the form:
K,V K, V..VK; (39)

where K; are elementary conjunctions of various ranks, is called disjunctive normal form

(DNF). For example, the function:
FQxq, e Xg) = X153 V X1X2X3 V X1X3X, (40)
is written in DNF, since all three terms are elementary conjunctions.

DEFINITION 3. If the function f (x4, ..., x,,) is written in DNF, and the rank of each
elementary conjunction is n, then such a DNF is called a perfect DNF (SDNF), and the

conjunction - member of the SDNF.

DEFINITION 4. An expression of the form:
xf1Vx§2 Vo VT (41)

r

is called an elementary disjunction (A) of rank r.
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DEFINITION 5. Two elementary conjunctions are called orthogonal if their product
is equal to zero. For example, the product of elementary conjunctions x;x; and x; x,x3x,
is equal to zero, since one of them contains X, and the other x, and consequently, they are
orthogonal.

DEFINITION 6. The DNF is called the orthogonal DNF (ODNF) if all its elementary
conjunctions are pairwise orthogonal. In accordance with this definition, SDNF is ODNF,
since all its terms are pairwise orthogonal. But the SDNF has the longest formula
expression of all ODNF, since it contains the maximum number of letters.

DEFINITION 7. A non-repetitive DNF (BDNF) is DNF, in which all letters have
different numbers. Letters x; and x, have the same number, so they cannot simultaneously
to enter the BDNF.

DEFINITION 8. A probabilistic function (PF) is called probability of true of DNF or

other form of Boolean function
Pr{f(xy, ...,x,) =1}, (42)

When we take the theory of probability and mathematical logic, these events in logic
are independent and random, and therefore we can make a transition between them
(Ryabinin I. A., 1981). This request for undependability of variables is truth for orthogonal
forms.

The transformation of DNF and other forms of Boolean function into the orthogonal
form is an important problem. Below one of the possible algorithms for this transformation
is considered.

The mathematical logic tool for BSS processing is well developed but does not allow

to analyze MSS. Therefore we propose to use MVL for an MSS analysis.

2.2 MVL

Boolean algebra is defined on a set of two elements, M = {0, 1}. The operations of

Boolean algebra must adhere to certain properties, called laws, or axioms used to prove
more general laws about Boolean expressions to simplify expressions.
Multivalued algebra is a generalization of Boolean algebra, based upon a set of m elements
M =40, 1, 2,...,m}. The primary advantage of a multivalued system is the ability to
encode more information per variable than a binary system is capable of doing
(‘Yanushkevich, 2006).
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Multiple-Valued logics (Multi-Valued Logics, Many-Valued Logics) are ‘logical
calculi’ in which there are more than two truth values.
Those most popular in the literature is three-valued logic (e.g., Lukasiewicz’s and
Kleene’s), which accept the values "true", "false", and "unknown*.
The MVL definition:
*The alphabet {0, 1, ..., m-1};
*As a minimum two operation: “*” and “+”
*The constant “0”: 0*X = 0 and 0+0=0, X € {0, 1, ..., m-1}
The operations of Boolean algebra have their analogs in multivalued algebra. The
multivalued counterparts of binary AND, OR and NOT are the multivalued conjunction,
disjunction and cycling operators introduced by Post in 1920.
MVL-function

An m-valued MVL-function of n arguments (variables) is a mapping:
flxy, x4, 0, %) = f(x):(0,1, ..., m—1)" > (0,1,..., m — 1) (43)

Example Function
f:{0,1,2}™ — {0, 1, 2} is called a ternary logic function,
f:{0,1,2,3}"— {0, 1, 2, 3} is called a quaternary logic function,

f:{0,1,2}"— {0, 1} is called multivalued input binary valued output logic functions.

2.2.1 Operations of multivalued logic

Below we list some of the implementation-oriented m-valued logic operations.
The MAX operation is defined as:

MAX(xq, x5) = x4 if x; > x5,

x, otherwise. (44)

When m = 2, this operation turns into an OR operation. A MAX function of n variables is

written:

MAX(xqy, X5, o .o, Xn) =X; VX, VooV Xy (45)
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MAX{’I’l .2 }

Figure 7 Operation MAX for ternary (m = 3) two-variable elementary functions.

The MIN operation of x1 and x2 is defined as:

MIN(Xl, XZ) = .XZ |f X1 EXZ,

x, otherwise. (46)

and for n variables is written:

MIN(x1, X5, . .., X)) =X1 A Xy AL A Xy, 47)
MIN-gate
01 2
1 MmN 0|0 0 0
— 71{0 1 1
- 2]01 2

Figure 8 Operation MIN for ternary (m = 3) two-variable elementary functions.

The modulo m product operation is defined by:
MOD-PROD(x4, X3, . .., X5) = X1X5 ..., X, mod (M). (48)
MOD-PROD-gate

MOD-
PROD

xr1x2 (mod 3)

(=N =Nl o
N = 0O|=
- N O

0
1
2

Figure 9 Operation MOD-PROD for ternary (m = 3) two-variable elementary
functions.
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The modulo m sum operation is defined below as

MODSUM(x4, X3, . . ., Xp) = X1 + x5 + ...+ x, mod (M). (49)

MODSUM-gate

MOD-
_ Ilsum

r1 + x2 (mod 3

Figure 10 Operation MODSUM for ternary (m = 3) two-variable elementary

functions.

The truncated sum operation of n variables is specified by

TSUM(xq, X5, ..., X)) =MIN(x; VX, V... V x,, m— 1), (50)

TSUM-gate

-

MlN(I’l + 70, 2

NN =
NN NN

0
0|0
111
2|2
)

Figure 11 Operation TSUM for ternary (m = 3) two-variable elementary functions.

The truncated product operation is defined by

TPROD(xq, x5, ..., %) =MIN(x; AXx;, A. .. A xp, (M= 1)). (51)

TPROD-gate

Figure 12 Operation TPROD for ternary (m = 3) two-variable elementary functions.

The complement operation is specified by:

x=(m-1) —x, (52)
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where x € M is a unary operation. For example, in ternary logic, X = 2— x. Notice that the
property x = x can be used in multivalued logic. This is because (m — 1) —x=(m — 1) -
(m—-1)—x)=x

Complement-gate

o

T=2—x

N = c:.|><
°""°|><

Figure 13 Operation Complement for ternary (m = 3) two-variable elementary

functions.

Typical problems in MVL are:

e Optimization,
e Minimization,
e Classification,
e System function representation and analysis,

e Event Driven Analysis.

In this work we focus mainly on problems of optimization, minimization and system
function representation and analysis. In computer science optimization is the process of
modifying objects to make some it aspect more efficiently or use fewer resources.

The MVL function may be optimized so that it is capable of operating with less
memory storage or other resources.

The typical approach for MSS structure function analysis is a generalization of
methods for BSS structure function analysis that are based on Boolean logic. However, this
approach does not allow using all details of MSS. Another approach is based on the
application of MVL mathematical methods for MSS structure function analysis. According
to this approach, the structure function is explained as MVL function. Multi-Valued
Decision Diagrams (MDDs) are often used for efficient manipulation of MSS structure
function. MDDs have been proposed for the analysis of large dimension MVL function in
(Miller, 2002). MDDs have been used in reliability computation due to their compact and

easy representation of structure function and some the first investigations of MDD
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application in reliability analysis of MSS are considered in (Amari 2010, Zaitseva 2008,
Mo 2014). Need to note that the construction of MDD of minimal complexity (minimal
numbers of nodes) is an actual problem (Kuo 2007, Mo 2014).

The conception of orthogonalization in MVL has been considered in some
investigations (Perkowski 1992, Perkowski 1991).

In this work, the conception of orthogonalization is considered for the truth table of
an MSS structure function (MVL function) or variables vectors of the structure function.
Two types of orthogonalization are considered: complete orthogonal variables vectors and
partly orthogonal variables vectors.

Similar to Boolean logic, the two variables vector of MSS structure function (MVL
function) are orthogonal if they are disjoint to one another. Consider two variables vectors
ai...aj...an and by...b;...b, where a;, bi € {0, ..., m-1}. These vectors are orthogonal if at
least one pair of variables satisfies the condition a; # b;.

The set of complete orthogonal variables vectors consists of m; variables vectors for
which there is one variable that has different values in each vector, and other variables
values are equal. The variable is named orthogonal variable if it has different values for
these vectors.

For example, let us consider the MSS structure function with m; = mg =M =3 (all
inputs and outputs variables can be in 3 states - the structure function (1) is homogenous if
M =m; =m; fori = j)and n =4. The variables vectors 0102, 0112, 0122 are complete
orthogonal, because x1, X, and x4 have equal values, and x3 has different values from 0 to 2.

The set of partly orthogonal variables vectors consists of s variables vectors (2 <s <
m;-1) for which there is one variable that has different values in each vector, and other
variables values are equal. The variable is named orthogonal variable if it has different
values for these vectors.

Two variables vectors 0112 are 0122 are partly orthogonal for MSS structure
function of n =4 components and for m; = mg =M =3. The variables X3, X, and x4 have equal
values, and x; has different values from 1 and 2.

The conceptions of complete orthogonalization and partly orthogonalization are used

in algorithm for the minimization of MSS structure function truth table.
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2.3 Orthogonalization

Orthogonalization is very important for the processing of a structure function in the
reliability analysis. It expects independent events. By using it, it can easily go to the
probability form.

Use of the orthogonal form in the theory of Reliability Engineering
DNF and transform Boolean formula to it.

The complexity of solving a number of problems formulated in terms of DNF
systems decreases if DNF is reduced to a form in which all elementary conjunctions are
mutually orthogonal. Such forms include tasks from the domain of decomposition of
Boolean functions, the synthesis of logical networks, the reliability of technical systems
(Zakrevskij, 2008).

Applications in the theory of Reliability Engineering

The applications will be shown in Reliability Engineering on determining the
operability of a technical system. This system is represented by a ternary matrix described
in section 1.2.1 Table representation in section Ternary matrix.

Suppose that all the basis events d; are mutually independent and the probability of
their realization for some instant of time is known: Pr(d;), Pr(d;), etc. Let us set the
problem of determining the probability of failure of the system for the same instant of time.

As usual, two theorems from the probability theory (4) and (5) are used in Reliability
Engineering. The first (4) of these theorems makes it easy to calculate the probability of
realizing any critical set of basis events. However, further calculations of the probability of
a complex event R are difficult, since the events represented by different critical sets can
be, in general, dependent and compatible.

The solution can be found by first transforming the original DNF representing the
event R into an equivalent DNF composed of mutually orthogonal conjunctive terms
corresponding to incompatible events. Then the probability of the event R can be expressed
as the sum of the probabilities of events represented by the members of the obtained
orthogonal DNF. Thus, the calculation of the probability of a complex event R reduces to
the orthogonalization of the DNF that defines this event (Zakrevskij, 2005).
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2.3.1 Boolean function

The conception of orthogonalization is well known and often used in the Boolean
algebra for variable vectors (Schneeweiss 2009, Hudson 1983). This conception is defined
for the Boolean function and for product terms of the function. According to (Hudson
1983), two product terms of a Boolean function are orthogonal if their product is zero or
they are disjointed to one another. The conception of orthogonal product term can be
generalized for the variables vectors: two variables vectors are orthogonal if their product
is zero. The mathematical description of the Boolean function is orthogonal if all product
terms are orthogonal. According to (Barlow 1978, Barlow 1975) the orthogonal form of
the structure function (1) is transformed into probabilistic form by the substitution of
structure function variables by the probabilities of appropriate components states. For
example, for the Boolean function orthogonal form this substitution is implemented as the
replacements of an inverse variable by the probability of appropriate component failure
and non-inverse variable by the probability of appropriate component functioning.

Consider the example of the parallel system that has two performance levels, and its

components can be in two possible states. It is BSS (Figure 14).

Xy | Xz | H(x)
0,0 O
0]1] 1
n 110 1
11| 1

Figure 14 Parallel system with its truth table

The structure function of this system can be represented as:

#x) = #x) =x,vx,=OR(x, x,) (53)

HX) = X1 X2V X1 X5 V X1 Xz (54)

The mathematical representation (53) is not orthogonal. This representation can be
transformed to probabilistic form by special rules only. At the same time the representation
(54) is orthogonal, and the probabilistic form (system availability (2)) is developed by
substitute of probabilities of two components state instead of the structure function

variables:
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A = 1Pz + P02 + p1Pp2 = (1-p1)-p2 + P1-(1-P2) + P1P2 = P2 — P1-P2 + P1 — Pr-P2 + P1p2 =
=p1+p2— PPz (55)

The system could be described using the Boolean function. The function may be
incompletely and completely defined. This function describes the logical linking of
elements in the system, but does not allow us to analyze probability conditions. It is
important for us to move from logical through orthogonal form to probability form and get

to the reliability of the system.

2.3.2 MVL function

The orthogonalization of DNF considered in this work is based on the disjunctive
expansion of an elementary conjunction into many other conjunctions that became
orthogonal to conjunctions from defined family or absorbed by one of them. For reducing
further calculations, the absorbed conjunction is removed from the result and the remaining
conjunctions are minimized. The orthogonalization algorithm described in Zakrevskij and
Pottosin (Zakrevskij, 2005) is adapted for orthogonalization in this work.

Orthogonal DNF - DNF that contains orthogonal elementary conjunctions and that
means multiplying these conjunctions gives 0. The algorithm works on the principle of
operation expanding k; over kj, where ki and k; are certain non-orthogonal elementary
conjunctions.

The algorithm is shown on example, a pair of vectors representing the considered
conjunctions k; and k;.

In the first step, we select all variables which are found in k; but not in k;. The
number of these variables is t. In our case t = 3 and the variables are x,, xs, x4 (Figure 15).

k x1 fotrs xs As\xs a7 X8 /) x10
j - 11]-0(0]1 - 1(07)0

k. 1\-/-0%/1-1%/0
=3

Figure 15 First step of expansion

In the second step, we expanded disjunctively k; by the first of these variables. One
of the products of this expansion will be orthogonal to the conjunction k; and the other will
be expanded in the second variable of the selected set, etc.

Variable x, in conjunction k; is expanded by 1 and 0 to conjunctions in the Figure 16.

One of the conjunctions which is orthogonal on k; (it’s a second conjunction of expansion
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in Figure with value of variable x,=0 because variable x, in k;j have value of variable

x,=1) is inserted into result and the second will be expanded by a second variable x; .

; ‘n‘u X5 X7 Xg
' 1-1
k,- 1 ]-]
i X3 14 A3 XNE A7 X Am X
1 X3 X4 X5 X X7 Xm \;\n 1 -1 00
1 1 -0 - 1 -1-0 -1 -1 -0
1 -0 - 1-1- 20

Figure 16 Second step of expansion

o
.-'

The same procedure is performed with variable xz, which is expanded in conjunction
ki by 1 and 0 to conjunctions in the Figure 17. One of the conjunctions which is orthogonal
on k; (it’s the first conjunction of expansion in Figure 16 with value of variable x;=1
because variable xs in k; have value of variable x5=0) is inserted into result and the second

will be expanded by the third variable x,.

X3 14 X§ X7 X3
1 -1
l - l)

\'_- A2 X3 X4 XS Xp X7 X Xo X0

X1 A A X7 Xg o a -1 - 001-100

17,1 -0 1 -1-0 10 - 0-1-1-0

[{1 -0 1-1-0\_?:1101110
11 -0 1-1-0
11 -0 1-1-0

Figure 17 Process of expansion

In the expansion with respect to the last variable, one of the products will be

orthogonal to the conjunction k;, and the other will be absorbed by it.
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XX X3 Xy XS N X7 NS Xm X
a1 Aon o A o xm o -1 - 001-100
171 -0 1 - 1{-10 10 - 0 - 1-1-0
{1-0 1 -1 0_/_"11- 01 1-1-0
11 - 001-110

2)

Figure 18 Final look of expansion of ternary vector

The result is that the conjunction k; comes out to be replaced by t conjunctions which
are orthogonal to k; (in our example conjunction k; is replaced by 3 conjunction orthogonal
to conjunction k; in Figure 18).

The operation of disjunctive expansion is easily realized when the conjunctions are
represented by ternary vectors, the components which correspond with variables and take

the value 1 if the variable enters the conjunction without inversion, the value 0 if variable

is with inversion and the value "-" if not included (Figure 19).
a b ecde [ g

01 -0 1 1 -]

jro10- 11

—_ /[t 1 -0110

T= /i1 - 0° 1

1101001

- 11100 -

- - -110 -

_777 1 - 1 7_

Figure 19 Non-orthogonal form: matrix of ternary vectors

If the ranks of the conjunctions ki and k; are not equal, then it is more profitable to
expand the conjunction of a larger rank by a conjunction of smaller rank - the number of
products of the expansion will be smaller in this case. This principle is used in the
orthogonalization of DNF in the algorithm below. Consider the procedure for

orthogonalization of the DNF given by the ternary matrix T.
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1. Before the beginning of the orthogonalization, the rows of the matrix T are
partially ordered in order of non-decreasing the ranks, measured by the number of
ones in the row. It’s described with matrix T the initial DNF which represents a
complex event R.

2. We create a matrix T using the ternary vectors that are included in it. This is done

by sequentially selecting the rows from the matrix by using the above-defined

disjunctive expansion of the corresponding elementary conjunctions.

The first row of the matrix T is transferred to the generated matrix T*, which will
specify the required orthogonal DNF. In this process, the selected row is compared
successfully with the rows that are already included in T and is expanded as to the first of
them which is non-orthogonal to it. Then next row is selected from matrix T and compared
it with each of the rows that are included in matrix T*. If the compared rows are non-
orthogonal, then the row is expanded as to the first of them. The products of the expansion
not absorbed by the rows of T™ are added at the bottom of matrix T* and we repeat the
same process until the selected row becomes orthogonal to all rows of matrix T™*. Then it
can be selected next row from matrix T if any still exists.

After each iteration, connected with the selection and expansion of the next row from
the matrix T, all the rows of the matrix T* are mutually orthogonal. After selecting all the
rows from T, the matrix T will represent the required orthogonal DNF.

For example, the following two matrices show the execution of the algorithm where
Table 7 is the initial matrix and T* Table 8 is the result of its orthogonalization. It is
orthogonalized the DNF of the Boolean function of the system, represented by the ternary
matrix T, which is the initial matrix. Matrix T* is the product of orthogonalization
described with algorithm above. The algorithm is suitable for any DNF and is suitable for

the monotone boolean function.
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Table 7 Initial matrix T

X1 X2 X3 Xa X5 X6 X7
1 0 - - - 0 - 1
T= - 0 1 1 - - 0 2
1 - 1 1 1 - - 3
0 0 1 - 1 0 1 4

The products of the expansion of the rows of the matrix T are labeled in T* by the
numbers of these rows in T. The components of the expansion corresponding to the

variables, which the original variable was expanded, are indicated in bold.

Table 8 Result of orthogonalization of initial matrix T

X1 X2 X3 X4 X5 X6 X7
1 0 - - - 0 - 1
0 0 1 1 - - 0 2
T = 1 0 1 1 - 1 0 2
1 1 1 1 1 - - 3
1 0 1 1 1 1 1 3
0 0 1 - 1 0 1 4
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Xs X2 X3 Xy X5 X6 X7

1 0 - - - 0 - 1
expansion
- 0 1 1 - - 0 2
1 0 1 1 - - 0 2 h absorbed
1 0 1 1 - 0 0 2 s absorbed

Figure 20 Process of orthogonalization for second conjunction

The first conjunction is added to the result matrix. Then we can see in Figure 20

expansion of the second conjunction where only rows highlighted in blue are added to the
result matrix and the remaining rows are absorbed.

X X2 X3 Xy X35 Xg X7
1 0 - - - 0 - 1
0 0 1 1 - - 0 2
I = 1 0 1 1 - 1 0 2

1 0 1 1 1 3 — absorbed

1 0 1 1 1 0 _ 3 — absorbed

Figure 21 Process of orthogonalization for third conjunction

The third conjunction is expanded in Figure 21. As we can notice the second

expansion in component x, is orthogonal in the first row in result matrix however it is not



in the next 2 rows and it is the reason why the component x- is set on state 1 (marked in
red) to be orthogonal also on conjunctions in rows 2 and 3.

The calculation of the probability of the complex event R is no longer difficult. For
example, suppose that all basis events x; are independent and the probability of occurrence

of each of them is 1/3. Then the probability of x,:
Pr(x,) =1-Pr(x,) =1- /3 =2/3, (56)

the probability of the product of the events x;, x5, X, represented by the first row of the

matrix T* is:
Pr(x;) Pr(x;) Pr(xg) = (1/3) (2/3) (2/3) = 2%/ 3°, (57)
and, finally, the probability of a complex event R:
Pr(R)=22/3%+23/3°+2%/3°+2°/3°+ 21/ 3"+ 2° 1 3°~ 0,203. (58)

For example system considered in section 2 (Structure Function of Laparoscopic

Surgery Procedure Success) in the Table 6 for BSS this orthogonal form was obtained:
X1XpX3Xg V X1 X3X3Xs V. X1X3X3X4 (59)

The orthogonal representation (46) of the structure function of Laparoscopic Surgery
Procedure Success can be transformed into the probabilistic form according to the

definition 8 (section 3):

A = P1o-P21-Pa1-Par + P11-P21-P31-Pao + P11-P21-P31-Par = P21-P3r- (P11 + Pat - P11-Pay). (60)

The probabilistic form (60) is the system availability in terms of reliability analysis.
2.4 Minimalization

2.4.1 Boolean function

Simplification of Boolean expressions

A product term (conjunction of literals) is said to be an implicant of a complete
function if the product term implies the function. Therefore, each of the product terms in
asum of product form describing a complete Boolean function is an implicant of the

function. In other words we can say that minterms of the functions are its implicants.
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An implicant of a Boolean function is said to be a prime implicant if the implicant
does not subsume any other implicant with fewer literals of the same function. For

example, consider a Boolean function:
f(A,B,C) = ABC+BC. (61)

In this function ABC is an implicant of the function since it is the minterm (the inputs
of function that evaluate to 1 are called 'minterms’) that describes the function. On the
other hand, consider the implicant BC. There is no other term in the function which is
subsumed by BC and hence it is a prime implicant. It is important to note that, if the
Boolean expression is the sum of prime implicants then it corresponds to one of the

minimal sum of product (disjunctive normal) formula.

2.4.2 MVL

The truth table of MSS structure function is an orthogonal form of the function
representation. It means that all variables vectors of this table are orthogonal. However, the
truth table has dimensional mixmyx ... xm, that complicates this table analysis and
evaluation. The minimization of the truth table is the constructing truth table with less
dimension and without loss of information about the system behavior. One of the ways for
the minimization of the truth table is replacing the variables vectors with variables that do
not have an influence to the function value. As a rule, it is orthogonal variables vector with
respect to one variable for equal value of the function. The formed variables vector has less
number of variables than initial variables vectors. Therefore the formed truth table includes
fewer variables vectors, and these vectors include fewer variables. The complete and
partial orthogonalizations of variables can be taken into account. Similar process is used in
the algorithm of Quine—McCluskey for the minimization of the Boolean function
(McCluskey, 1956).

Quine-McCluskey method used in many — valued logic

The main goal of the algorithm is to find a minimum subset of the implicants similar
such that the standard disjunction of the implicants would be functionally equivalent to the
function.

Input of algorithm is a n-valued logical function f with m input components, defined

by a truth table of values.
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The output of an algorithm is a simplified normal form functionally equivalent to the
function f.

The algorithm is based on 2 basic steps:

The first step is to find a prime implicants.

1. The rows of the true table of values represent the set of n™ implicants. For
example, the row 1 from Table 1 represent implicant [1: 0 0 0] where the first value
defined the output value of a function and the next three values defined the input
values of the components x, y, z.

2. At first we select rows (implicants) with a non-zero output value of the function
from table 1 and we create a lookup table. This table is of n — 1 dimensional
hypercube shape and each side of the hypercube contains m + 1 cells. The
implicants are organized in the table according to the number of input logical
values they contain and every axis of the hypercube corresponds to one logical
value.

For example, if we have a five-valued logical function with 8 input components the
implicants with three 1(state of 3 input components has value 1), no 2, five 3, and
no 4 are sorted to the cell with coordinates [3, 0, 5, 0].

3. In the lookup table we find such implicants that differ in value only in one place,
only in the state of one component.

4. When we find such a group of implicants differing only in one place, we will join
all the implicants in this group and replace them with one new implicant. At the
position where these implicates differ, we mark as a dash -. The output value of the
new implicant is the lowest value of the output values of every implicant of the
group of implicants. The important fact is that when searching for implicants
belonging to a given group, they can only be found in adjacent cells of the truth
table of values. As a result, we don't have to seek through all the cells in the table,
which simplifies the computational complexity.

5. Then with * we mark all implicants from the group of implicants differing only in
one place which output value of this implicants is the smallest value of all
implicants occurring in this group. These implicants marked with * will not occur
as a result because we have just covered them with other implicant.

For example if we have logical function with four possible states 0, 1, 2, 3 and with
3 components then group of implicants { [1:003],[3:013],[1:023],[2:033] }

can be reduced to only one implicant [1: O - 3]. The smallest output value of the
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group is 1 so the output value of new implicant is also 1. And finally we marked
with * implicants [1: 0 0 3] [1: 0 2 3] because their output value is the smallest of
all implicants of this group. Another example is group of implicants { [1: 0 0 3], [1:
013],[1: 02 3], [1: 0 3 3] } that can be reduced to only one implicant [1: O - 3].
The smallest output value of the group is 1 so the output value of new implicant is
also 1. And finally, we marked with * all implicants.

6. We repeat the searching for such a group of implicants until we find all possible
groups and replace them with new implicants and marked with * those that will
cover with other implicant in the result.

7. Those implicants that were not marked with * are marked alphabetically
(sequentially A, B, C,..). These implicants are prime implicants and may be part of
the resulting simplified normal form, but it must be verified, so they are processed
in the second part of the algorithm in the table of covering.

8. All the reduced implicants are sorted to a new lookup table and then we continue by
step 3.

9. The number of repeating of the steps of the algorithm will not be higher than the
number of the input components. The reason is that the implicants in the new
lookup table contain one more “—" than the implicants in the previous lookup table.

Thus the edges of the new lookup table are shorter by one.

The second step is to build a table of covering.

Table of covering is a two - dimensional table where each column represents one
prime implicant given by step 1 of the algorithm and each row represents one row from the
truth table of values - non-zero implicants. Each non-zero value in the table of covering
represents the output value of the prime implicant for that column, with the fact that the
prime implicant covers the implicants (rows) for that row where the value is assigned. The
aim of the second step is to find a subset of the prime implicants that cover all non-zero
implicants from the truth table of values.

1. We find the unique largest value for each row and mark it if such a value exists.
The prime implicant (column) where the value is marked must be found in the
resulting normal form because the row (implicant) can be covered only by this
corresponding prime implicant. Then we can remove from the table of covering

column that represents this prime implicant and also all of the rows (implicants)
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corresponding to the prime implicants (where there exist some non-zero values).
We repeat this step until no more reduction is possible.

2. Row dominance: If we find two rows (implicants) rl and r2 where one is a subset
of the other, rl < r2, we remove r2. The reason for this removal is that if row one is
covered by prime implicant, row two is also covered and row two does not provide
any new information for the table of covering.

3. Column dominance: If we find two columns c1 and c2 where one is a subset of the
other, c1 € c2, we remove cl. The reason for this removal is that if column one
which represents prime implicant covers implicants (rows) associated with this
column then this column covers also implicants associated with column two.
Therefore c1 is redundant and we can remove c1.

4. We repeat Step 2 and Step 3 until no more reduction is possible.

5. In step one we have selected those prime implicants that must be found in the
resulting normal form and in step 3 we removed those that are redundant. After
these steps, we should have prime implicants for which we are not able to decide
which are redundant. Thus we find the redundant prime implicants in this
remaining set of prime implicants by choosing any suitable method.

6. The prime implicants given by Step 1 and the prime implicants which are not
redundant (step 3 and step 5) are then aggregated by the standard disjunction which

gives us the resulting simplified normal form.

Example
First we describe algorithm on an example for completely defined three-valued
logical function f (x,y,z). The function is defined by 3 input components X, y, z, that can be
in 3 states together with a function output value also defined by 3 states. The function is
defined by a truth table of values (Table 9).
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Table 9 Example of structure function defined by a truth table
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Solution
1. First, we remove the rows (implicants) whose output value of logical function is 0

from the original table (Table 9). Then we create a new lookup table (Table 10)
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from the remaining rows. Lookup table consists of sorted implicants according to
numbers of input states they could have.

Table 10 Lookup table

2.

211 0 1 2
0 1:000%* 1:100* 1:101*
1:001*
1 1:200* 1:012* 1:112*
2:002~* 2:102* 1:211*
2:201A
1:210*
2 1:022* 1:122*
2:202* 1:212*
1:220%* 1:221*

In a lookup table we look for three implicants that differ in the component state in
only one place. We replace these 3 implicants with one and leave a character of
dash (-) at the point where they differ. For example in our lookup table we can
replace the implicants [1: 0 0 0], [1: 2 0 0] and [1: 1 O O] with an implicant

[1: - 0 0]. We mark all the implicants in a lookup table by *, because all implicants
have the smallest output value of logical function. Another case that may occur is
when we want to replace for example implicants [1: 00 0], [2: 00 2] and [1: 0 0 1]
by implicant [1: 0 0 -]. As you may have noticed for the new implicant the smallest
output value of the original implicants is selected as the new output value and only
implicants with this value in the lookup table are marked by *. In Table 11 all

implicants that continue processing in the new lookup table are defined.
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Table 11 Implicants from the previous lookup table

No. X y z f(x,y,2)
1. - 0 1 1
2. 1 0 - 1
3. 2 1 - 1
4. 0 0 - 1
5. - 0 0 1
6. 2 - 1 1
7. - 1 2 1
8. 1 - 2 1
9. 2 0 - 1
10. 2 - 0 1
11 - 0 2 2
12. 0 - 2 1

3. Any implicants that remain unmarked after the previous step must be part of the
result. In our lookup table it is the implicant [2: 2 0 1]. This implicant is marked by
letter A,

4. Now we create new lookup table (Table 12) from implicants which we obtained in
step 2 from Table 11. With all of them we perform the same procedure until we

cannot find any other implicants which can be reduced (Table 13).

Table 12 New lookup table

2/1 |0 1

0 1:00- *|1:10- *
1:-00 *|1:-01 *

1 1:20- *|1:21- E
1:2-0 B|1:2-1 F
2.-02 C|1.-12 G
1:0-2 D|1:1-2 H
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Table 13 New lookup table in the last step of the procedure of searching of prime

implicants

2/1 |0
0 1:.-0- |1

5. Now we have implicants marked by letters (Table 14), which are prime implicants

and we can now create a table of covering (Table 15).

Table 14 Table of implicants

1201
:2-0
:-02
:0-2
121-
12-1
=12
:1-2
:-0-

I o M m O O W >

[ Y = I e L I = )

6. The columns of the table of covering represent the found prime implicants from
Table 14 and non-zero implicants of the Table 9 represent rows. The task of the
covering table is to find, if possible, a minimum subset of prime implicants that
cover all implicants in the rows of the table.

7. In covering table, we mark the value of each row that is only the largest and
underline it. The corresponding value in a given column indicates a prime implicant
that will be among the resulting subset of prime implicants. Then we remove
implicants covered by this prime implicant from the table of covering. We also
remove the column with this prime implicant. Finally we use a row and column
dominance rules for possible reduction of the table of covering.

8. After reducing the rows and columns of the table, we get the Table 14. In this table,
both remaining prime implicants cover all remaining rows (implicants) so that we

can select one of them (H) and include it in the resulting implicant Table 16.
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Table 15 Table of covering

X, Y, Z A B C D E F G H |
0,0,0 1
0,0,1 1
0,0,2 2 1 1
0,1,2 1 1

0,2,2 1

1,0,0 1
1,0,1 1
1,0,2 2 1 1
1,1,2 1 1

1,2,2 1

2,0,0 1 1
2,0,1 2 1 1
2,0,2 2 1
2,10 1 1

2,11 1 1

2,1,2 1 1

2,2,0 1

2,2,1 1

9. Finally we have a subset of prime implicants that cover all possible implicants(rows
in Table 15 ). After applying the maximum operation to these prime implicants, we
get a simplified normal form of function f (x,y,z) (62).

Table 16 Table of resulting implicants

1201
:2-0
:-02
:0-2
121-
12-1
11-2
:-0-

I T m O O W >
N e e I L S )
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f,y,2) =2 Ax=2]Aly=0] Alz=1])
V(I A[x=2] Alz=0])

V2 Aly=0] Alz=2])
V(I A[x=0] Alz=2])
VA Ax=2] Aly=1])
[

V(I A[x=2] Alz=1)])
VI Alx=1] Alz=2)])
v(1 Aly=0]) (62)

2.4.3 Incompletely specified function
Example 2:

Now we will describe algorithm on an example for incompletely defined three-
valued logical function f (x,y,z). The function is defined by 3 input components x, y, z, that
can be in 3 states together with a function output value also defined by 3 states. The
function is defined by a truth table of values (Table 17). The incompletely defined states of

components are marked by question mark.

Solution

1. As well as for a completely defined logic function, first we remove the rows whose
output value is 0. Rows whose component state is incompletely defined continue to
be processed in the algorithm.

2. For the incompletely defined input values of components we defined states because
we need to include these implicants with undefined states to the construction of
lookup table. For example for implicant [1: 0 1 ?] we defined that component ¢ will
be in state 2 so this implicant will look like [1: 0 1 2]. The result of defined states is

in Table 18, where all newly defined values are listed in red cells.
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Table 17 Example of structure function incompletely defined by a truth table

f(xy.2)

z

y

No.

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

23.
24.
25.
26.
217.
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Table 18 Redefined states in red cells

No. a b c

f(xy.2)

1
2
3
4.
5
6

3. Now we create a lookup table (Table 19) with implicants that remained after
reduction of rows in step 1 and after redefined missing states in step 2.

Table 19 Lookup table

1/2 0 1 2 3
0 1:202* 2:222%*
2:.022*
1:220*
1 1:012* | 2:122*
2:102* | 2:212A
1:021* | 2:2218B
2:120%*
1:201*
2 1:011* | 22112*
1:110* |[2:121%*
1:101* | 22211C
3 1:111~*

4. Inthe same way as a completely defined function we look for three implicants that
differ in the component state in only one place in a lookup table. The reason why
we defined in the previous step all the undefined states with some of the possible
states 0, 1, 2 is that now we can join these implicants to the process of replacing of
implicants that differ only in one value. We replace these 3 implicants with one and
leave a character of dash (-) at the point where they differ. For example in our
lookup table we can replace the implicants [2: 0 2 2], [2: 1 2 2] and [2: 2 2 2] with

implicant [2: - 2 2].We mark all the implicants in lookup table by *, because all
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implicants have the smallest output value of logical function. In Table 20 all
implicants that continue processing in the new lookup table is defined.

Table 20 Implicants from the previous lookup table

No. | X y z | T(XY,2)
1. - 2 2 2
2. 2 - 2 1
3. 2 2 - 1
4. - 1 2 1
5. - 2 1 1
6. 1 - 2 2
7. 1 2 - 2
8. 2 - 1 1
9. - 1 1 1
10. 1 1 - 1
11 1 - 1 1

5. Any implicants that remain unmarked after the previous step must be part of the
result. In our lookup table it is an implicants [2: 2 1 2], [2,2,1], [2,1,1]. These

implicants are marked by letters A, B, C.

Table 21 New lookup table

2/1 0 1 2
0 2:-22D
1:22-E
1:2-2F
1 1:-12G
1:-211
2:1-21
2:12-K
1:2-1L
2 1:-11M
1:11-N
1:1-10
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6. Now we create new lookup table from implicants which we obtained in step 4 from
the implicants of table 20. With all of them we perform the same procedure until
we cannot find any other implicants which can be reduced.

7. Now we have implicants marked by letters (Table 22), which are prime implicants
and we can now create a table of covering (Table 23).

Table 22 Table of resulting implicants

A (2212
B |2:221
C |22211
D |2:-22
E |1:2-2
F |1:22-
G |1.-12
H |1.-21
I 2:1-2
J |2:12-
K [1.:2-1
L [1:.-11
M [1:11-
N [1:1-1

8. The task of the covering table is to find, if possible, a minimum subset of prime
implicants that cover all implicants in the rows of the table.

9. In covering table, we mark the value of each row that is only the largest and
underline it. After this step, we can see that in the table of covering we cannot
reduce any prime implicants.

10. Finally we have a subset of prime implicants that cover all possible implicants(rows
in Table 23 ). After applying the maximum operation to these prime implicants, we

get a simplified normal form of function f (x,y,z) (63).
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Table 23 Table of covering
xy,z|A|/B|C|D|E|F|G|H|I |J |K|L|M|N
01,1
01,2
0,2,1
1,0,1
1,1,0 1 1
1,11 111
2,0,2
2,2,0
2,0,1
1,0,2
1,1,2 1
1,2,0
1,2,1 1
0,2,2
1,2,2
2,2,2
2,11
212 |2 1 1
2,21 2 1 1 1
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fl,y,z) =2 Ax=2]Aly=1] Alz=2])
VR A[x=2]Aly=2] Alz=1])
VR A[x=2]Aly=1] Alz=1])
VR Aly=2] Alz=2])
V(L A[x=2] Alz=2)])
VA Ax=2] Aly=2])

VA Aly=1] Alz=2])

VI Aly=2] Alz=1])
VR Ax=1]A[z=2]) VR Alx=1] Aly=2])
VA Ax=2]Alz=1DVA Aly=1] Alz=1])

VA Ax=1]Aly=1D) VR Ax=2]Aly=2] Alz=1]) (63)
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3 Experiments

3.1 Minimization of MSS structure function

The proposed algorithm for the structure function truth table (minimization) is started

from the division of the MSS structure function truth table into M truth sub-tables for each

value of the structure function. Next, M steps are analysis of each of truth sub-table that is

implemented as:

The choice of completely orthogonal variables vectors. The variables vectors (rows)
differed by one variable are chosen in the sub-table. The chosen variables vectors
are completely orthogonal to the variable with different values if their number is
equal m; (the number of possible variable states). The variable with different values
does not have any influence on an analyzed function value if other variable's values
are equal. Therefore this variable can be removed. The different values of the
variable are replaced by dash and a new vector is included in the result table. This
process is repeated for remaining variables vectors in the truth sub-table. If the
completely orthogonal variables vectors are not found, the analysis of partly
orthogonal vector is started.

The choice of partly orthogonal variables vectors. The variables vectors (rows)
differed by one variable are chosen in the sub-table. The chosen variables vectors
are partly orthogonal to the variable with different values if their number is less than
m;. The variable with different values has restricted influence for analyzed function
value if other variable's values are equal. Therefore this variable can be removed for
chosen values. The different values of the variable are replaced by a set of chosen
values and a new vector is included in the result table (chose values of the variable
are written separated by a comma). This process is repeated for remaining variables
vectors in the truth sub-table. If the partially orthogonal variables vectors are not
found the remaining variables vectors (rows) are copied to the resulting table.

The variables vectors (rows) in the resulting truth sub-table must be mutually
orthogonal. If the variables vectors in the resulting sub-table are not orthogonal, one

of them is replaced by an initial set of variables vectors.
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The algorithm of MSS structure function is illustrated by the example. Consider the
MSS of three components (n = 3). The system and its components have three states (m; =

ms =M = 3). The structure function of this system is shown in Figure 22.

3 truth sub-tables
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Figure 22 Structure function of a system with 3 truth sub-tables

According to the first step of the proposed algorithm, the initial truth table is divided
into three sub-tables (M = 3) (Figure 22).

Consider the minimization of the truth sub-table for the structure function value 0
(Fig.4). The first procedure is the choice of completely orthogonal variables vectors. The
first three rows ((0, 0, 0), (0, 0, 1) and (0, 0, 2)) differ only by the variable x3 since they
contain all possible states in the variable x3;. Therefore these variables vectors are
completely orthogonal and the variable x3 can be removed. It is replaced by the dash and

vector (0, 0, -) is included in the result table (Figure 23). There are no other completely
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orthogonal variables vectors in this table. Therefore the analysis is continued for partially
orthogonal variables vectors.

The second procedure is the choice of partially orthogonal variables vectors. The two
variables vectors (0, 1, 0) and (0, 2, 0) differ by the variable x,. These variables vectors are
partially orthogonal and the variable x, can be merged for values 1 and 2. The variables
vector (0, (1,2), 0) are included into the result sub-table. If only two rows match, as is the
case for the next two rows in the table, we write both states in the variable that do not
match in the resulting table. The variables vectors (2, 0, 0) and (2, 1, 0) are transformed to
the vector (2, (0,1), 0) in a similar way.

One variable vector is in the initial truth sub-table after the forming of two new
variables vectors according to the procedure of the choice of partly orthogonal variables
vectors. It is the variable vector (1, 0, 0) that is copied in the result sub-table. All variables

vectors in result sub-table are orthogonal. Therefore another transformation is not needed.

Input table
x1 | X2 | x3 | ¢x)
0 0 0 0 Result table
0 0 1 0 x| x| x3 | ¢x)
0 0 2 0 0 0 - 0
0 1]0] 0 |::> 012|000
0 2 0 0 1 0 0 0
1 0 0 0 21010 0
2 0 0 0
2 1 0 0

Figure 23 Minimization of the truth sub-table for the structure function value 0

Because the result table is orthogonal, it can be used for the probability
representation of the considered MSS structure function. In particular, according to (2) the

probability of this MSS failure (performance level 0) is:

Ag = P1oD20 + P10 (P1,1 +p2,2)p3,0 + D1,1P2,0P30 T
P1,2(D2,0 + P2,1)P3,0

(64)

The truth sub-table for the structure function value 1 (Figure 24) and the truth sub-
table for the structure function value 2 (Figure 25) are minimized similarly. Based on the
result sub-tables probabilities of the system performance levels 1 and 2 according to (2)

can be presented and calculated as:
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Ay = P1,0P2,1(P3,1 + P3,2) + D1,0P2,2P31 T P1,1P2,0P31 T
P1,1P2,1(P3,0+P3,1) + D1,2P2,0 (P3,1 + P32) + P1,2D2,2P30

(65)

and

Ay = P11 (Pz,o + P2,1)P3,2 + D1,1P2,2 T P1,0P2,2P3,2 T
D1,.2P2,2(P3,1D032) + P12P21 (D31 + P32)

(66)

Input table
)[f_)l );2 );_3 gﬁg_X} Result table
0 1 2 1 X1 X2 X3 ¢5(x}
0 5 1 1 0 1 1,2 1
1 0 1 1 0 2 1 1
11T T o1 I:> 1] 0] 1] 1
1 1 1 1 1 1 0,1 1
2 0 2 1 2 0 1,2 1
5 5 0 1 2 2 0 1
2 0 1 1

Figure 24 Minimization of the truth sub-table for the structure function value 1
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Figure 25 Minimization of the truth sub-table for the structure function value 2

For the comparison, the probabilities of the system performance levels 2 based on the

initial truth sub-table is represented as:
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Ay = P11D20D32 + P1,1P2,1P32 + P1,1P2,2P3,0 + P1,1D2,2P31
Tt D1,0P2,2P3,2 T P1,1P2,2P3,2 T P1,2P2,2P3,2 (67)
+ D1,2P2,1P31 T P1,2P2,1P3,2 T P1,2P2,2P3,1

The comparison of (66) and (67) shows that the calculation of the probability of the
system performance level based on minimized truth sub-table has less computational
complexity.Moreover the verification of the sum of all probabilities of the system

performance levels is equal 1:

Ag+ Ay + Ay = DioD20 + Pro(P1,1P2,2)P30 + PraP2ob30 +

P12(D2,0 + P21)P3,0 + Pr,oP21 (P31 + P32) + ProP22Pss +

P11P2,0P31 + P1,1P21(P3,0P31) + P1,2P2,0(P31 + P32) +

P12P2,2P3,0 + P11(P2o + P2,1)P32 + Pr1P2z + ProP22Ps2 + (68)
P12D022(P31P3,2) + P12P21 (P31 +P32) = PiroP21 + ProP22 +

P1,1P2,0 T P12P20 T P1,1P21 t P12D2,1 + P1,2P22 + P11D22 T

P1,0P2,0 = P10 T P1,11tP12=1

The minimalized truth-table of MSS structure function can be used to construct other
forms for MSS analysis. One of them is MDD. MDD for the considered example
constructed according to typical rules presented in (Zaitseva, 2012, Miller, 2002) is shown

in Figure 26.

Figure 26 Multi-valued Decision Diagram
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3.2 Results for minimalization of generate functions

The evaluation of the efficiency of the logical function minimization was
implemented based on the set of the generated monotone functions. The monotone logical
functions agree with the definition of coherent structure functions, which allow
representing most of the real system. The generated set includes the structure function of
MSS with 3 performance levels of system and 3 states of every of the system components.
The number of the function is 50. These functions had been minimized by the developed
algorithm for MSS structure function minimization (this algorithm is considered in section
2.4.2).

We got the results which are shown in Figure 27. From the graph we can see that
maximum decrease of implicants for generate functions was about 33% and the minimum
was about 3%. The most common value of decline was about 18% and this value was

measured for 13 functions.
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Figure 27 Decrease of implicants for generate functions

The processing procedure is shown in Figure 28. We have defined system described
by structure function and first we use algorithms for minimalization to reduce or simplify
this structure function, which can be very complex in real systems. Thanks to the
minimization process, we can significantly reduce this function which leads to simpler
computational complexity. If there is for instance fifth power of a number 3 there are 243

possible defined implicants for this structure function. If this function can be simplified by
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minimalization to 150 implicants, this form can be already orthogonal but it is not

guaranteed thus as a next process orthogonalization is used. After Orthogonalization, on

the other hand, the number of implicants may increase, and therefore it is more important

for us transformation efficiency into an orthogonal form which may or may not be

-

Orthogonalization

simplified.

Minimalization

Figure 28 Processing of the system defined by structure function
3.3 Orthogonalization of a real system

3.3.1 K-out-of-n configuration

The components topology in the analyzed system is in most cases some common

reliability-wise component topologies or their combination (Tortorella, 2015). One of the

most common types of system topology in reliability analysis is k out of n configuration

and our drone fleet is analyzed with this type of topology. K out of n configuration is

functional if at least k components out of all n components are functional (Tortorella,

2015). The reliability block diagram of this configuration is shown in Figure 29.
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Figure 29 RBD for k-out-of-n configuration
This configuration can be interpreted by structure function following its definition as
the following notation (Tortorella 2015, Rausand 2004):

¢ Cry, Xz, ooy Xn) = \/ /\xj: (68)

S; €Skm JESi

where Sy ,, represents sets of all k combinations of all n components indexes and S; is a

ith selected combination from Sy /,.

3.3.2 Complex monitoring system with drone fleet

The whole algorithm and configuration is applied on complex monitoring system
with a drone fleet (Figure 30). In this drone fleet system 3 types of components exists. The
first type of components is the control unit (CU) and its task is to control and manage all
drones in the fleet. The control unit is the most important element of the drone fleet since
the other drones are dependent on its working and cannot do their tasks without it. The
second type of component is the main drone (MD) which represents all kd main drones.
MD executes scheduled tasks that are set by CU. The last type of components is nd-kd
redundant drone (RD). RD represents back up if some of the main drones fails. RD
assumes responsibility for this failed main drone and performs its tasks. This complex
monitoring system with a drone fleet can be in two states. The first state is when the
system can be considered as a functional and it means that CU and at least kd drones are
functional. In this state it can perform all scheduled tasks in the drone fleet. The second
state is when the system does not meet previous conditions and the system can be

considered as faulty.
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Figure 30 RBD for drone fleet

As it is known, system reliability is a probability that system performs its functions
during defined time assuming that it worked at the beginning, we will suppose that CU and
all drones are irreparable and all components of drone flight are working at the beginning.

3.3.3 Orthogonalization of system for drone fleet

In (Rusnak, 2019), author considers drone fleet where CU can control and manage up
to 5 drones at a time (nd=5). There is also condition to have redundant drones in the fleet
and at least 2 drones must working and it means that kd can have value 2, 3 or 4.
This drone fleet system can have 2 modules, the first module is CU and the second is kd-
out-of-5 system representing all drones in the fleet for kde (2,3,4). The structure function

for such a system has this form:

BCr 1 0 2 7510 = ma \[ [\ % (69)

SiESkdjESi
5

Structure function can be defined for kd € (2, 3, and 4). In our case, if kd=3, then the

structure function (13) has the following form:

P (X1, X2, X3, X4, X5, X6) = X1 (X2 X3 X4 V X3 X3 X5 V X3 X3 Xg V X3 X4 X5 V (70)

Xy X4 Xg V Xg Xg Xg V X3 X4 Xs V X3 X4 Xg V X3 X5 XgV X4 X5 Xg)
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This formula is not orthogonal and to efficiently compute reliability from structure
function, the orthogonal form of structure function for this configuration is used and it has
the following form (Rausand 2004, Tortorella 2015):

P (X1, X, ey Xp) = \/ /\x]- /\ z (71)

xiEXk/n]'ESxi ]'EN—Sxi

where Xk represents a set of all state vectors in which at least k variables are not negated,

N represent set of all components indexes and S, represents a set of components indexes

that are not negated for i-th state vector.

@ (x1, X2, X3, X4, X5,%6) = (X1 Xz X3 X4 X5 Xg V X1 Xz X3 Xgq X5 Xg V 2
X1 Xz X3 X3 X5 X VX1 X2X3 X4 X5 XgV X1X3 X3 X4 X5Xg V (72
X1 X2 X3 X4 X5 Xe V X1 X3 X3 X4 X5 Xg VX1 X2 X3 X4 X5 Xg V
X1 Xz X3X4 X5 X6V X1 Xz X3X4 X5 Xo VX1 Xy X3 X4 X5 Xg V
X1Xy X3 X4 X5 Xg VX1Xy X3 Xz X5 Xg VX1 X3 X3 X4 X5 Xg V

X1 Xz X3 X4 X5 Xg VX1 Xz X3 X4 X5 Xg)

According to the algorithm from section 2.3.2 we use orthogonalization to form (70)
and we obtain Table 24.

Table 24 Final orthogonal conjunctions

No X, Xy X3 Xy Xs X

1 1 1 1 1 - -
2 1 1 1 0 1 -
3 1 1 1 0 0 1
4 1 1 0 1 1 -
5 1 1 0 1 0 1
6 1 1 0 0 1 1
7 1 0 1 1 1 -
8 1 0 1 1 0 1
9 1 0 1 0 1 1
10 1 0 0 1 1 1
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In table 24 component x; represents the first module of drone fleet and it is CU and
therefore it has always a state of 1 (functioning). According to the algorithm we
sequentially added rows to the table and we control to add a new row orthogonal to the
other rows already added in the resulting table.

For example when we add the row 2 in the table then the component x, in
conjunction (row) 2 is expanded by 1 and 0 to conjunctions in Table 25. However, in result
Table 24 only row with component x, in state 0 is included because the second row where

component x, is in state 1 is already absorbed by the first row in the resulting table.

Table 25 Example of expansion

No X1 Xq X3 Xy Xs Xg

1 1 1 1 1 - -
2 1 1 1 0 1 -
2 1 1 1 1 1 -

Another example is adding row 5 where we must change component x5 to state 0 to
be orthogonal to rows 1, 2 and 3 and we also change the component x from the state - to
state O to be orthogonal to row 4 (marked in red). Therefore in Table 26 we use only one

row (marked in blue), the remaining row is absorbed.

Table 26 Example of expansion

No X, Xy X3 Xy Xs X

1 1 1 1 1 - -
2 1 1 1 0 1 -
3 1 1 1 0 0 1
4 1 1 0 1 1 -
5 1 1 0 1 0 1
5 1 1 1 1 - 1

For comparison algorithm of orthogonalization from section 2.3.2 give us a lower
number of conjunctions, in which the formula 70 can be represented in orthogonal form
than the formula (71) described by (Rausand 2004, Tortorella 2015). While the first

mentioned described the system with 10 conjunctions, second described it with up to 16.
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Conclusion

The reliability analysis is valuable research for various systems. The analysis of any
system starts by defining the number of states and then proceeding to the development of a
mathematical description of the system. Therefore these 2 steps are the most important for
us and only after their processing we can do further analysis of complex systems. There are
two approaches for system representation that are based on MSS and BSS. BSS allows
representing the initial system as a mathematical model with two possible states that are
complete failure and perfect working. MSS permits to consider more than only two states
in the behavior of system reliability or availability.

When we select a structure function as a mathematical representation of the system,
this function does not always have the form as needed and therefore some processing and
changes of structure function are necessary. It causes the development of algorithms and
methods for the construction of orthogonal and minimal representation of MSS structure
function. Such a form of representation allows moving from a logical to a probabilistic
description and then gets to the reliability of the system

We introduced a processing model of a real system that was a drone fleet. We
defined this system by structure function and then we showed that thanks to the
minimization process, we can significantly reduce this function which leads to simpler
computational complexity. Form of function after minimalization can be already
orthogonal but it is not guaranteed so as the next process we have to to use the process of
orthogonalization. After orthogonalization, on the other hand, the number of implicants
may increase, and therefore it is more important for us the transformation efficiency into
an orthogonal form which may or may not be simplified.

According to the principal goal, next task were decided:

e the method proposed in (Zakrevskij & Pottosin 2005) was modified to the
application for the BSS structure function orthogonalization;

e the conception of orthogonal form in the Multiple-Valued Logic was considered
and conception of the orthogonal MSS structure function had been proposed;

e the proposed conception of the orthogonal MSS structure was used for the
development of algorithms of MSS structure function minimization and

orthogonalization;
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e the developed algorithms were approbated and evaluated on selected systems
(structure functions of BSS and MSS).
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Resume

1 Predmet vyskumu

Sucasny stav a uroven technologii sposobuji nové trendy a podmienky vo vyvoji
teorie spolahlivosti. Existuje Siroka Skala tuloh, ktoré sa zvycajne netykaju teorie
spolahlivosti, o ktorych sa ned4d rozhodnut pouzitim tradiénych metodd. Takéto ulohy
napriklad hodnotia riziko teroristického utoku (Levitin 2009), spolahlivost’ podnikove;j
analyzy (Solojentsev 2009), odhaduji rizikd a dosledky technologickych havarii (Zio
2009) a mnoho d’al§ich. Moderné technologie zaroven umoziuji takmer bezporuchovu
prevadzku technickej Casti zlozitych systémov. Tato situacia spdsobuje zmenu tradicnych
pristupov a podnecuje vyvoj novych metdd v tedrii spolahlivosti (Birolini 2014, Ushakov
2006, Zio 2009). E. Zio v prehlade o teorii spolahlivosti (Zio 2009) definoval teériu
spol’ahlivosti ako ,,presne ohrani¢eny multidisciplinarny vedecky odbor, ktorého cielom je
poskytnat’ stibor formalnych metéd na vyskum neuréitych hranic medzi fungovanim a
zlyhanim systému, rieSenim nasledujucich otazok:

e Preco zlyhavaju systémy, napr. pouzitim konceptov spolahlivostnej fyziky na
zistenie pri¢in a mechanizmov zlyhania a identifikaciu nasledkov;
e Ako vyvinut spol'ahlivé systémy, napr. ndvrhom zalozenym na spol'ahlivosti;
e Ako merat’ a testovat’ spol'ahlivost’ pri navrhu, prevadzke a riadeni;
e Ako udrziavat’ spolahlivost’ systémov pomocou udrzby, diagnostiky a prognozy
poruch. “
Podl’a analyzy (Zio 2009) zname problémy teodrie spol'ahlivosti ako:
e matematicky popis systému;
e kvantitativna analyza systému;
e reprezentovanie, znazornenie a kvantifikdcia neistoty v spravani systému,
by sa mali brat’ do Givahy v ramci novych vyziev v tedrii spol'ahlivosti. Na zaklade tychto
skutocnosti je mozné konstatovat’, Ze skumanie matematickej reprezentacie systému je
relevantnym problémom tedrie spolahlivosti. Hlavné kroky pre vyvoj matematického
znazornenia systému v teorii spol’ahlivosti su (Bris 2014, Aven 2017):
1. definicia poctu urovni vykonnosti systému,

2. matematické znazornenie modelu systému;
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3. kvantifikacia modelu systému (vypocet indexov);
4. meranie spravania sa systému.

Prvy a druhy krok v analyze spolahlivosti ma korelaciu s pociatocnymi udajmi.
Ciel'om tychto krokov je zostrojit' matematicky model na hodnotenie spolahlivosti. Preto
sa v tejto praci venujeme v prvom rade tymto dvom krokom.

Prvy krok je definicia pristupu pre vSeobecnu reprezentaciu systému. Existuji dva
hlavné pristupy (Obrazok 1) na reprezentaciu systému pri analyze spolahlivosti konkrétne
viacstavovy systém (MSS) (Barlow, 1978) a binarny systém (BSS) (Barlow, 1975). BSS
umoziuje reprezentovat skimany systém ako matematicky model s dvoma moznymi
stavmi, ktoré st uplné zlyhanie a perfektné fungovanie. MSS, na rozdiel od BSS,
umoziuje definovat’ aj viac ako dva stavy spravania sa systému.

Podl'a (Lisnianski, 2003) koncepcie ako praceschopnost’, spolahlivost’ a stavy systému
moézu byt vyjadrené ako ,,iroven vykonnosti“ MSS. Pouzitie MSS umoziiuje podrobnejsie
analyzovat’ spolahlivost’ systému avSak t4to analyza je komplikovanejSia (Natvig 2010,

Lisnianski 2003).

dokonalé fungovanie =erssrrrrrry
fungovanie d
ciasto€né fungovanie

Zlyhanie

Dvojstavovy systém Viacstavovy systém

Obrazok 1 Dvojstavovy a viacstavovy systém

MSS nie je Casto pouzivany v analyze spolahlivosti, pretoze ma dve hlavné
obmedzenia. Prvym z nich je vypoctova zlozitost’ (Lisnianski, 2003). Uvedenie do analyzy
dalsich trovni vykonnosti systému a stavov komponentov spdsobuje znacné zvicSenie
dimenzie tejto matematickej reprezentacie. Druhym nedostatkom je malo G¢innych metod
a algoritmov kvalitativnej a kvantitativnej analyzy pre MSS (Aven 2014, Birolini 2014,
Zio 2009). Preto je vyskum a vyvoj v analyze spolahlivosti MSS aktualnym problémom v

teorii spol’ahlivosti.
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Algoritmy pre hodnotenie MSS zdvisia od matematickych metdéd pouzitych pri
analyze systému. V (Lisnianski, 2003) autori uviedli $tyri hlavné skupiny matematickych
metdd analyzy MSS, ktoré reprezentujii sprdvanie MSS formou S$truktirnej funkcie,
Markovho modelu, univerzalne vytvarajucej funkcii a matematického modelu zalozeného
na simulacii Monte Carlo. Kazdy z tychto typov MSS ma urcit¢ vyhody. Ddlezitymi
vyhodami Struktirnej funkcie st jednoduchost’ konstrukcie, moznost” aplikacie pre systém
s akoukol'vek Strukturdlnou =zlozitostou a jednoduché metdody vypoctu indexov
spolahlivosti zalozené na metodach algebry logiky.

Typickym pristupom pri analyze Struktarnych funkcii MSS je zovSeobecnenie metod
pre analyzu Struktirnych funkcii BSS, ktoré su spravidla zalozené na booleovskej logike
(Barlow 1975, Barlow 1978, Birolini 2014). Tento pristup ma vSak obmedzenia, ktoré ho
robia neefektivnym pre MSS. Dalsi pristup je zalozeny na aplikovani matematickych
metdd viachodnotovej logiky (MVL) pri analyze Struktarnej funkcie MSS (Zaitseva 2017,
Zaitseva 2012, Kvassay 2017). Podl'a tohto pristupu je Struktirna funkcia vyjadrena ako
funkcia MVL (Zaitseva 2017). Pristupy zalozené na matematickych metédach MVL je
mozné vyuzit' pre spracovanie aanalyzu Strukturnych funkcii MSS ¢o je ukazané pre
vypocet praceschopnosti systému v (Zaitseva 2017, Zaitseva 2015), analyzu kritickych
stavov systému v (Kvassay 2017, Kvassay 2014) a analyzu doleZitosti v (Zaitseva 2012) ,
Zaitseva 2015).

Presnd matematickd reprezentacia je vytvorena v druhom kroku analyzy
spolahlivosti, ktord vyplyva z matematickych metdd, ktoré sa pouziji na vyhodnotenie
skimaného objektu / systému. Metédy analyzy spolahlivosti MSS aBSS
reprezentovanych Struktarnou funkciou st zname a bezne sa pouzivaju v inzinierskej praxi
a roznych aplikaciach (Barlow 1978, Murchland 1975). Ddlezité vyhody Struktirne;j
funkcie st (Kolowrocki 2014, Lisnianski 2018, Natvig 2010):

e definiciu univalentnej koreldcie trovne vykonnosti systému a stavov komponentov;
e zobrazenie systému akejkol'vek Strukturdlnej zloZitosti;

e zloZitost reprezentacie systému nezavisi od jeho Struktury.

Jednym z hlavnych problémov pre d’alsi vyvoj a pouZivanie MSS je nedostatocny
matematicky zaklad pre jeho analyzu.
Struktarna funkcia je jednou zo zakladnych reprezentacii MSS. Dimenzia §truktirne;j

funkcie sa vSak znacne zvySuje s narastajicim poctom komponentov systému (Zaitseva,
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2003). Vyvoj metdd Struktarnej funkcie by mal byt zalozeny na ortogonalizacii
a minimalizacii. Aby bolo mozné vyuzivat' Struktarnu funkciu bez problémov v tedrii
pravdepodobnosti, musi byt’ logickd forma reprezentacie Strukturnej funkcie ortogondlna a
minimalna (Solojentsev, 2009).

Typ matematickej reprezentacie zavisi od detailnosti vyhodnotenia systému a od
matematického pristupu, ktory sa pouziva na vypocet indexov pri analyze spol'ahlivosti.

Kvantifikacia systému v tretom kroku predpoklada vypocet indexov pri analyze
spolahlivosti ako st napriklad funkcia spolahlivosti, miera zlyhania, priemerny cas do
zlyhania, priemerny Cas na opravu, priemerny ¢as medzi poruchami, pokrytie poruch,
dostupnost’, nedostupnost, index doblezitosti atd’. (Lisnianski, 2010). Matematicka
reprezentacia systému a vybranych metdod v druhom kroku ur€uje algoritmy a metddy
vypoctu tychto indexov. Algoritmy a metdody na vypocet indexov taktiez zavisia od
reprezentacie Struktirnej funkcie (Murchland, 1975; Barlow 1978; Natvig 2010).

Po vypoéitani indexov je mozné vykonat’ analyzu ich hodn6t. Meranie a zlepSovanie
spolahlivosti systému sa vykonava vo Stvrtom kroku pri vyvoji stratégii pre zvysSenie
spol’ahlivosti systému, udrziavatel'nosti a d’alSich vlastnosti spol’ahlivosti systému.

Ako vyplyva z analyzy zakladnych krokov vytvorenia matematickej reprezentacie,
matematicka reprezentacia I'ubovolného systému sa zacina definovanim poctu stavov a
vyvojom matematického opisu systému, ktory Uzko suvisi s matematickou metédou
pouzitou pre vyhodnotenie systému. Preto st tieto dva kroky pre nas najdolezitejsie a az po
ich spracovani mdézeme vykonat’ d’alSiu analyzu zlozitych systémov.

V tejto praci sa rozobera analyza BSS a MSS. Analyza moZzného matematického
opisu navrhnutd vysSie nam umoziuje zvolit' si Struktirnu funkciu, pretoze tento
matematicky opis sa da skonStruovat’ pre systém akejkolvek Strukturdlnej zloZitosti
(Griffith 1980, Lisnianski & Levitin 2003). Struktirna funkcia definuje univalentni
Korelaciu urovne vykonnosti systému a stavov komponentov. Metody zalozené na
Strukturnej funkcii boli vyvijané a roz§irované mnohymi vyskumami, napriklad v (Levitin,
2009, Zio 2019, Ushakov 2006).

Matematické metdody na vyhodnotenie Strukturnej funkcie st Casto zalozené na
metddach algebry logiky. V pripade BSS sa tieto metody vyvijaju s pouzitim booleovskej
logiky (Wood 1985, Schneeweiss 2009, Ryabinin 1981). Vyhodnotenie Strukturnej funkcie
MSS sa vykonava pomocou Vviachodnotovej logiky (Zaitseva 2017, Rauzy, 2001).
Délezitou podmienkou véacSiny metdd zaloZenych na Strukturnej funkcii je reprezentacia

Struktarnej funkcie v ortogonalnej forme (Schneeweiss 2009, Ryabinin 1981, Rauzy,
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2001). Tato forma je dolezitd pre reprezentdciu Strukturnej funkcie, pretoze umoziuje
velmi jednoduchu transformédciu logickej interpretacie Strukturnej funkcie do
pravdepodobnostnej formy (Ryabinin 1981, Griffith 1980, Reinske & Ushakov1988,
Schneeweiss 2009, Sellers & Singpurwalla 2008). Véacsinu indexov (spolahlivost,
nedostupnost’, indexy dolezitosti a iné) mozno vypocitat iba na zaklade
pravdepodobnostnej formy (Obrazok 2). Preto vypocet takychto indexov vyzaduje
pravdepodobnostnu formu $truktirnej funkcie, ktort je mozné ziskat’ na zaklade logického
ortogonalneho tvaru Struktirnej funkcie. To vyZaduje vyvoj algoritmov na ortogonalizaciu
povodne;j Struktirnej funkcie (Ryabinin 1981).

Problém ortogonalizacie logickych funkcii je typicky problém v algebre logiky
(Miller & Aaron 2008, Stankovic, Astola & Moraga 2012). Existuji viaceré ortogonalne
formy pre logické funkcie. Jednou zo zndmych foriem je Uplna disjunktivna normalna
forma. Ddlezitou nevyhodou tejto formy je velka dimenzia, ktord stvisi s poctom
nenulovych hodnot booleovskej funkcie (Ryabinin 1981, Smirnov & Gajdamovich 2001,
Rausand & Hoyland 2007). Preto je logickd funkcia zvyCajne minimalizovand a potom je
pre tuto funkciu implementovana ortogonalizacia (Ryabinin 1981, Wood 1985). Existuje
niekol’ko metéd na ortogonalizaciu booleovskych funkcii, ktoré mézu byt efektivne
pouzité na vytvorenie ortogonalnej Struktirnej funkcie v analyze spolahlivosti BSS. Ide
najma o metddu, ktorta navrhol prof. A. Ryabinin v (Ryabinin 1981) na zaklade vytvorenia
Specialnej maticovej transformacie. AvSak tato metoda nemdze byt vhodne pouzita pre
funkciu s velkou dimenziou. Podl'a vyhodnotenia v (Ryabinin 1981) sa tato metoda moze
pouzit’ pre funkciu s 20 premennymi, ¢o znamena analyzu BSS iba s 20 komponentmi.
Analyza d’alsich skumani logickych funkcii v ortogonalizacii ukéazala, ze pristup, ktory
navrhli prof. A. Zakrevskij a prof. Yu. Pottosin v (Zakrevskij a Pottosin 2005) sa mdze
pouzit' na funkciu s velkou dimenziou a mdze byt pouzity na analyzu spolahlivosti
Struktarnych funkcii. Tato metdda vSak bola vyvinuta iba pre booleovsku funkciu. Je
potrebné poznamenat, Zze problém ortogonalizacie vo viachodnotovej logike nie je
jednoznacne definovana.

Problém ortogonalizacie vo viachodnotovej logike tuzko stvisi s problémom
minimalizacie logickych funkcii, pretoze funkcie vo viachodnotovej logike maju velkt
dimenziu (Petrik 2008). Preto by ortogonalizacia Strukturnej funkcie MSS mala zahfiat
minimalizdciu tejto funkcie v pripade, Ze tato funkcia je vytvorend ako disjunktivna
normalna forma. Jednu z moznych adaptacii a interpretacii ortogonalizacného problému

booleovskej logiky navrhol prof. M. Perkowski (Perkowski 1992). Tento vyskum by sa
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mal rozpracovat' na pouzitie pri analyze spol'ahlivosti MSS. Na zaklade spomenutych

faktov je ortogonalizacia podstatnym problémom, ktory by sa mal brat’ do uvahy pri

aktualnom vyskume V teorii spolahlivosti. Tento problém by sa mal obzvlast’ zohl'adnit’ pri

analyze MSS (Sellers & Singpurwalla 2008).

Netplne ) ( Uplne
definovana definovana
funkcia funkcia

Logicka forma

Ortogonalna
forma

Pravdepodobnostna
forma

Spolahlivost systému }

Obrazok 2 Prechod z logickej formy na spol’ahlivost’ systému

Na zéklade vysSie spomenutych skutocnosti je preto hlavnym cielom prace vyvoj a

zdokonal'ovanie matematického pristupu analyzy spolahlivosti MSS pri vytvarani

matematickej interpretacie skimaného systému vo forme Struktarnej funkcie s uplatnenim

matematického pristupu viachodnotovej logiky. Tento ciel’ nas vedie ku skiimaniu vyvoja

metdd na zostrojenie ortogonalnej formy Struktarnej funkcie BSS a MSS. Vyvoj takychto

metod vedie k nasledovnym uloham:

pokracovanie vyskumu z (Zakrevskij a Pottosin 2005) a vyvoj algoritmu pre
ortogonalizaciu Struktirnej funkcie BSS na zéklade metddy navrhnutej autormi v
(Zakrevskij a Pottosin 2005);

analyza koncepcie ortogonalnej formy pre funkciu viachodnotovej logiky a
definicia koncepcie ortogonalizacie pre Struktirnu funkciu MSS;

vyvoj algoritmov pre minimalizaciu a ortogonalizaciu Struktirnej funkcie MSS;
validacia vyvinutych algoritmov pre ortogonalizdciu BSS a MSS na vybranych
systémoch (Struktarne funkcie BSS);

analyza efektivnosti navrhovanych algoritmov.
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2 Metody zaloZené na Strukturnych funkciach

Kvantitativne hodnotenie spolahlivosti akéhokol'vek systému je mozné na zéklade

matematického zndzornenia skimaného systému.

2.1 Struktirna funkcia

Struktarna funkcia je jedna z moznych matematickych modelov reprezentujucich
skutoény systém v teorii spol'ahlivosti. Strukturna funkcia udava troven vykonu systému
(spol’ahlivost/praceschopnost’ ) v zavislosti od jeho stavov komponentov (Natvig 2010,

Zio 2009):
HX)=d(X1,. .., Xn): {0,...,mq -1}x...x{0,...,m, -1}—{0,....M -1}, (1)

kde #(X) je stav systému od jeho zlyhania (#(X) = 0) po dokonalu funk¢nost’ (#(X) =M -
1); X = (X1,..., Xn)je stavovy vektor; X; je stav komponentu, ktory sa meni od stavu
zlyhania (x; = 0) po dokonalt funkénost’ (x; = m; -1).

Systém so Struktarnou funkciou (1) je viacstavovy (MSS) a umoziuje ndm
reprezentovat’ a skimat’ niektoré trovne vykonnosti systému. Ak M = m; = 2 Struktirna
funkcia (1) reprezentuje dvojstavovy systém (BSS) , ktory ndm umoznuje analyzovat’ 2
systémové stavy: zlyhanie abezchybné fungovanie. Struktarna funkcia (1) méze byt
reprezentovana ako klasifikacny model. Vzhl'adom na tato reprezentaciu su vsetky vektory
stavov systému (X, ..., Xp) rozdelené do M tried (Zaitseva, 2016).

Vzhl'adom na matematickt definiciu (1) sa premenna Strukturnej funkcie interpretuje
ako komponent systému. Struktirna funkcia umoZiiuje reprezentaciu réznych systémov.

Struktarna funkcia ma rozne vlastnosti v zavislosti od typu skiimaného systému.
V tejto praci sa uvazuje o koherentnych systémoch, to znamena:

» $truktirna funkcia je monotonna: ¢((s -1)i, X) < ¢(si, X) pre kazdé i € {1,...,
nyase{l,...,m-1};

» komponenty obsiahnuté v systéme nie su irelevantné, kde @(si, x)=(x1,...,Xi-
1,8,Xi41,...,Xn).

Hodnotenie MSS na ziklade Struktirnej funkcie predpokladd vyjadrenie
pravdepodobnosti jednotlivych stavov pre kazda zloZku systému.

Metddy posudzovania spolahlivosti systému zaloZené na reprezentacii Struktirnych
funkcii su pevne stanovené. Tieto metddy st deterministické a pouzivaju sa pri
kvantitativnej a kvalitativnej analyze. Struktirnu funkciu je mozné vytvorit' na zaklade
uplne S$pecifikovanych tdajov, ktoré indikuji korelacie vSetkych komponentov a ich
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stavov. Takéto udaje pre vacSinu systémov v redlnom svete su netplné a neisté. Typickym
prikladom je analyza a hodnotenie I'udského faktora.

Strukttrna funkciu BSS sa interpretuje ako logicka funkcia. Tato funkcia popisuje
logické prepojenie prvkov v systéme, ale neumoziuje analyzovat pravdepodobnostné
podmienky - je to logicka funkcia - neumoziuje nam povedat’ ni¢ o spolahlivosti systému -
teda o pravdepodobnosti, ze systém vykonava svoje funkcie pocas definovaného Casu za
predpokladu, ze to fungoval na zaciatku. Je dblezité prejst’ od logickej cez ortogonalnu
formu k pravdepodobnostnej forme a tak prejst’ k spolahlivosti systému. MSS sa bude
interpretovat’ ako funkcia viachodnotovej logiky.

Pravdepodobnost’ urovne vykonnosti systému je definovand pre kazdu uroven
vykonnosti ako:

A =Prip(x)=j},j=1,...M - 1. (2

V pracach (Barlow 1978, Hudson 1983, Lisnianski 2003) autori ukazali, Ze
akykol'vek stav systému s (j = 1,..., M -1) pre pevne stanovené komponenty koherentné¢ho
MSS podla predpokladu mozno vypocitat ako sucet pravdepodobnosti stavov
komponentov:

pis = Pr{x; =s},s =0,...,m; — 1. (3)

Ako bolo ukazané v pracach (Barlow 1978, Hudson 1983), Strukturdlna funkcia (1)
sa moze pouzit’ na vypocet praceschopnosti systému (2), ak premenné Struktirnej funkcie
opisuju nezavislé udalosti. Toto je mozné, ak Strukturna funkcia je v kanonickej a
ortogonalnej forme. Na vypocet praceschopnosti systému sa pouzivaju dve vety z tedrie
pravdepodobnosti (2):

3. Pravdepodobnost’ st¢inu nezavislych udalosti aa b (stibezna udalost’) sa rovna

sucinu pravdepodobnosti tychto udalosti:

Pr(ab) = Pr(a)Pr(b). 4)

4. Pravdepodobnost’ su¢tu nezlucitelnych udalosti a a b (najmenej jedna z nich
nastane) sa rovna suctu pravdepodobnosti tychto udalosti:

Pr(a + b) = Pr(a) + Pr(b). (5)

Praktické pouzitie dvoch viet (4) a (5) predpoklada zmenu premennych x; (i=1, ...,
n) Struktarnej funkcie (1) pravdepodobnostou stavov komponentov systému (3), ak je
Struktirna funkcia opisand kanonickou a ortogondlnou formou. V (Caldarola, 1980) je

ukédzané, ze pri interpretacii koherentnych MSS mozZno pravdepodobnost’ stavu systému j
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(j =0, .., m — 1) vypocitat pre vektor vo fixnom stave x = (xi,...,xn) ako sucin
pravdepodobnosti Pr{x; = s}stavov komponentov, kde s = 0, ..., mi—1 definuje mozné
stavy komponentu i. Jednou z podmienok nekoherentného systému je to, ze premenné st
vzajomne nezavislé a preto mézeme na ich analyzu pouzit’ pravidlo (4). To znamena, ze ak
pracujeme s 2 premennymi a vypocitame pravdepodobnost’ stavu, ked prva premenna
zlyhala a druhd premennd je v stave 1 (funk¢nd), pouzijeme iba pravdepodobnost’ prvej
premennej (zlyhanie) a pravdepodobnost druhej premennej (fungovanie) a aplikujeme
nasobenie, pretoze tieto premenné su nezavislé udalosti. Ak sa uvazuje o vSetkych
moznych stavov, pri ktorych zlyhé systém, musia byt tieto stavy navzajom nekompatibilné
(5), o znamena, Ze jedna premennd nemodze byt v rovnakom stave pre funkény a zlyhany
systém.

Dolezitym aspektom pri vypocte praceschopnosti systému je preto konStrukcia
kanonickej a ortogonalnej formy Struktirnej funkcie. Tento aspekt moZzno skimat’ na

zéklade metdd booleovskej logiky pre BSS a na zéklade viachodnotovej logiky pre MSS.

3 Metédy tvorby Strukturnych funkcii

3.1 Booleovska algebra

Boolovska algebra v abstraktnej algebre je definovana ako komplementarne
a distribu¢né zjednotenie a tento typ algebraickej Struktury obsahuje zakladné vlastnosti
mnozinovych a logickych operécii.

Booleovska logika je forma algebry, ktora je sustredend okolo troch zakladnych
booleovskych operacii OR(alebo), AND (a) a NOT(negacia).

Booleovska algebra je definovand na mnozine dvoch prvkov, M = {0, 1}. Operacie
booleovskej algebry dodrziavaju urité vlastnosti, nazyvané zakony alebo axiomy, ktoré sa
pouzivaju na preukdzanie vSeobecnejSich zdkonov o booleovskych vyrazoch, aby sa

napriklad vyrazy zjednodusili.

3.2 Viachodnotova algebra

Viachodnotova algebra je zovSeobecnenim booleovskej algebry zaloZenej na stibore
m prvkov M = {0, 1, 2, . . . ,m}. Primarnou vyhodou viachodnotového systému je
schopnost koédovat’ viac informécii na premennt, ako dokaZe bindrny systém

(Yanushkevich, 2006).
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Definicia viachodnotovej logiky:

* Abeceda {0, 1, ..., m-1};

* Miniméalne dve operacie: ,,*“a ,,+*

* Konstanta ,,0: 0 * X=0a0+0=0, X € {0, 1,..., m-1}

Operacie booleovskej algebry maji svoje analdgie vo viachodnotovej algebre.
Viachodnotové naprotivky bindrnych operatorov ,,Alebo®, ,,A“ st viachodnotovymi
konjunkciami, disjunkciami.

Typickym pristupom pre analyzu Struktirnej funkcie MSS je zovSeobecnenie metod
pre analyzu Strukturnej funkcie BSS, ktoré st zaloZené¢ na booleovskej logike. Tento
pristup vSak neumoziuje pouzitie vietkych detailov MSS. Dalsi pristup je zaloZeny na
pouziti matematickych metéd MVL pre analyzu Struktirnych funkcii MSS. Podla tohto
pristupu je Struktirna funkcia interpretovana ako funkcia MVL.

3.3 Ortogonalizacia

Ortogonalizacia je vel'mi dolezitd pre spracovanie Strukturnej funkcie pri analyze
spol'ahlivosti. O¢akava nezavislé udalosti. Jej pouzitim sa moze I'ahko prejst’ z logickej na
pravdepodobnostnti formu.

V niektorych vedeckych ¢lankoch sa uvazovalo o koncepcii ortogonalizacie v MVL
(Perkowski 1992, Perkowski 1991).

V tejto praci je koncepcia ortogonalizacie brana do uvahy pre tabulku pravdivosti
Struktarnej funkcie MSS (funkcia MVL) alebo premennych vektorov Struktirnej funkcie.
Zvazuju sa dva typy ortogonalizacie: uplné ortogonalne premenné vektory a Ciastocne
ortogonalne premenné vektory.

Podobne ako booleovska logika, dva vektory premennych Struktirnej funkcie MSS
(funkcia MVL) s ortogonalne, ak st vzajomne disjunktné. Majme dva vektory
premennych aj...aj...a, a bi...b...by kde a; bi € {0, ..., mi-1}. Tieto vektory su
ortogonalne, ak aspof jedna dvojica premennych spifia podmienku a; # b;.

Sada Uplne ortogonalnych vektorov premennych pozostava z m; vektorov
premennych pre ktoré existuje jedna premennd, ktord ma v kazdom vektore rdzne
hodnoty, a ostatné hodnoty premennych st rovnaké. Premennd sa nazyva ortogonalna
premennd, ak ma pre tieto vektory rozne hodnoty.

Ak mame napriklad Strukturnu funkciu MSS s m; = mg =M =3 (vsetky vstupné a

vystupné premenné moézu byt v 3 stavoch - Strukturna funkcia (1) je homogénna, ak M =
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m; = m; for i #]j) an =4. Vektory premennych 0102, 0112, 0122 st upIné ortogonalne,
pretoze X1, X2 @ X4 maji rovnaké hodnoty a X3 ma r6zne hodnoty od 0 do 2.

Sada c¢iastoCne ortogonalnych vektorov premennych pozostava z s vektorov
premennych (2 <'s < mj-1) pre ktoré existuje jedna premenna, ktora ma v kazdom vektore
rozne hodnoty, a ostatné hodnoty premennych si rovnaké. Premennd sa nazyva
ortogonalna premennd, ak ma pre tieto vektory rozne hodnoty.

Dva vektory premennych 0112 a 0122 su Ciastoéne ortogonalne pre Struktirnu
funkciu MSS s n = 4 komponentmi a pre m; = ms =M =3. Premenné X1, X2 a X4 majl
rovnaké hodnoty a X3 ma rozne hodnoty od 1 a 2.

Koncepcie uplnej a c{iastoCne ortogonalizacie sa pouzivaju v algoritme na

minimalizaciu tabulky pravdivosti Struktirnej funkcie MSS.

3.3.1 Boolovska funkcia

Pojem ortogonalizacie je dobre znamy a Casto sa pouziva v booleovskej algebre pre
vektory premennych (Schneeweiss 2009, Hudson 1983). Podl'a (Hudson 1983) st dva
konjuktivne c¢leny booleovskej funkcie ortogonalne, ak je ich st¢in nula alebo ak su
navzajom disjunktné. Pojem ortogondlny konjuktivny ¢len mdéze byt zovSeobecneny pre
vektory premennych: dva vektory premennych st ortogonalne, ak je ich sucin nula.
Matematicky opis booleovskej funkcie je ortogonalny, ak su vSetky konjuktivne ¢leny
ortogonalne. Podl'a (Barlow 1978, Barlow 1975) sa ortogonalna forma Struktirnej funkcie
(1) transformuje na pravdepodobnostni formu substiticiou premennych Struktarnych

funkcii pravdepodobnost'ou stavov prislusnych komponentov.

3.3.2 MVL funkcia

Ortogonalizacia DNF v tejto praci je zaloZzend na disjunktivnom rozSirovani
elementarnych konjunkcii do mnohych d’al§ich konjunkcii, ktoré sa stali ortogonalnymi z
definovanej skupiny alebo boli absorbované. Na znizenie d’al§ich vypoctov sa absorbovana
konjunkcia z vysledku odstrani a zostavajice spojenia su minimalizované.
Ortogonaliza¢ny algoritmus opisany v Zakrevskij a Pottosin (Zakrevskij, 2005) je v tejto
praci adaptovany na proces ortogonalizicie.

Ortogonalne DNF - je také DNF, ktoré obsahuje ortogonalne elementarne konjunkcie
a to znamena nasobenie tychto konjunkcii, dava 0. Algoritmus pracuje na principe operacie

rozsirujucej ki nad kj, kde k; a kj s neortogondlne elementarne konjunkcie.
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3.4 Minimalizacia

Proces minimalizicie sa pouziva na zniZenie alebo zjednodusenie Struktirnej
funkcie, ktora moéze byt v realnych systémoch vel'mi zlozitd. Vdaka procesu
minimalizdcie moézeme vyrazne znizit Struktirnu funkciu, ¢o vedie k jednoduchsej

vypoctovej zlozitosti.

3.4.1 Booleovska funkcia

Konjuktivny €len sa povazuje za implikant Uplnej funkcie, ak implikuje funkciu.
Preto kazdy z konjuktivnych ¢lenov opisujtiicich Gplnti booleovsku funkciu je implikantom
pre tato funkciu. Inymi slovami, mdzeme povedat, Zze elementarne konjuktivne ¢leny
funkecii su ich implikantmi.

Implikant booleovskej funkcie sa nazyva je prvoimplikant, ak tento implikant
nezahrituje iny implikant s menSim poctom literdlov tej istej funkcie. Napriklad, majme
booleovsku funkciu:

f(A,B,C) = ABC+BC. (6)

V tejto funkcii je ABC implikantom funkcie. Na druhej implikant BC vo funkcii
nezahriiuje iny implikant a preto je prvoimplikantom. Je ddlezité si uvedomit, ze ak je
booleovsky vyraz vyjadreny ako stcet prvoimplikantov, potom zodpoveda minimalne]

disjunktivnej normalnej forme.

3.4.2 MVL funkcia

Pravdivostna tabulka Strukturnej funkcie MSS je ortogonalna forma znazornenia
funkcie. To znamena, Ze vSetky vektory premennych v tejto tabulke su ortogonalne.
Pravdivostna tabulka ma vSak dimenziu mixmyx ... xm,, ¢o komplikuje tuto tabulkova
analyzu a hodnotenie. Minimalizacia pravdivostnej tabul’ky je zostrojenie pravdivostnej
tabul’ky s menSou dimenziou a bez straty informécii o spravani systému. Jednym zo
sposobov minimalizovania pravdivostnej tabulky je odstranenie vektorov premennych,
ktoré nemajii vplyv na hodnotu funkcie. Spravidla je to ortogonalny vektor premennych
vzhl'adom na jednu premennu pre rovnaku hodnotu funkcie. Vytvoreny vektor premennych
méa mensi pocet premennych ako pociatocné vektory premennych. Preto vytvorena
pravdivostna tabul’ka obsahuje mensi pocet vektorov premennych a tieto vektory obsahuju

mens$i pocet premennych. Do uvahy sa mdze vziat uplna a Ciasto¢na ortogonalizcia
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premennych. Podobny princip sa pouziva v algoritme Quine — McCluskey na
minimalizaciu booleovskych funkcii (McCluskey, 1956).

4 EXperimenty

Vyhodnotenie efektivnosti minimalizacie logickych funkcii bolo implementované na
zaklade suboru generovanych monotonnych funkcii. Monoténne logické funkcie sa
zhoduju s definiciou koherentnych Struktirnych funkcii, ktoré umoziuju reprezentaciu
vacsiny skuto¢nych systémov. Generovand mnoZina obsahuje Strukturalnu funkciu MSS s
3 vykonnostnymi urovilami systému a 3 stavmi vSetkych systémovych komponentov.
Pocet funkcii je 50. Tieto funkcie boli minimalizované vyvinutym algoritmom na
minimalizaciu Struktarnych funkcii MSS (tento algoritmus je uvedeny v oddiele 2.4.2).

Ziskali sme vysledky, ktoré st zndzornené na Obrazku 3. Z grafu vidime, Ze
maximum poklesu implikantov pre vygenerované funkcie bolo okolo 33% a minimum
okolo 3%. NajbeznejSia hodnota poklesu bola asi 18% a tato hodnota bola merana pre 13

funkcii.

Znizenie implikantov vygenerovanych funkcii
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Obrazok 3 ZniZenie implikantov vygenerovanych funkcii

Postup spracovania je zndzorneny na Obrazku 4. Definovali sme systém opisany
Struktirnou funkciou a najskor vyuZzivame algoritmy na minimalizdciu na zjednoduSenie
tejto Struktirnej funkcie, ktora moéze byt v redlnych systémoch velmi zlozitd. Vdaka
procesu minimalizdcie moZeme vyrazne znizit' tato funkciu, ¢o vedie k jednoduchse;j
vypoctovej zlozitosti. Ak existuje napriklad piata mocnina Cisla 3, existuje 243 moznych

definovanych implikantov pre takuto Strukturnu funkciu. Ak sa tato funkcia d4 zjednodusit
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minimalizdciou napriklad na 150 implikantov, tito minimalna forma moze byt uz
ortogonalna, ale nie je to zaruené a preto sa pouzije d’al$i proces ortogonalizacie. Na
druhej strane po orthogonalizacii sa moze zvysit' pocet implikantov, a preto je pre nas

dolezitejSie, ako dlho trva proces na ortogonalnu formu, ktora sa mdze alebo nemusi

zjednodusit’.
-— Minimalizacia
Ortogonalizacia
Obrazok 4 Spracovanie systému definovaného Struktiirnou funkciou
Zaver

Analyza spolahlivosti je hodnotnym vyskumom pre rozne systémy. Analyza
Iubovol'ného systému zacina definovanim poctu stavov a potom pokracuje vyvojom
matematického opisu systému. Preto su tieto dva kroky pre nas najdolezitejSie a az po ich
spracovani mozeme vykonat’ d’alSiu analyzu zlozitych systémov. Existuja dva pristupy k
reprezentacii systému, ktorych popis je zalozeny na BSS a MSS. BSS umoziuje
reprezentovat’ pociatocny systém ako matematicky model s dvoma moznymi stavmi, ktoré
st Uplné zlyhanie a perfektné fungovanie. MSS umoznuje brat’ do uvahy viac ako iba dva
stavy v spravani sa praceschopnosti alebo spolahlivosti systému.

Ked’ sme ako matematicku reprezentaciu systému vybrali struktirnu funkciu, tato
funkcia nema vzdy formu akt potrebujeme, a preto su potrebné urcité zapracovania a
zmeny vtejto funkcii. To nas vedie k vyvoju algoritmov a metéd na konstrukciu
ortogonalnej a minimalnej reprezentacie Strukturnej funkcie MSS. Takato forma
reprezentacie umoznuje prechod od logického k pravdepodobnostnému opisu a potom sa
dostane k spolahlivosti systému.

Predstavili sme model spracovania skuto¢ného systému, ktorym bola dronova letka.

Tento systém sme definovali Strukturnou funkciou a potom sme ukazali, Ze vdaka
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minimalizdcii méZeme tito funkciu vyrazne zjednodusit, co vedie k jednoduchsej
vypodtovej zlozitosti. Struktirna funkcia po minimalizicii méze byt uz v ortogonlnej
forme, ale to nie je zarucené, preto d’al§im procesom bolo pouZitie procesu ortogonalizacie.
Na druhej strane po ortogonalizacii sa moze zvysit’ pocet implikantov, ktoré boli znizené
po procese minmalizécie, a preto je pre nds dolezitejsie, ako dlho trva proces premeny na
ortogonalnu formu, ktord sa méze alebo nemusi zjednodusit’ Strukturnu funkciu.

Podl'a hlavného ciel’a boli spracované d’alsie ulohy:

metoda navrhnutd v (Zakrevskij & Pottosin 2005) bola upravend na aplikaciu na

ortogonalizaciu Struktirnej funkcie BSS;

e zvazila sa koncepcia ortogonalnej formy vo viachodnotovej logike a navrhla sa
koncepcia ortogondlnej Struktirnej funkcie MSS;

e navrhovand koncepcia ortogonalnej Struktarnej funkcie MSS sa pouzila na vyvoj

algoritmov minimalizécie a ortogonalizacie Struktarnej funkcie MSS;

e vytvorené algoritmy boli overené a vyhodnotené na vybranych systémoch

(Struktarne funkcie BSS a MSS).
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