UNIVERSITY OF ZILINA
FACULTY OF MANAGEMENT SCIENCE AND INFORMATICS

RELIABILITY ANALYSIS OF NON-COHERENT SYSTEMS BASEDON STRUCTURE
FUNCTION METHODS

Dissertation thesis

Registration number: 28360020213007

Study program: Applied Informatics
Field of study: Informatics
Workplace: Department of Informatics

Faculty of Management Science and Informatics, University of Zilina
Supervisor: doc. Ing. Miroslav Kvassay, PhD.

Zilina, 2021 Ing. Peter Sedlacek

UNIVERSITY OF ZILINA
FACULTY OF MANAGEMENT SCIENCE AND INFORMATICS

RELIABILITY ANALYSIS OF NON-COHERENT SYSTEMS BASEDON STRUCTURE
FUNCTION METHODS

Dissertation thesis

Registration number: 28360020213007

Study program: Applied Informatics
Field of study: Informatics
Workplace: Department of Informatics

Faculty of Management Science and Informatics, University of Zilina
Supervisor: doc. Ing. Miroslav Kvassay, PhD.

Zilina, 2021 Ing. Peter Sedlacek

Acknowledgement

I would like to thank my supervisor specialist, Professor Elena Zaitseva, PhD., my
supervisor Associate Professor Miroslav Kvassay, PhD. and my other colleagues for

their advises, suggestions and cooperation.

Abstract

Spolahlivost je jednou z charakteristik systémov, ktoré maju velku dolezitost v sticasnosti,
kedZze zlyhania systémov mozu maft fatalne nasledky. V nasej praci sa zameriavame na
analyzu nekoherentnych viacstavovych systémov reprezentovanych vo forme struktirne;
funkcie. Tato funkcia nam umoznuje popisat zavislost funkcnosti systému od funkénosti
jednotlivych komponentov. KedZze realne systémy casto pozostavaju z velkého mnozstva
komponentov, je potrebné reprezentovat struktirnu funkciu efektivnym sposobom.
Za tymto tc¢elom pouzivame viac-hodnotovy rozhodovaci diagram. Samotna analyza
systému popisaného pomocou struktirnej funkcie pozostava z hladania kritickych stavov
a vypoctu charakteristik systému a jeho komponentov. Jednym z tradi¢nych nastrojov na
tato analyzu je orientovana parcidlna logicka derivacia. V ramci nasej prace sme navrhli
jej vyuzitie pre analyzu nekoherentnych viac-stavovych systémov. Dalsim relevantnym
problémom v spolahlivostnom inzinierstve je problém netplne definovanej struktirne;j
funkcie, kedze pri mnohych realnych systémoch nemame k dispozicii tplnt informéaciu
o analyzovanom systéme. Za tymto tcelom je mozné vyuzif nastroje dolovania dat na
vytvorenie rozhodovacieho stromu. Tento je nasledne mozné redukovat na struktirnu
funkciu vo forme rozhodovacieho diagramu. V ramci prace popisujeme algoritmus
redukcie rozhodovacieho stromu na rozhodovaci diagram. V dalsej casti prace sa
venujeme analyze spolahlivosti softvéru. Existuje viacero pristupov k analyze softvéru.
V nasej praci sme sa rozhodli analyzovat zdrojovy kdéd, ten reprezentovat vo forme
abstraktného syntaktického stromu a z neho vytvorit spolahlivostny model. Pouzitie
vsetkych navrhnutych pristupov a metod je demonstrované na konkrétnych prikladoch,

najmaé systémov s Iudskym faktorom, co je typicky priklad nekoherentného systému.

KlItcové slova: analyza spolahlivosti, viac-hodnotovy rozhodovaci diagram, neko-
herentny systém, ukazovatele dolezitosti, neiplne definovana struktirna funkcia, spolahlivost

softvéru

Abstract

Reliability is one of system characteristics that have great importance in these days as
consequences of system failure can be fatal in some cases. In our thesis, we are focusing
on analysis of non-coherent multi-state systems represented in a form of structure
function. This function allows us to express dependency of system performance on
performance of its components. As real systems usually consists of large amount of
components, it is necessary to represent structure function in an efficient way. For this
purpose, we are using multi-valued decision diagrams. The analysis of a system described
in a form of structure function consists of search for critical states and calculation of
system characteristics and characteristics of system components. Direct partial logical
derivative is one of typical tools used to perform this analysis. In our work, we propose
its usage for analysis of non-coherent systems. The other relevant problem in reliability
engineering is the problem of incompletely specified structure function, as in many real
systems we do not have full information about analysed system. One of the approaches
to solve this is the usage of methods of data mining to construct decision tree. It is
possible to reduce this tree into structure function in a form of decision diagram. In
our work, an algorithm for this reduction is described. The next part of our thesis
focuses on software reliability. We decided to analyse source code, represent it in a
form of abstract syntax tree and use it to construct reliability model. The usage of the
proposed approaches and methods is demonstrated in specific cases, mainly for systems

with human factor, as they are typical examples of non-coherent systems.

Keywords: reliability analysis, multi-valued decision diagram, non-coherent system,

importance measures, incompletely specified structure function, software reliability

Contents

[List of Figures|

[List of Tables|

[Nomenclature

Introductionl

[1 Basic definition and properties in Reliability engineering|

[1.1.1 Representations of structure function|

(1.2 Logic difterential calculusf.

(1.3 Coherent and Non-coherent systems|.

1.4 Quantitative analysis|

(1.4.1 System characteristics|

(1.4.2 Structure Importance SL;|

(1.4.3 Birnbaum’s Importance B,

2 Non-coherent systems|

[2.2 Direct Partial Logical derivatives of non-coherent MSS|

2.3 Multi-Valued Decision diagrams|

[2.3.1 MDD representation using vector of neighbours|

[2.3.2 Algorithm for D'I' to MDD reduction|

[2.4 Incompletely specified structure function of MSS|.

[3 Sotftware Reliability|

[3.1 Software reliability models based on the structure function|

[3.1.1 Software reliability of microservice architecture]

[3.1.2 Model example - e-shop|
[3.1.3 Software reliability calculation based on UML/DAM diagram|. .

[3.1.4 Model example - calculator|.

11

13

17
18
19
22
28
29
29
30
30

4 Case Studies|

[4.2 Hepatitis dataset|

[4.2.1 Calculus using only fully specified entries|

[4.2.2 Calculus using all entries|

[4.3.1 'Topological analysis|.

[4.4 Software reliability evaluation|

[4.4.1 Syntax tree creation|

[4.4.2 The creation of the reliability model from syntax tree|

[4.4.3 Quantitative analysis|

Conclusion|

[Resume

[Bibliography|

64
64
69
70
72
73
75
80
81
84
87

90

93

109

119

List of Figures

(1.1 Structure Function for state 1 represented in form ot Reliability Block |
Diagram| 20

(1.2 Structure Function for state 2 represented in form of Reliability Block |
Diagram| 21

(1.3 Structure Function represented in form of MDD} 21
(1.4 Tlustration of DBLD according to Equation|1.5]. 23
(1.5 Illustration of DPLD according to Equation|l.6{ 24
(1.6 Ilustration of DBLD according to Equation|{l.7. 25
(1.7 Tlustration of DPLD according to Equation|1.8. 25
[2.1 Calculation of IDPLD (2.4) for component z; and system performance |

[evel 2 of the structure function in Tab. 2.3l 37
[2.2 Calculation of IDPLD (2.4)) for component z; and system performance |
level 1 of the structure function in Tab. .3l 38

[2.3 Calculation of IDPLD (2.4) for component z; and system performance |

[level 0 of the structure function in Tab. 23[. 39
[2.4 Calculation of IDPLD ([2.5) for component x; of the structure function |

[m Tab, R3If . . . oo o 41
[2.5 Calculation of IDPLD ([2.5)) for component x5 of the structure function |

[in Tab. R3M 42
[2.6 Calculation of IDPLD ([2.5) for component x5 of the structure function |

[in Tab. R3[. o 43
[2.7 Calculation of IDPLD ([2.7)) for component x5 of the structure function |

[i Tab, R3IT. . oo 45
2.8 DT to MDD reduction using vector of neighbours| 49
2.9 Example of DT to MDD reduction| 52
(3.1 Monotilic vs microservice architecture [I| 56
[3.2" Service dependency graph and corresponding Fault Tree 2 57
[3.3 Dependency graph for e-shop example| Y
[3.4 Fault tree for e-shop example, 58

[3.5 Example of UML/DAM diagrams [3]| 59

[3.6 Example of Fault tree corresponding to diagram in Fig. B.5[[3] 60
[3.7 Calculator - use case diagram| 60
[3.8 Calculator - activity diagrams| 61
3.9 Calculator - fault treecase 11 L. 61
[3.10 Calculator - fault treecase 2|o 62
[3.11 Principle of proposed method| 63
[3.12 Syntax tree of local declaration statement| 63
4.1 MDD trom hepatitis dataset using only fully specified records| 71
[4.2 SI results for hepatitis dataset using only tully specified records] 72
(4.3 MDD from hepatitis dataset using all records| 73
[4.4 Sl results for hepatitis dataset using all records| 75
4o MDD of Bike Crashes Dataset| 76
|4.6 Results of SI}i for Bike Crashes Datasetl 76
4.7 Results of 5I; for Bike Crashes Dataset| 77
4.8 Results of SI; for Bike Crashes Dataset| 78
[4.9 Example of source code|.o 80
[4.10 Top level of source code description - main function| 81
[4.11 Second level of source code description - for loop|. 81
[4.12 Third level of source code description - body of tor loop|. 82
[4.13 The final level of source code description - if statement| 82
[4.14 Resulting syntax tree corresponding to source code in Fig. 4.9 83
[4.15 Example of tault tree created using syntax tree from Fig. [4.14] 84
[4.16 DT to MDD reduction using vector of neighbours| 105

List of Tables

(1.1 ~ Structure Function represented in form of Truth Table, 20
(1.2 The structure function of simple service system| 27
(1.3 Nonzero elements of IDPLDs 0¢(; |)/0z;(s =) 27
(.4 Nonzero elements of IDPLDs 0¢(l 7)/0z;(s =) 27
[L.5 Nonzero elements of IDPLDs 0¢(h>; — h;)/0x;(s =) 28
[L6 IMs calculationl 30
[2.1 'T'he conceptions of relevance for coherent MSS|. 33

[2.2 Examples of coherent and non-coherent MSS (n = 2, m; = 2,my = |

B =A). o o 34

[2.3 Example of structure function for non-coherent system with 3 components| 35

2.4 Critical states for structure function described in Tab. 2.3 47
2.5 Example of MSS| 49
[3.1 Probabilities of states in e-shop example| 57
[3.2 Important measures for e-shop example| 58

[4.1 Structure function of medical error during a surgery depending on the |

[anesthetic examinationl 65
[4.2 Critical states for anesthesia examination according to Eq. [2.5[. 67
[4.3 Critical states for anesthesia examination according to Eq. [2.7] 68
4.4 Details of Bike Crashes Datasetl 74
|4.5 Attributes with highest values of Slh for Bike Crashes Dataset| 7
[4.6 Attributes with highest values of SI; tor Bike Crashes Dataset| 7
4.7 Attributes with highest values of SI' for Bike Crashes Dataset| 78
[4.8 Sl for specific system change for Bike crashes dataset| 79
[4.9 Normalized SI for specific system change for Bike crashes dataset| . . . 79
[4.10 Individual source code elements and how to split them| 83
[4.11 Probabilities of states for each node in Fig. [4.15 85
412 Structure function in form of Truth Tablel 86
[4.13 Results of SI; calculation| 88

4.14 Results of BIl; calculation|

[4.15 The conceptions ot relevance for coherent MSS|.

10

Nomenclature

Acronyms

A Availability

AST Abstract Syntax Tree

BDD Binary Decision Diagram

BI Birnbaum’s Importance

BSS Binary-State system

DAM Domain Analysis Model

DD Decision Diagram

DPLD Direct Partial Logical Derivatives
DT Decision Tree

FT Fault Tree

IDPLD Integrated Direct Partial Logical Derivatives
LDC Logic Differential Calculus

MCS Minimal Cut Set

MCV Minimal Cut Vector

MDD Multi-Valued Decision Diagram
MSS Multi-State system

MTTF Mean time to failure

MVL Multi-Valued Logic

NHPP Non-Homogeneous Poisson Process

R Reliability

11

RBD Reliability Block Diagram

SE' Structure Function

SI Structure Importance

SRGM Software Reliability Growth Model
TD Truth Density

TT Truth Table

U Unavailability

UML Unified Modeling Language

Notation

n number of system components

T; i-th system component state

x vector of system components states
m number of system states

m; number of i-th system component states

pi,s probability system component z; is in state s
q; probability system component z; is in state 0
p vector of system components state probabilities

¢(x) Structure Function

12

Introduction

System reliability is an important characteristic of any system in these days. The
reliability analysis is a complex process. The first step of this process is the creation
of a mathematical representation or mathematical model of the investigated system
[4, B, [6]. The mathematical model is constructed depending on the specifics of system
analysis and properties of the investigated system. Depending on number of system
performance levels, mathematical models can be divided into two types depending on
the detail of the analysis [4]: Binary-State Systems (BSS) and Multi-State Systems
(MSS).

Both of these types can be coherent or non-coherent depending on influence of
system component degradation (failure) on the system functioning [7, 8, ©]. The
degradation or failure of a component of coherent system cannot result into the system
performance level improvement and all components of coherent system are relevant
to the system functioning [10, [§]. Non-coherent system reliability does not increase
monotonically if functioning/reliability of some components increase. Coherent systems
are intensively studied in contrast to non-coherent systems in reliability engineering.
Of course, coherent systems dominate in engineering applications, but non-coherent
systems represent very often control applications [11, [12], multi-tasking applications
[13], and applications with limited resources [I4]. Most studies of non-coherent systems
are developed for BSS. One of the first formalisms in non-coherent system reliability
analysis has been definition of k-to-l-out-of-n system [I5]. This type of system has
been used for the investigations of a multiprocessor system [14], influence of weather
conditions to power systems [16], or performability analysis of large-scale distributed
systems [I7]. There are other examples of non-coherent BSS in reliability analysis, such
as H.264 video coding standard [7], nuclear systems [I8], gas supply system with safety
features [19], logical circuits [20, 21], traffic light systems [22], power control systems
[23], or liquid level control systems [24].

The reliability analysis of non-coherent system requires special methods. It is caused
by the non-monotonic impact of component failure on the functioning of such systems.
Methods for the evaluation of non-coherent BSS availability /reliability, frequency
indices and MTTF have been developed and presented in [22] 5], 14], 17, 25]. The

13

studies of importance analysis of non-coherent BSS have been discussed in papers
[7, 12, 19 26]. The most often approach for non-coherent BSS is based on analysis of
prime implicants. The prime implicants have been used for the development of methods
for non-coherent system evaluation in [27, 12, 28, 29]. Prime implicants have been
proposed in [29] as analogy of minimal cut sets to define minimum combinations of
failures that cause failure of a non-coherent system. Fault tree and minimal cut set
are efficient tool for analysis of coherent system, but they are not equal with prime
implicants and do not take into account non-monotonic influence of components failure
of non-coherent system. Fault tree and minimal cut sets have been generalized for
non-coherent BSS analysis in [25, B0, 20, B1]. The definition of prime implicants is
complex and time-consuming problem if the number of system components increases.
One of the proposed decisions is application of Binary Decision Diagrams (BDD) for
the system representation [26], 17, 32, [31].

Non-coherent MSS are not studied intensively unlike BSS. There were studies of
non-coherent MSS in which some theoretical aspects were considered [33, 34}, 135, 36], but
they have not been further developed. This is caused by some difficulties/ambiguities
in the theoretical interpretation of non-coherent MSS and computational complexity of
MSS analysis. The conceptions of coherent and non-coherent BSS were generalized for
MSS in [34] 35 B6]. According to these studies, MSS is coherent if all its components
are relevant to the system and degradation of any component cannot result in the
system performance level improvement. The condition of components relevance was
not clearly defined in these studies and authors of papers [33, 34} 35, B6], [37] proposed
some interpretation of this condition. Every of the proposed definition of component
relevance for MSS has own distinctive specifics. The more detailed analysis of these
definitions is presented in sections and of this thesis. The calculation of indices
and measures of non-coherent MSS has been discussed in [38, B39, 40]. Bossche in
[38, 89] considered the frequency evaluation of reliability of non-coherent MSS based
on fault tree with application of prime implicants. The author has generalized the
conception of prime implicants from non-coherent BSS and used modified approach of
Boolean logic for analysis of MSS. The methods of Multiple-Valued Logic (MVL) are
used in definition of importance measures of non-coherent MSS in [40], but the authors

have proposed intuitive calculation of importance measure and has not analysed the

14

theoretical background and definitions of non-coherent MSS.
The mentioned led us to set the following goals, we will investigate within our

research in this thesis:

1. The investigation of methods for reliability analysis of multi-state non-coherent

systems.

2. The investigation of methods for the reduction of computational complexity of

structure function analysis.

3. The investigation of methods for construction of structure function based on

incompletely specified data.

Except these goals we decided to expand our research on software reliability and
investigate the possibility to represent software in a form of structure function.

In this thesis, we propose new approach for non-coherent MSS analysis based on
mathematical methods of MVL. This approach is development of studies of coherent
MSS, which have been presented in [0, [4I]. Similar to the studies in [6, 4], the
investigated system is represented by structure function, which maps all possible system
components states to system performance levels. The structure function according to [6]
can be interpreted as MVL function, and this fact allows us to use MVL mathematical
methods for analysis and evaluation of MSS. In particular, the analysis of critical system
component states is considered in this thesis. The critical component states are defined
for every system component. For these states the specified change of component state
results in the change of the system performance level. According to previous studies
in [6], the critical system state can be computed by methods of Logical Differential
Calculus, in particular, Direct Partial Logical Derivatives (DPLD). In study [41], the
derivatives named Integrated Direct Partial Logical Derivatives (IDPLD) have been
developed for calculation of Importance Measures of coherent MSS. Other modification
of DPLD in [42] allows definition of minimal cut/path sets of coherent MSS. In this
thesis, we develop DPLD-based approach for the computation of critical component
states of non-coherent system. The development of this approach is based on analysis
of definition of non-coherent MSS proposed in investigation [33], 34) [35, [36], 37].

The organization of this thesis is following. Chapter [I] summarizes the existing

research in reliability analysis with focus on structure function, its construction and

15

basic representation. It also contains description of logic differential calculus as a
method for analysis of structure function. The last part of this chapter presents basic
terms from quantitative analysis, such as reliability, structure importance etc.

The main focus of chapter [2/is on our research in reliability analysis of non-coherent
systems. In the first part, we are describing structure function of non-coherent systems,
its classification and an example of this system. This example is in the next section
used to demonstrate usage of direct partial logical derivatives to its analysis. Within
this section, new type of logic derivative is proposed. This derivative is suitable for
analysis of non-coherent systems, specifically for analysis of critical states for individual
components. The next section describes one of the effective representations of structure
function - multi-valued decision diagram, together with algorithms of its creation for
incompletely specified structure function.

Chapter [3|is focused on software reliability, description of traditional models used to
analyse this kind of systems and our proposed method. This method uses source code
to create reliability model - fault tree - that can be easily transformed into structure
function. This allows us to use the same approach to calculate software reliability as to
analyse other systems, i.e. DPLD etc.

Finally, the chapter [4] contains demonstration of all proposed methods. There are
4 case studies, namely anesthesia examination, patient with hepatitis survival chance,

bike crashes and example of software reliability.

16

1. Basic definition and properties in
Reliability engineering

Evaluation of system reliability is a complex process whose result is information
about system and its characteristics from reliability point of view, such as reliability,
importance measures, critical states etc. The whole analysis is adjusted depending
on characteristics we want to obtain. This adjustment consists of the selection of a
mathematical representation (mathematical model) of analysed system. There are
different mathematical models in reliability analysis, and two criteria are taken into

account in the creation of the mathematical model, namely:

o number of system states;

o background mathematical approach, which determines algorithms and methods

used for system evaluation.

The number of system states (performance levels) and number of its components
states are resulted by requirements for analysis detail. According to the number of
system performance levels, there are two types of mathematical representations that

are known as Binary-State System (BSS) and Multi-State System (MSS).

BSS is a mathematical representation of system with two performance levels - i.e.
system is either working or not. This mathematical representation is used if system
is binary-state from its nature [21} [43], or we are analysing consequences of a system

failure [5].

MSS allows defining in system mathematical representation more than two perfor-
mance levels and describing gradual degradation of system performance from fully
working to fully broken [44], 4, [45]. MSS allows performing the system analysis in more
detail but computational complexity of this analysis increases and special methods
should be developed for quantitative analysis of system associated with this type of
mathematical representation. Such methods correlates with background methods used
in quantitative analysis of system reliability, for example, stochastic methods, methods

of Boolean logic or algebra logic [406] [44].

17

Depending on the mathematical background used to analyse system, there are
several models, such as Structure Function (SF), Markov model, Universal generating
function, Fault Tree (FT) etc. The mathematical model that correlates with algebra
logic is structure function. The structure function expresses dependency of the change of
a system performance level on the change of a performance level of its components. SF
can be used for both BSS and MSS and allows us to represent system of any topological

complexity.

1.1 Structure Function

Let us consider a MSS with n components. The system has m performance levels.
The ¢-th component of this system has m; states. The system performance levels and
the i-th system component states are changing from 0 for representation of failure to
m — 1 and m; — 1 respectively for indication of perfect functioning. The dependency
of system performance on states of its components can be expressed using Structure

Function (SF) in form [47, [6]:

o(x1, 29, ..., x,) = ¢(x) {0,1,....mqy — 1} x {0,1,...,my — 1} X ...

x{0,1,...,mp — 1} = {0,1,...,m — 1},

(1.1)

where x; is the i-th system component state, ¢ € {1,2,...,n}, € = (r1, 29, ...,2,) i a
state vector.
The structure function (|1.1]) represents heterogenous MSS. If m; = m for any i,

i€{1,2,...,n}, SF can be expressed in the following form:

d(x1, 79, ..., 2,) = d(x) : {0,1,....,m —1}" — {0,1,....,m — 1}. (1.2)

In case m = m; = 2, the mathematical model expressed by SF ([L.1]) is a structure

function of BSS.
The probability of state j of the i-th system component can be defined as:

pij = Pr{z; = j}

¢ = pio = Pr{z; = 0}.

18

1.1.1 Representations of structure function

Structure function can be expressed in different forms. Let us consider the following
example that will be used to describe different forms of structure function. System
consists of 3 components and can be described using 3 states. The first component x; is
binary-state and the others, i.e. x5 and x5 are 3-state. In case that component x; is in
state 0, resulting system state can be expressed as min(zs, x3). In case that component
ry is in state 1, system state can be described as max(zs, z3). Structure function of

this system can be represented as following;:

« Truth Table (TT) - This representation can be seen in Tab. [L.1] Each row of
this table consists of specific set of components states and corresponding system
state. The main disadvantage of this representation is its large dimension even for
relatively small systems. In general, dimension of truth table can be calculated as
a multiplication of number of each component states. Dimension of Truth Table

for this example is 2 X 3 x 3 = 18 rows.

« Reliability Block Diagram (RBD) - In this representation, each system component
is represented as a block connected to other in series or parallel way. In case of
BSS, the series connected components corresponds to AND function and parallel
corresponds to OR function. In case of BSS, Reliability Block Diagram can be
used to fully describe analysed system. In case of MSS, there is necessary to use
multiple Reliability Block Diagrams - one for each state. Alternative approach is
to define different functions for series and parallel connections, for example MIN

function for series connected blocks [48] [44]. RBD of our example can be seen in

Fig. and Fig.

+ Binary and Multi-valued Decision Diagram (BDD and MDD) - In this represen-
tation, SF is in form of rooted acyclic graph. Each non-sink node represents
system component and sink node represents system state. A path from the
root to a sink node expresses specific combination of system components states
and corresponding system state for this combination of components. Structure

Function in this form can be seen in Fig. [1.3]
e Minimal Cut Set (MCS) and Minimal Cut Vector (MCV) - Minimal Cut Set can

19

Table 1.1: Structure Function represented in form of Truth Table

r1 x9 x3 | O(x)
0 0 O 0
0 0 1 0
0 0 2 0
0 1 0 0
0o 1 1 1
0o 1 2 1
0 2 0 0
0o 2 1 1
0o 2 2 2
1 0 0 0
1 0 1 1
1 0 2 2
1 1 0 1
11 1 1
1 1 2 2
1 2 0 2
1 2 1 2
1 2 2 2

_[7 =0]—[=1]—[T9=1]~

Figure 1.1: Structure Function for state 1 represented in form of Reliability Block

Diagram

20

[=0][=2]_[19=2]~

Figure 1.2: Structure Function for state 2 represented in form of Reliability Block

Diagram

Figure 1.3: Structure Function represented in form of MDD

21

be described as a minimal set of components, whose simultaneous failure leads to
system failure. This is in case of BSS. In case of MSS, minimal cut vector is used
as minimal state vector (vector of system components states) that describes a

situation where a repair of any failed component leads to system functioning [49].

Many real systems consist of large number of components, which leads to large
complexity of structure function. Therefore, it is necessary to use effective representation

of Structure Function, for example MDD.

1.2 Logic differential calculus

The logic differential calculus has been elaborated for analysis of dynamic properties
of logical functions. Logic differential calculus is formed by different approaches and
methods for analysis of a logical function as Boolean function and MVL functions.
The interpretation of a structure function as an MVL function allows us to use a
mathematical methods of MVL for analysis and evaluation of MSS. Authors of [50), 51]
have proposed to use Direct Partial Logical Derivatives (DPLD) to evaluate importance
of system components. The definitions of importance measures based on DPLD have
been introduced in [41]. However, this research has been implemented for coherent
MSS. In this thesis, the DPLD-based evaluation of non-coherent system is considered.

DPLD has been defined for Boolean functions and then generalized for MVL functions
in [52]. In algebra logic, DPLD of MVL function with respect to variable z; indicated
the change of the function value from j to h depending on this variable change from s
to r. In terms of reliability analysis, DPLD of the structure function allows defining the
change of the system performance level from j to A depending on the i-th component

state change from s to r [50]:

Od(j — h) 1, if ¢(s,x)=7 and o(r,z)=nh

— = (1.4)
Omi(s =) 0, otherwise

for s,r € {0,1,....m; — 1}, s #r,5,h € {0,1,....m — 1}, 7 # h.
All possible changes of the system performance level can be indicated based on the
DPLD ({1.4)) for the specified component state change from s to r if this derivative is

computed for all possible changes of the system performance levels that are defined

22

m-2 m-1

Figure 1.4: Tustration of DBLD according to Equation

by parameters j and h. This implies calculation of large set of DPLD. New types
of DPLD have been introduced in paper [4I] to analyse set of system performance
levels depending on the indicated change of the system component. These derivatives
were named as integrated DPLD (IDPLD). There have been introduced three types
of IDPLD. In paper [41], the integrated DPLD are defined for the i-th component
change from s to s — 1 for the system degradation analysis. The integrated DPLD for
the component change from s to s + 1 allows analysing improvement of the system
performance levels [41]. The integrated DPLD for the i-th component change from s to
r can be defined in the similar way:.

The IDPLD of type I identifies state vectors at which degradation of the i-th
component from state s to r results in degradation of system performance level from j

to any state h < j:

96(j 1) i1de(j —h) |1 i éls,w)=j and ¢(r,@) <j

- = (1.5)
Ori(s =) r=00ils = 7) 0, otherwise

for j € {1,2,...,m — 1}.

Another version of the IDPLD of the type I for coherent system allows finding state
vectors for which degradation of the i-th component from state s to r leads to the
system performance level degradation from any state h > j to j:

(]) m-1 9p(h — j) |1, i o(s,x)>j and o¢(r,x)=

) _ g 00th) _ (1.6)
Ori(s = 1) h=j+10x;(s =) 0, otherwise

23

ID(Lj)
ATi(s—r)

(D= m-1) = (O i) :

Figure 1.5: Hlustration of DPLD according to Equation

for j € {1,2,...,m — 1}.

The difference between these two versions of IDPLD of the type I defined by
and is illustrated in Fig. and . The IDPLDs of the type I allow investigation
of the component degradation influence for the specified system performance level j
which is possible from this performance level or from other system performance
level to j according to ([1.6). The analysis of all possible influences of the i-th component
state change from s to r is implemented by the IDPLD of the II types. This is ilustrated
in Fig. [.6] This derivatives is defined as the join of the IDPLD of the type I as:

o) _mpr 090G) _m2 0o(by) b AL ol @) >l @) @
Oxi(s —r) j=10x;(s—r) j=00x;(s—r) 0. otherwise
The IDPLD of type III for the system performance level j identifies all state vectors

for which the i-th component state change from s to r causes changes of the system

performance level greater than or equal to j to value less than j:

1, if o(s;,x)>j
0p(hzj = hey) _myt It 0¢(he = ha) _
Ori(s = 71) hu=j he=0 Oxi(s —71)

and ¢(r, @) < j (1.8)

0, otherwise

where j € {1,2,...,m — 1} and notation h>;(h.;) means that all system states that
are greater than or equal to (less than) j are taken into account. Illustration of IDPLD

of type III can be seen in Fig. [1.7]

24

aD(})

ATi(s—r)

Figure 1.6: Ilustration of DBLD according to Equation

AP (h=j—h ;)

aTi(s—r)

m-1

Figure 1.7: Ilustration of DPLD according to Equation

25

The IDPLDs - can be used to define critical system states. Let us
consider a simple service system introduced in [41]. This system can be in one of three
states, depending on a number of customers that can be satisfied: state 0 (no satisfied
customer), state 1 (some customers can be served), state 2 (all potential customers will
be satisfied). The system is composed of 3 components — 2 service points (components
1 and 2) and an infrastructure (component 3). The service point 1 is a major service
center, and it has 3 possible states. State 0 agrees with the failure, state 1 with situations
in which it is not perfectly working (i.e. it is not able to serve all its customers), and
state 2 with situations when it is perfectly functioning. The service point 2 represents
a minor center that can be either functioning (state 1) or failed (state 0). The quality
of infrastructure is modeled using 3 states — from 0 (the infrastructure is poor quality)
to 2 (the infrastructure is perfect). All potential customers can be served if only both
of the service points are perfectly working. The structure function of the system is in
Table .2

The IDPLDs - are defined for the analysis of coherent MSS degradation.
The IDPLD can be defined for the analysis of coherent MSS improving also in similar
way [41]:

o The derivative 9¢(j 1)/0x;(s — r) allows defining the system state which are
critical for improvement of a performance level j if the ¢-th system component

modified from state s tor (s <7) ;

o The derivative 0¢(1 j)/0z;(s — r) permits to indicate the critical state for which
the improving of the i-th system component from state s to r (s < r) results in

the reaching of system performance level j;

o The derivative d¢(1)/0z;(s — r) is used to define critical state for the system

improving depending on i-th component change from state s to r (s < r);

o The derivative 0¢(h<; — h>;)/0z;(s — r) allows computing the system state
which are critical for reaching performance level j of system availability if the i-th

component state change from s to r.

For the generalization of these derivatives for non-coherent system analysis we

have to take into account the possibility of the specified system performance level j

26

Table 1.2: The structure function of simple service system

Component state x3

Ty T2 0 1 2
0 0 0 0 0
0 1 0 0 1
1 0 0 1 1
1 1 0 1 2
2 0 0 1 2
2 1 0 2 2

Table 1.3: Nonzero elements of IDPLDs d¢(j |)/0x;(s — 1)

% Components and theis states
z The 2-nd
e 2-n
% The 1-st component The 3-rd component
z component
& 1—=0 2—-0 2—=1 1—=0 1—=20 2—=0 2—=1
(1 —=0)01 10(1 — 0)
01(2 — 0)
L1 (1—=0)02 | (2—0)01 0(1—=0)2 | 11(1 — 0) 01(2 = 1)
10(2 — 0)
(1 —-0)11 20(1 — 0)
(2 — 0)02 11(2 — 0)
(2—1)02 | 1(1—0)2 112 —=1)
2 | (1=0)12 | (2—=0)11 21(1 —0) | 20(2 — 0)
(2 1)11 | 2(1 —0)1 20(2 — 1)
(2 —0)12 21(2 — 0)
Table 1.4: Nonzero elements of IDPLDs d¢({ j)/0x;(s — 1)
% Components and theis states
“ The 2-nd
e 2-n
% The 1-st component The 3-rd component
z component
& 1—-0 2—-0 2—-1 1—-0 1—=0 2—-0 2—>1
01(2 — 0)
10(1 — 0)
(1—=0)01 | (2—0)01 10(2 — 0)
11(1 — 0)
0| (1—0)02] (2—0)02 0(1 — 0)2 ,) 11(2—=0) | 01(2 = 1)
20(L =0
(1—=0)11 | (2—0)11 20(2 — 0)
21(1 — 0)
21(2 — 0)
(2—1)02 | 1(1—0)2 112 —=1)
11 (1—=012| (2—0)12
(2—=1)11 | 2(1 —=0)1 20(2 — 1)

27

Table 1.5: Nonzero elements of IDPLDs 0¢(h>; — h<;)/0xi(s — 1)

% Components and theis states
“ The 2-nd
e 2-n
QE) The 1-st component The 3-rd component
z component
& 1—=0 2—-0 2—=1 1—=0 1—=20 2—-0 2—=1
01(2 — 0)
10(1 — 0)
(1 —-0)01 | (2—0)01 10(2 — 0)
11(1 — 0)
1| (1-0)02]| (2—0)02 0(1 — 0)2 11(2 - 0) | 01(2 = 1)
20(1 = 0)
(1—-0)11 | (2—0)11 20(2 — 0)
21(1 — 0)
21(2 = 0)
(2 —0)02 11(2 —0)
(2—1)02 | 1(1 —0)2 112 —1)
2 [(1=0)12] (2—=0)11 21(1 — 0) | 20(2 = 0)
(2—=1)11 | 2(1—=0)1 20(2 = 1)
(2 = 0)12 21(2 — 0)

degradation and improving depending on the change of the i-th system component

state from s to r [12, [53].

1.3 Coherent and Non-coherent systems

Depending on the system behavior, systems can be divided into two classes -
coherent and non-coherent [I1] 34, [7]. The dominant class of the systems is coherent
for which any component failure can cause the system fault. The structure function
has to meet certain conditions to represent coherent systems. Non-coherent systems
are investigated mainly for BSS. The following two conditions are required for a BSS to

be a coherent [34] [7, 12]:

1. the SF is monotonically non-decreasing: ¢(1;,x) > ¢(0;,2) for any compo-
nent ¢ where (b(lluw) = ¢(x17 s L1, 1uxi+17 wxn) and (b(olvw) = ¢(x17 ey Li—1,

07 Ligly ey xn)a
2. Each system component is relevant to the system: ¢(1;,x) # ¢(0;,z) for some .

Most of the technical systems are coherent. A BSS is interpreted as a non-coherent
if its structure function doesn’t agrees with at least one of the two considered conditions
[7,12]. Examples of non-coherent systems are gas supply systems considered in [12] [7],
logical circuits and networks [2I], systems including human factor [54] or software

components [30]. One of the relevant problem in non-coherent BSS investigation is

28

the importance analysis [7), 12], 19]. Authors of the paper [51] propose to use Logical
Differential Calculus for a calculation of the importance indices of BSS. As was shown
in [53, 21], this approach can be used for non-coherent BSS importance analysis too. At
the same time mathematical approach of Logical Differential Calculus is generalised for
MVL too and is efficient in evaluation of MSS. The methods for coherent MSS analysis

based on Logical Differential Calculus are considered, for example, in [6] 41].

1.4 Quantitative analysis

Structure function can be used to analyse system from reliability point of view. This
include calculus of system characteristics such as reliability and availability. Except
system characteristics, it is possible to calculate characteristics of individual system

components, such as importance measures.

1.4.1 System characteristics

Reliability is the basic system characteristic. It can be defined as a probability

system is working.

R=Pr{¢(x)=1}. (1.9)

In case of MSS, it is possible to express also probabilities for other performance

levels. In this case, availability is used instead.

Availability and unavailability can be defined as a probability system is at least
in j-th performance level. Similarly can be defined unavailability as probability system

perform in less than j-th performance level.

A=l (p) = Pr{s(x) > j},
U= (p) = Prig(z) < j}

(1.10)

where p is a vector of system components state probabilities . In case of BSS,
availability is probability, system is working and unavailability probability system is in
failure state [55], [45] [44].

In many cases it is important not only to know characteristics of system but also
how is system performance level influenced by individual components. For that reason,

Importance Measures is calculated.

29

Table 1.6: IMs calculation

SI BI
1 | 0.125 | 0.28
oy | 0.125 | 0.32
x3 | 0.125 | 0.44

1.4.2 Structure Importance SI;

Structure importance express influence of system component to system performance

from topological point of view. Structure importance can be calculated as following;:

O¢(j — k))

dzi(r — s) (1.11)

SI,-zTD(

where x; is the i-th component of system, j, k, r, s are states in which system or system

component can be and TD is function defined as relative number of cases, function

99(j—k)
Ox;(r—s)

is true to all possible cases [56]. This function is DPLD and corresponds to
equation In case change of system component performance level from state r to
state s causes change of system performance level from state j to state k this function

takes value 1 otherwise this function takes value 0.

1.4.3 Birnbaum’s Importance BI;

BI; is similar to SI; with one essential difference namely BI; takes into account also
probabilities component of system is in state 7. BI; can be calculated as following
[56, 57, B8]:

(1.12)

BIi:Pr{Wzl}.

Oxi(r — s)

For example in Table SI and BI for system with Structure Function defined
in Table is presented. This indices are calculated for components probabilities
p11 = 0.8, p21 = 0.7 and p3; = 0.6.

30

2. Non-coherent systems

The previous chapter sums basic terms in reliability engineering. In this chapter,
the main focus will be on non-coherent MSS systems, that are investigating more
deeply. There was also the main focus on these systems in our work. In the first part,
described in section we will describe SF of non-coherent MSS. Section describes
the usage of DPLD as a tool to analyse these systems. As there can be large dimension
of structure function in real systems, it is necessary to represent it in efficient way. For
this purpose we decide to use MDD and represent it in form of vector of neighbours.
This is present in Section together with algorithm to create this MDD from DT. The
last part of this chapter present in section describes the problem of incompletely

specified structure function.

2.1 Structure function of non-coherent MSS

Similarly to BSS for MSS are considered two types of systems in point of view of
them behavior: coherent and non-coherent systems. The conception of coherent and
non-coherent systems has been discussed in the first investigations in MSS reliability
analysis [33], [34), 35, 36]. The coherence conception is generalized from the conception of
coherent BSS [10]: MSS is coherent if all its components are relevant to the system and
degradation of any component can not result the system performance level improving.
The mathematical interpretation of this definition suppose that the MSS structure
function is monotonically increasing (non-decreasing) and all its variables are relevant
(the change of the variable value results in the change of the structure function value).
Therefore there are two conditions for coherent MSS structure function: (1) the structure
function increase and (2) the relevance of the variables of the structure function. In
papers [33] 34], 35, [36] these conditions have been investigated for homogeneous MSS
with the structure function . But in practice there is a small class of homogeneous
system with the structure function . Most mathematical representations of systems
appear as a heterogeneous structure function (L.I). The condition of the increasing for
heterogeneous structure function is similar with the condition of the homogeneous

structure function increasing and is defined as:

31

¢(sie) = o((s — 1)i,), (2.1)
for any component ¢, where ¢(s;,x) = ¢(x1, ..., %1, S, Tit1, ..., T,) and ¢((s—1);,x) =
&1, mii1, 8 — 1,241, .,) and s € {1,...,m;_1}.
The condition of relevance can have some interpretations for MSS. Papers by Barlow
& Wu [8], El-Neweihi, Proschan, Sethuraman [9] and Natvig [37] have investigated the
basic conceptions for the theory of the coherent MSS and introduced some definitions
of the components relevance for MSS. In particular, in [§] the definition of components
relevance allows forming the class of coherent MSS for series and parallel systems only.
This relevance of components are defined based on minimal path set. Griffith [35]
propose two new conceptions of relevancy that are weaker than the one in [8] and
extend the class of coherent MSS. Natvig [37] has considered two types of relevancy.
One of them is similar to the conception introduced in [35], and other type according
to [37] is defined by the use of special type of binary structure function. Author
of paper [59] introduced weaker concepts of the MSS components relevance than in
researches [35], B7]. Authors of papers [34], B3] reviewed and systematized proposed
conceptions of components relevance for homogeneous MSS. Some of definitions of MSS
components relevance according to [34, [33] are shown in Table 2.1 These definitions
can be generalized for heterogeneous MSS (Table[2.1)). Natvig [44] considered the known
definitions of MSS components relevance. Some of these definitions are very similar and
most of the functions of one class belongs to other class, and classes differ by several
functions. In summary, based on analysis of all definitions of component relevance in
Table two conditions of component relevance will be used for heterogeneous MSS
with the structure function (|1.1)) in this work. We suppose these conditions are most
useful in system reliability analysis, because they allow to declare strong relevance and

weak relevance accordingly:

Qb(si?w) > qb((S - 1)7;,58), (2'2)
o((m; — 1);,x) > ¢(0;,x), (2.3)

for all s € {1,...,m; — 1} and some ¢(.;,x).
Depending on the relevance types (2.2)) or (2.3)) three types of MSS were introduced

for homogeneous system:

32

Table 2.1: The conceptions of relevance for coherent MSS

Definition
Relevance Homogenous Non-homogenous Coherence type
for Vi =1,...,n
for Vi = 1,....,n,
and Vj = 0,....m — 1,
‘ 3¢(.4,x) such that strong
EPS [34] d¢(.;,x) such that
. . o(si,x) =j coherent
o and @(r;,x) # j for s £ r
and ¢(li,x) # j, j #1
for Vi =1,...,n
forVi=1,...,n
and Vj =1,....m — 1,
‘ and for Vs =1,....m; — 1,
G1 [35] 3¢(.;,x) such that coherent
o0 — o) < D(in) 3p(.;,2) such that
J— 1);,x) < Ji),
. .. ¢((S - 1)i7w) < qb(s,»,a:)
¢(J)=74,7=1..m
for Vi =1,....n
for Vi = 1,...,n,
‘ and Vj = 10,....m — 1, weak
G2 [35] J¢p(.;,x) such that
J¢(.;,x) such that coherent
¢(0,) < o((m; — 1);,2)
¢(0;,x) < ¢((m —1);,x)
for Vi =1,....n for Vi = 1,....,n,
and V5 = 0,...,m, Vs=1,...m; — 1
N1 [37] ¢(.;,x) such that 3¢p(.;,x) such that coherent
and ¢((j — 1)) < j—1 and ¢((s — 1);,x) < j
for Vi =1,...,n
and Vj = 0,....m — 1,
: weak
BS [60] J¢(.4,2) such that is not defined
coherent

¢(0) =0
and p(m —1)=m —1

33

Table 2.2: Examples of coherent and non-coherent MSS (n = 2,m; = 2,my = 3,m = 4)

T1 Ty | gi(®) | da() | d3(@) | du() | d5()

_ = = O O O
N = O NN = O
W N = N RO
—_ = = = = O
—_ == O O O

0 0
1 2
1 1
2 1
3 3
3 2

1. strongly coherent - the system structure function is monotonically increasing and

all its components are relevant according to ([2.2));

2. coherent - the system structure function is monotonically increasing and all its

components are relevant according to (12.2)) or ([2.3));

3. weakly coherent - the system structure function is monotonically increasing and

all its components are weakly relevant according to (2.3)).

For example, consider structure functions of MSSs with four performance levels
(m = 4) consisting of two components (n = 2) and first of these components has
two possible states (m; = 2) and second has three states (mo = 3) (Table [2.2)). The
structure function ¢; () is the structure function of strongly coherent MSS, because the
structure function of this MSS is monotonically increasing and two system components
are relevant according to (2.2)). The MSS structure functions ¢o(x), ¢3(x) and ¢s(x)
are monotonically increasing. The MSS with the structure function ¢y(x) is coherent
because the relevance of the first component agrees with the condition of strong relevance
and the relevance of the second component is consistent with the condition of weak
relevance (2.3). Two components of the MSS structure function ¢3(z) comply with
the condition of weak relevance , therefore this MSS is weak coherent. The MSS
with the structure function ¢4(x) is non-coherent because of the second component,
for which none of the relevance conditions or apply. The fifth MSS ¢5(x) is
non-coherent too, because its structure function is not monotonically increasing.

Let us consider the example of the non-coherent MSS with SF as described in Table
2.3] This system consists of 3 components (n = 3), where z; is binary-state (m; = 2)

and z5 and x3, as well as system itself are multi-states (mq,ms3,m = 3).

34

Table 2.3: Example of structure function for non-coherent system with 3 components

IS
G

X1 T2 T3

0

e}

— = = = R R e = RO O O 0O 0O 0 o o o

N N N B B O O O N NN~ = = O O
N R O N = O N~ O N R O N = O N =
N R O = O N O~ N O~ N R O N N~ O

35

The considered system is non-coherent because its structure function is not mono-
tonically increasing according to #(0,0,2) =2 > ¢(0,1,2) =1 for 9 = 0 < 9 = 1.
Therefore this specific should be took into account in analysis of this system. We propose
to consider the non-coherent MSS analysis using MVL based methods. Such method
has been developed for coherent MSS and some of them are presented, for example, in
[6, [41]. The importance analysis of MSS in these investigation was developed based on

the use of logical differential calculus which is one of mathematical approaches of MVL.

2.2 Direct Partial Logical derivatives of non-coherent MSS

The logical differential calculus, in particular, DPLD allows analysis of MSS based
on logical expression. The reliability analysis of MSS based on logical expression with
application of MVL allows making the computation and encoding straightforward for
MSS evaluation. But most of known MVL based methods for MSS reliability evaluation
have been developed for coherent systems [56, 61, [6]. Such methods are effectively used
in MSS critical component analysis [6] and importance analysis [41]. In our work we
propose to consider the application of DPLD in analysis and evaluation of non-coherent
MSS to define the system critical states.

The important specific of non-coherent system is the influence of component state
change into the change of the system performance level: degradation (failure) of the
system component does not always lead to system functioning degradation or its failure.
Therefore the analysis of component criticality should take into account different changes
of states of fixed component and their correlations with changes of system states. In case
of non-coherent BSS Andrews and Beeson [11], [12] proposed to consider the probability
that component is critical to system failure as sum of two probabilities of component-
failure criticality and component-repair criticality. The analysis of the component
criticality of non-coherent MSS based on DPLD is introduced below.

The IDPLDs - in section are introduced to analyse system degradation
depending on the fixed change of the investigated component from state s to state
r. The non-zero values of the derivatives - agree with the critical system
states for i-th component state change from s to r. The development and generalization
of these derivatives for non-coherent MSS allow defining new type of IDPLD for

fixed change of the i-th component from the state s to state r. The analysis of non-

36

I €To T3

0 0 0
0o 0 1
0 0 2

0 1 0
0 1 1
0 1 2
0 2 0
0o 2 1
0 2 2
10 0 1
10 1 0
1 0 2 \ \ 0
1 1 0 2—2 0
11 1 0—{2 \ \® 0
11 2 1—{=2 \® 0
2 0 0—{2 \\® 0
12 1 1—{2 \® 0
12 2 2 (9 \® 1

Figure 2.1: Calculation of IDPLD 1) for component z; and system performance level
2 of the structure function in Tab.

coherent MSS by IDPLD should take into account every system performance level j (for
j € {0,1,...,m — 1}) changes resulted by this component state change and is defined as:

Ozi(s = 1) 0, otherwise
The derivative allows to indicate the critical states of the non-coherent MSS
for the fixed system performance level j depending the i-th component state change
from s to r.
For example, let us to consider the analysis of critical states by the derivative .
The structure function of this system is in Table 2.3] The first component of this
system has two states only. Therefore there are two possible changes of this component:

from state 1 to zero and from zero to state 1. Three derivatives according to (2.4) can

37

=~
=
N
&3
w
S
-
—_
N

o
o IZ‘_
o

0
0o 0 1 1
0 0 2 2
0o 1 0 2
0 1 1 0
0 1 2 1
0 2 0 2
0 2 1 1
0 2 2 0
10 0 2 0
10 1 1 0
10 2 0 0
11 0 2 0
1 1 1 0 0
121 0
I 2 0 0 0
12 11 0
12 2 2 0

Figure 2.2: Calculation of IDPLD 1) for component z; and system performance level
1 of the structure function in Tab. @

=~
=
N
&3
w
S
-
—_
N

O]
= | =

0 i 3 2—(=0)

o o e
RN & S\ -
110 2— o) LA 0
N) \\\\\® 0
11 2 1—@ \\\\® 0
1 2 0 0—@ \\\® 1
12 1 1@ \\\® 0
o2 2 2) 0

Figure 2.3: Calculation of IDPLD 1) for component z; and system performance level
0 of the structure function in Tab. @

be computed for this component change from state 1 to zero: 9¢(2 |1)/0x;(1 — 0),
0¢(1 171)/0x;(1 — 0) and 9¢(0 [1)/0x;(1 — 0), which are consistent with the system
states. The calculation of IDPLD 0¢(2 |1)/0x;(1 — 0) by the flow diagram is shown in
Fig[2.1] Non-zero values of the derivative indicates the system states which are critical
for this system performance level 2 and the first component change from one to zero.
This derivative has two non-zero values for states vectors x;zoz3 = ((1 — 0) 0 0) and
r12923 = ((1 — 0) 2 2). In the context of the considered system these critical states
show that the change of this component performance causes the change of the whole

system performance. In the similar way the influence of the first system component can
be defined for other system performance levels (Fig and Fig.. The derivatives
Op(1 11)/0z;(1 — 0) (Figl.2) and d¢(0 11)/0z;(1 — 0) (Fig]2.3) show that the change
of the performance of first component from 1 to 0 doesn’t result in the change of the
system performance level 1 and has influence for the level 0. Therefore for the first system
component failure can be defined four critical state vectors: zyzox3 = ((1 — 0) 0 0),
r12923 = ((1 = 0) 2 2), 2923 = ((1 — 0) 0 2) and xyz923 = ((1 — 0) 2 0).

The DPLDs for non-coherent MSS can be generalized for all possible system

performance level as:

Oxi(s — 1) =00x(s — 1)

0o(I1) _mo1 997 1) 1, if @(sy,) # o(ri, x) (25)

0, otherwise

According to the derivative , all system critical states can be computed for
the i-th system component which are caused by its state change from s to r. The
calculations of the derivatives for the first, second and third variables and their
changes from state 1 to state 0 of the MSS structure function (introduced in Table
are illustrated by flow-diagrams in Fig. 2.4] Fig. [2.5] and Fig. [2.6) accordingly. These
derivatives allow us to consider the influence of these components failure to the system
functioning. The failure of the first component results the change for four states vectors
considered above. The failure of the second component causes the system performance
level change for five state vectors xzez3 = (0 (1 — 0) 0), zy2923 = (0 (1 — 0) 1),
r12923 = (0 (1 = 0) 2), zyz0x3 = (1 (1 = 0) 1) and zy2023 = (1 (1 — 0) 2). And
the failure of the third component always leads to a change of the system performance

level.

40

=~
=
N
=~

&
~
=

—_

o
o IZ‘_
o

0 0 1
0 0 2
0 0

—

\\\\\\\\H

—
j—]

/?
1T
i
§/f
o = O

l—]
]
l—]
‘H‘j@t

¢

N G =)

o O O
[N N
S N o~ O
N = O = Q@ N O R~ N O R N O NN = O

1
1
1
1
1
1
1
1
1

®

Figure 2.4: Calculation of IDPLD || for component x; of the structure function in

Tab. @

41

Ty xa 13 ¢(x)

0 0 0 0

o0 1 1

0 0 2 2

0 1 0 2 (=) .
01 1 0 \/\ ::j |
0 1 2 1 ” g) 1
0 2 0 9

0 2 1 1

0o 2 2 0

100 2

1011

1 0 2 0

1 1 0 2 /:t) 0
110 s&ﬁ/ |
1 1 2 1 (5\ 1
1 2 0 0 _

o2 11

12 2 2

Figure 2.5: Calculation of IDPLD |D for component x5 of the structure function in

Tab. @

42

v, xe w3 ¢a)
0o 0 0 0

—
0o 0 1 1 (=) 1
0 0 2 2
0 1 0 2
0 1 1 0 (=) 1
0o 1 2 1
0 2 0 2

—
0 2 1 1 = #) 1
0 2 2 0
1 0 0 2
1 0 1 1) 1
1 0 2 0
1 1 0 2 .
1 1 1 0 ~ =) 1
11 2 1
1 2 0 0
I | () 1
1 2 2 2

Figure 2.6: Calculation of IDPLD (D for component x3 of the structure function in

Tab.

43

The information about system critical states obtained based on DPLD and
can be not sufficient for some application, because the derivatives - allow
indicating the critical system states for indicated component and fixed change of its
state. By the other words, these critical states are defined according to the component
state change and the system performance level change is secondary. Therefore the
derivatives for analysis a certain change of the system performance level should be
proposed too. The IDPLD with respect to the i-th variable of the structure function

for this function value change from j to h is defined as:

00(j) |1 if dlsi@)=j and (r@)=h 26
Oz; 0, otherwise

for any s,7 € 0,....,m; — 1 if s # r.

The IDPLD is computed for all possible changes of the i-th variable, which
are defined by values s and r. The non zero values of this derivative indicate the state
vectors of the structure function for which the change of the i-th variable value leads to
the change of the structure function value from j to h. According to non-zero values
of this derivative there is a possibility to indicate critical system states for the system
performance level change from j to h depending on any change of the i-th component

state. This derivative can be defined by other way taking into account the definition of

DPLD (T.4):

09(j) _ 06 =) 90(j > h)
~omil s=10¢(j — h) mi=2 mi—1 9¢(j — h)
Cem1 r=007(s = 1) s20 r=st107i(s = 7)

(2.7)

The IDPLD consists of two parts. One of them 0¢(j — h)/0z; | allows
indicating the system critical states for which the degradation of the i-th system
component results in the system performance change from j to h. The other part
of this derivative d¢(j — h)/0x; 1 allows obtaining the system critical states for the
system performance level change from j to h caused by the improving of the i-th system
component state. Need to note that the derivatives and allow calculating
critical states for specified change of the system performance level, but these derivatives

don’t provide the information about component state change in this case. The more

44

Figure 2.7: Calculation of IDPLD 1} for component x5 of the structure function in

Tab. @

45

detail information in this case can be discovered based on DPLD for specified
change of the system performance level.

Let us to continue the example with the structure function described in Table
by the derivative and define the critical states for the system degradation from
system performance level 2 to 1. These critical states are computed based on the
derivatives 0¢(2 — 1)/0x; for i = 1,2,3. The first component of this system has only
two states and analysed by the derivative 0¢(2 — 1)/0z;. This derivative doesn’t have
a non-zero value. The second and third system components have three states and their
analysis is implemented based on the derivatives d¢(2 — 1)/0z5 and 9¢(2 — 1)/0x3
accordingly. The flow-diagram in Fig. illustrates the computation of the derivative
for the analysis of the second component. The derivative with respect to the second
variable has two non-zero values. It means that there are two critical states depending
on the second component for the system degradation from the performance level 2
to performance level 1: 212923 = (0 (0 — 1) 2) and 2925 = (1 (2 — 1) 2). The
derivative 0¢(2 — 1)/0x3 has six non-zero values. The critical states for the considered
system degradation depend on the changes in the state of the third component are
presented in Table 2.4, All possible critical states of this system degradation and failure
are shown in Table 2.4l These critical states in this Table are defined based on the
IDPLD . These states can be used in the development of scenarios for the system
improving.

For example, according to the Table the first system component can cause error
if other components works perfectly (the system performance level change from 2 to 0).

The change of the third component results in the largest number of the critical states.

2.3 Multi-Valued Decision diagrams

As we mentioned previously, there are many ways to represent SF. Structure function
of real systems can have large dimension, it is necessary to represent it in effective way,
for example in form of Multi-Valued Decision Diagram (MDD). This diagram is rooted
acyclic graph that meets two conditions [62} [63]:

1. graph is canonical - the representation is unique for a particular variable ordering

2. graph is compact - any other graph representation contains more nodes.

46

Table 2.4: Critical states for structure function described in Tab.

Components and their states

System state change
I) T3

0(1—0)1
0—1 1(1-0)1

0(2—1)2

0(2—0)2
0—2 1(2—=0)0
1(2—1)0

1—2 0(1—0)2

1(1-0)2
10 0(2—1)1
1(2—1)1

0(1—=0)0
20) 0(2-0)0
1(2—0)2

2—-1 12—1)2

47

MDD consists of sink and non-sink nodes. System described by Structure Function
has exactly m sink nodes labeled by numbers from 0 to m — 1. These nodes are
used to express corresponding system performance level. Non-sink nodes represents
system components. Each of them has exactly m; outgoing edges that are interpreted
as a system component state, i.e. outgoing edge of node x; labeled by value j means
i-th system component is in a state j.

Path from root node to sink node expresses system performance level depending on a
specific combination of system components performance level. For example highlighted
path from Fig. (d) is equal to SF ¢(z1 = 0,29 = 1,23 = 0) = 0 or ¢(0,1,0) = 0. This
can be expressed as case, when components x; and x3 are not working and component
x5 is working, then system is not working.

MDD is an orthogonal form of SF [64]. Therefore it can be used for the system
probabilistic analysis. In this case each edge has weight equal to probability p; s, that
the system component i is in state s as can be seen in Fig. (d).

2.3.1 MDD representation using vector of neighbours

Let us to consider the MDD representation and definition for the software develop-
ment. One of these representations is by using vector of neighbours. This representation
of MDD consists of 3 vectors as we can seen in Fig. 2.8 namely map vector, vector of
indexes and vector of neighbours.

Map vector contains information about mapping nodes of MDD into indexes.

Vector of indexes contains indexes for individual nodes into the vector of neighbours.
At index 0 in the vector of indexes there is written start position of neighbours in vector
of neighbours for component with index 0. At index 1 there is start position in vector
of neighbours for component with index 1 etc. In case node has no neighbours (e.g.
sink nodes in MDD) value of next index is not incremented. This can be seen in Fig,.
2.8 at index 5 and 6.

Vector of neighbours contains neighbours of individual nodes.

Let us consider this representation of MDD for system with SF defined in Table [2.5]
Decision tree representation of this structure function is in Fig. (a). As a first step,
we create a map vector. At index 0 there is node z1, etc. Please note, that sink nodes

with the same value get the same number when mapping. Vector of indexes and vector

48

Table 2.5: Example of MSS

v @y w3 | B(X)
0O 0 0 0
0 0 1 1
0 1 0 0
0o 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
11 1 1
Vector of indexes Vector of neighbours
Initial state 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9
(equal to Fig.2.0(a)) ‘0‘2‘4‘5‘3‘]0‘]0‘ ‘1‘2‘3‘4‘5‘6‘5‘5‘5‘6‘
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7
State after step 2.
CuloFig 20y |0 [2[efefels]s|i[t]2]s[afs[e]s]e
State after step 3. 0 - 2 3 4 5 6 0 1 2 3 4 5
(equal to Fig. 2.9(d)) ‘0‘2‘4‘4‘4‘6‘6‘ ‘1‘2‘5‘4‘5‘6‘
Map vector

0 1 2 3 1 5 6

[a]x]|x][x[x]o]1]

Figure 2.8: DT to MDD reduction using vector of neighbours

of mapping can be seen in Fig. 2.8

In order to obtain neighbours of node with index 2 in vector of mapping, we retrieve
value from the vector of indexes at index 2. This value is 4. That means neighbours of
node 2 start at position 4 in the vector of neighbours. To obtain index of last neighbour
for node 2 we take value from the next index in vector of indexes. This value is 6. That
means, index of the last neighbour for node 2 is at index 5 in the vector of neighbours,
i.e. neighbours of node 2 are at indexes 4 and 5 in the vector of neighbours. From map
vector we can obtain information about original nodes. Index 2 represents node x3 from
original DT. Neighbours of this node are at indexes 5 and 6, which represents system

states 0 and 1.

49

2.3.2 Algorithm for DT to MDD reduction

In order to transform DT to MDD, two rules has to be applied, specifically merging
isomorphic subtrees and deletion of useless nodes [65], 62]. Our algorithm consists of

three steps:

1. Reduce number of sink nodes:

Let us take an example of a system consisting of 3 2-state variables. Structure
function of this system can be seen in Table [2.5. DT consisting of 5 non-sink
nodes and 6 sink nodes can be seen in Fig. (a). Every branch of this DT ends
in a node describing state of analyzed system. As a first step, we need to merge
sink nodes describing common performance level. As a result of this step, we have

exactly such number of sink nodes as is the number of system performance levels.

Result of this step can be seen at Fig. (b).

Algorithm 1 Step 1
tmp : array|m]

for all finalNode in finalNodes do

if tmplfinalNode.state| is null then
tmp[finalNode.state] = finalNode

else
tmplfinalNode.state].parents.add(finalNode.parents)

end if

end for

Using vector of neighbours representation, this step can be solved by correct

mapping as we mentioned in previous section.

2. Remove nodes, where all outgoing edges end in the same node:

In Fig. (b), all outgoing edges of left bottom node z3 end in the node 0.
Therefore we can remove node x3 and redirect its ingoing edges directly into node

0 as can be seen in Fig. (c).

Using vector of neighbours representation, this can be solved by looking for the
same numbers in the vector of neighbours for some node. In our example presented

in Fig. 2.8 there is the same value for node 3, Therefore we can remove that

20

Algorithm 2 Step 2

for all node in nodes do

if all node.children are equals then
for all child in node.children do
child.parents = node.parents
end for
remove node
end if

end for

node. In vector of neighbours, value 3 is replaced with value 5 and neighbours of

node 3 are removed.

3. Remove equal subtrees:

In this step we need to search the tree in order to find equal subtrees. As equal
subtrees we count only that ones, that ends in the same nodes. In other words
there has to be node/nodes in that both subtrees are merged. In our example
in Fig. (¢) equal subtrees are both z3 nodes. Nodes where both subtrees are
merged are 0 and 1. Therefore we can remove one subtree and redirect its ingoing

edges into subtree that was not removed as we can see in Fig. (d).

Using vector of neighbours representation, we are looking for the same sequences
for node representing the same component of the system. In our example, nodes

with numbers 2 and 4 can be merged together.

In the last row of Fig. , final MDD is written (equal to MDD as can be seen in
Fig. (d)).

2.4 Incompletely specified structure function of MSS

The problem with traditional methods in reliability analysis, such as methods based
on structure function is the necessity of having full information about analyzed system.
But in many real systems, we don’t have such information, i.e. either we don’t know
all system components or we don’t know system performance level based on system

components states in some cases [46]. Therefore different approach has to be used. In

o1

Figure 2.9: Example of DT to MDD reduction

52

Algorithm 3 Step 3

merged = 1

while merged = 1 do
merged = 0
for all nodel in nodes do
for all node2 in nodes do
if nodel != node 2 then
if equalSubtrees(nodel, node2) then
nodel.parents.add(node2.parents)
remove node2
merged = 1
end if
end if
end for
end for

end while

our work, we will use methods of datamining described in [50] and [66]. Using this
methods we will construct decision tree (DT) from available data of analyzed system.
This tree will be then reduced to multi-valued decision diagram (MDD) [67] that can

be used for reliability analysis using classic methods.

23

3. Software Reliability

The development of methods for the quantification of reliability for software is
relevant problem in reliability engineering [68] [69]. The conception of software reliability
according to [70] is defined as the probability of a software operates failure-free in a
specified environment for a specified exposure period. But probabilistic performance
of software cannot be defined as the hardware performance due to the uncertainty
in operation. According to this conception a software failure is discrepancy between
intended and actual output, and software reliability engineering provides quantification
of two things, expected use and desired major quality characteristics. A failure of
software can occur at different stages of development and exploitation. But most often
analysed stage is software development [70]. One of the possible methods for analyzing
software reliability at the development stage is to consider a software testing process
[71, [72]. During the testing defects and failures of software are detected, limited and
removed. It allows growing of software reliability. The estimation of software reliability
based on information from the software testing process, as a rule, is implemented by
methods named as Software Reliability Growth Models (SRGMs) [71] [73].

The SRGMs can be considered as stochastic counting processes regarding the number
of faults detected or failures experienced in software testing. Based on this data some
of software reliability measures are computed as a probability that no failure occurs
during a certain time interval. One of the first SRGM is known as Jelinski-Moranda
model [74] which assumes that the elapsed time between failures is governed by the
exponential probability distribution. There are some developments of this model with
application of Markov based methods [71} [75], [72]. The main idea of these models
is that software failure is random event (caused by errors in software) and this can
be modelled using some well-known probability distribution. For example in Markov
model, mainly exponential distribution is used. These models can be easily used to
calculate software reliability and, for example predicts software failure using historical
information about analysed software. The development of Jelinski-Moranda model
named as Non-Homogeneous Poisson Processes (NHPPs) is often used in software
reliability too [71] [73, [72]. All these methods of software reliability according to [76), [77]

are time-dependent, but not time-data-dependent. In addition the structure or topology

o4

of the software are not taken into account in the analysis based on SRGM [78],[79]. There
are several models suitable also to calculate these characteristics of software and will be
presented more deeply in the following section. One of them was proposed in paper [2]
and can be used in case software is implemented with micro-service architecture. In
this case dependence graph of individual services is created and this graph is used to
create fault tree. Reliability of each service is calculated using historical data about
its functioning and failures. The next model was proposed in paper [3] and is based
on UML/DAM diagrams. In this case these diagrams are created as a representation
of software, for example use case diagram, deployment diagram and activity diagrams.
Using all of the mentioned diagrams fault tree is created. The software time-data-
dependent analysis based on fault tree are considered in [79]. Risk analysis method for

software evaluation is proposed in[80].

3.1 Software reliability models based on the structure function

Most of models used in software reliability are probabilistic. However there are
several ones, that can be used also for analysis of structure of software systems. Although

this approach can be currently used only in specific cases and needs more investigations.

3.1.1 Software reliability of microservice architecture

The first case this approach can be used was published in [2] and can be applied
in case software is designed using microservice architecture. The difference between
traditional and microservice architecture can be seen in Fig. [3.1} In this architecture
software is not implemented as a whole, but as individual programs (services), each
with its own functions and responsibilities. The whole software is then based on
communication between these services. These services can depend on each other, for
example to retrieve some data from database, service responsible for login has to approve
user can obtain such data, so this service depends on result of login service etc.

In this case, dependency graph can be constructed. This graph describes dependen-
cies between individual services. Example of such graph can be seen in Fig. (a).
Using this graph, together with information about system, fault tree can be created.

Thanks to the fact fault tree is one of the representations of the structure function, it is

25

MONOLITHIC MICROSERVICES

———————————————

MICROSERVICE

Figure 3.1: Monotilic vs microservice architecture [I]

possible to analyse software based on microservice architecture from reliability point
of view using traditional methods. The only remaining problem is how to evaluate
characteristics of individual service. This can be achieved using historical data of

behavior of analysed service using tools of probability theory [2].

3.1.2 Model example - e-shop

Let us assume the following example. We need to analyse e-shop from reliability
point of view. This e-shop is implemented using microservice architecture and consists of
the following services: Web interface, Account management service, Stock management
service and Orders management service. In order to increase reliability, some of services
are duplicate, specifically Account management service and Orders management service.
Let us assume, the probabilities of working/failure for each service match to information
in Table 3.1} There is also map from service names to components in this table, in
order to simplify work with them.

As we mentioned before, the first step is to create service dependency graph of
analysed system. This can be seen in Fig. [3.3| Please note, that as we have some
duplicity services, only one of them is required to work in order system to work.

This graph can be in the next step transformed directly to fault tree, as can be seen
in Fig. [3.4 In case there is “or” in dependency graph, it is also present in fault tree.
Otherwise connections in dependency graph results to “and” in fault tree.

Created fault tree can be used for both - calculation of system characteristics and

26

(a)

Figure 3.2: Service dependency graph and corresponding Fault Tree [2]

3

Table 3.1: Probabilities of states in e-shop example

Service name Component P q
Web interface Ty 0.85 | 0.15
Account management service 1 T 0.98 | 0.02
Account management service 2 T3 09 | 0.1
Stock management service Ty 0.9 0.1
Orders management service 1 x5 0.0.7 | 0.3
Orders management service 2 Tg 0.8 | 0.2
Web interface
Y
User account User account Stock Order Order
management management managemem managemem managemem
service 1 service 2 service service 1 service 2

Figure 3.3: Dependency graph for e-shop example

57

Web interface

Stock

management
service

Order
management
service 1

Order
management
service 2

User account
management
service 2

User account
management
service 1

Figure 3.4: Fault tree for e-shop example

Table 3.2: Important measures for e-shop example

component | SI; | BI;
T 0.28 | 0.84
T 0.09 | 0.07
x3 0.09 | 0.07
x4 0.28 | 0.79
Ts 0.09 | 0.15
Tg 0.09 | 0.22

importance measures. Reliability function of this system can be seen in equation [3.1]

Results of Structure importance and Birnbaum’s importance can be seen in Table [3.2]

R =p1 X ((p2 +ps —p2 X p3) X pa X (ps + Ps — P5 X Pe) (3.1)

R~ 0.717

3.1.3 Software reliability calculation based on UML/DAM di-
agram

The next case in that the structure function based model can be used in software
reliability was published in [3]. This method uses software described using UML model

anotated with DAM stereotypes to create fault tree. Example of such model can be

o8

<<DaComponent==>
{fault=(occurenceProb=(value=0.001)

<<DaComponent=>=>
{fault=(occurenceProb=(value=0.01)}

Hostl P Host2

a b
<<DaComponent=> | <<DaComponent>> :a(‘:":: .
Componentl Component2 P
° hd
v .
Actions
Actionl Action2
i ‘ <<DaStep>>
{failure=(occurenceProb={value=0.01)}
Action3 Actiond
Action? Action6 |-
1
L J
1 ‘,v
c d

Figure 3.5: Example of UML/DAM diagrams [3]

seen in Fig. 3.5l This diagram describes software in details and contains information
about use cases, realizations of these use cases via activity diagrams and how they are
realized physically using deployment diagram. Each of these diagrams is annotated
with information about probabilities of success/failure of individual parts.

These diagrams are used in the next step to create reliability model, specifically
fault tree. Example of fault tree corresponding to UML/DAM diagram described in
Fig. [3.5] can be seen in Fig. [3.6l Each use case is a branch in this tree. The use case
has following nodes that describes its realization. The use case itself fails in case any
part of its realization fails.

The created fault tree can be then used to analyse software from reliability point
of view. The main problem of this method is correct parameter estimation, which is
in this case probabilities of success/failure of individual components. These can be

estimated based on opinions of experts, using evidence theory [3], etc.

3.1.4 Model example - calculator

Let us assume the following example. We need to analyse simple calculator from
reliability point of view. This calculator has the basic functionality: add, subtract,
multiply and divide two numbers. This is described in Use Case diagram as can be seen

in Fig. together with DAM information of probabilities of execution. This can for

29

System

ucl

&

|
@ Componentl

[ep.] .

[(1-hfp)’]

[(1-fpLan)’]

uc2

&

[ep,]

l

Component2

[1-sfpg]

Figure 3.6: Example of Fault tree corresponding to diagram in Fig. [3]

User

<<DaService>> [N\

{execProb=0.8}

<<DaService>> [N\

{execProb=0.8}

<<DaService=> |

{execProb=0.8}

<<DaSermvice=> [N

{execProb=0.8}

Figure 3.7: Calculator - use case diagram

example mean the human failure when entering inputs. Each of these use cases has

its own activity diagram as can be seen in Fig. together with DAM information of

probabilities of failure. In this example no deployment diagram is necessary.

There are several options in creation of fault tree from these diagrams. In case we
specify failure of this calculator as case when any of these use cases fails, fault tree can
look as can be seen in Fig. In this case operation is successful, when both execution
of the use case and its realization in activity diagram success and the calculator is
successful when all of the operations are operates successfully. Therefore the whole

fault tree contains only and operations between nodes. Reliability function of this case

60

\
\

<<DaComponent>= \

<<DaComponent=> \
Add Subtract

. <<DaStep>> . <<DaStep>>
_4{failure=(occurenceProb={value=0.01})} _{{failure=(occurenceProb={value=0.02})}

® A,
-

][]
M

(a)
<<DaComponent=> \

N~

<<DaComponent>= \

Multiply Divide
. <<DaStep>> . <<DaStep>>
_4{failure=(occurenceProb={value=0.01})} _{{failure=(occurenceProb={value=0.05})}
HEIN . L
I=x*y z z=xly z
[] []
- -

= =/
(c) (d)

Figure 3.8: Calculator - activity diagrams

is following:

R = p1 X pa X p3 X D4 X D5 X Pg X P7 X pg (32)

R~ 0.3737

The other option is to specify failure of this calculator as case, when none of the
functionality is performed correctly. Fault tree of this case can be seen in Fig. [3.10]

The only difference between these two trees is the top operation, which is in this case

mn

Subtract Multiply Divide

Figure 3.9: Calculator - fault tree case 1

61

m

Subtract Multipty Divide

Figure 3.10: Calculator - fault tree case 2

“or” instead of “and”. Reliability function in this case is following:

R = pips + p3pa + psps + prps — P1P2P3Pa — P1P2PsP6 — P1P2P7P8 — P3PaPsPe

— P3P4P7Ps — PsPeP7Ps + D1P2D3PaP5D6 + P1P2P3P4P7Ps + D1P2D5P6P7Ds (3.3)

+ P3D4P5P6P7P8 — P1P2P3P4P5P6P7D8
R~ 0.9977

3.2 Software reliability model based on the source code

According to studies in[76}, 80} [79] topological properties of software can be take into
account mainly based on data-depend and structure-depend model of software. This
approach is developed in this section. The main idea of this method is to use a source
code and syntax tree to create software reliability model. The principle of this method
can be seen in Fig. This method consists of 2 essential steps. In the first step,
source code is used to construct abstract syntax tree and the second is to construct a
reliability model using created AST.

Abstract Syntax Tree (AST) is an abstract graph representation of the source
code. This representation has many usages in different fields of computer science, for
example plagiarism detection [81] [82], code evolution [83], summarization [84], etc. [85].
AST consists of nodes, where each of them represents one element of the source code.
Elements in the same block of code are placed on the same level of the syntax tree. In
case element of the code can be divided into parts, these parts will be placed as nodes
in the next level and all of them will be connected to element this elements consists
of. Therefore AST can be easily used to present a structure of the source code and to

remove unnecessary information from it, such as gaps, variable names, etc. [82]. That

62

Source code]—)[Syntax tree]—)[Rellabmw model

Figure 3.11: Principle of proposed method

Figure 3.12: Syntax tree of local declaration statement

will be unnecessary for the purposes of reliability analysis. Using this representation of
source code instead of using source code itself has also other advantages. One of them
is, language independence. As AST is an abstract representation, using this form to
create reliability model allows us to analyse software implemented in any programming
language (as long as we are able to create AST from it). Example of AST can be seen
in Fig. [3.12

The next step of this method is to construct a reliability model using created AST.
For this purpose we decide to use fault tree.

Fault tree is an acyclic graph that consists of 2 types of nodes: events and gates.
An event is an occurrence within the system, that typically describes a failure or a
degradation of subsystem or a degradation of component of the system. These events are
connected via logic gates, typically AND or OR gates. These events together describes
situation, when system fails [86, [87]. Fault tree can be easily transformed into structure
function, that allows us to represent system as a Boolean function and use methods for

its analysis such as logic differential calculus to perform reliability analysis [88].

63

4. Case Studies

The usage of all previously mentioned methods are demonstrated in this chapter.
Section presents example of anesthesia examination. This system is used to present
calculus of critical states using proposed IDPLD of non-coherent MSS. The next two
case studies, i.e. patients with hepatitis survival chance and bike crashes, described
in sections [4.2] and respectively, demonstrate reliability evaluation together with
quantitative analysis for incompletely specified structure function of MSS and the usage
of the MDD in this evaluation. The last case study, described in section presents all
steps in reliability analysis of software, i.e. creation of mathematical model from source

code, usage of AST and quantitative analysis of this model.

4.1 Anesthesia examination

Evaluation of the medical error during a surgery depends on the anesthetic ex-
amination. As a rule in medical practice, several examinations has to be performed
before surgery and one of them is needed to determine an anesthesia type which will
be used. Anesthesia type is caused by patient state, his allergy etc. This examination
is performed using several medical tests, forms etc. The anesthetic examination of a
patient determines what type of anesthesia can be applied during surgery. It is common
that the preoperative examination and anesthesiology during surgery is performed
by two different doctors: the examination is done by one doctor and another one is
responsible for anesthesia during surgery. The result of examination is written by the
first doctor and the second doctor has to correctly interpret these results.

The simplified version of this system can be interpreted as a system of three
components (n = 3): the examination result, the work of the first doctor before surgery
and the work of the second doctor (anesthesiologist). The first component, z;, is an
examination about the anesthesia type. This will be introduced in the considered
model as a component with two states m; = 2. State 1 means examination is correct.
That means results of the examination corresponds with the expected results and a
patient can take the chosen type of the anesthesia without harm. State 0 will mean
examination is not correct (due to mistake in forms or other reasons), i.e. if chosen

type of the anesthesia is harmful for patient, but the examination results denote this

64

Table 4.1: Structure function of medical error during a surgery depending on the

anesthetic examination

1 Ty 33| ¢(x)
0O 0 O 0
0O 0 1 0
o 0 2 2
0O 1 0 0
0 1 1 1
0 1 2 1
O 2 0 2
0 2 1 1
0o 2 2 0
1 0 O 2
1 0 1 0
1 0 2 0
1 1 0 0
1 1 1 1
1 1 2 1
1 2 0 0
1 2 1 1
1 2 2 2

65

type of anesthesia as the correct one for patient.

The second system component xs represents the first doctor’s work performing the
preoperative examination. This doctor has to take the results of this examination,
interpret them and summarise the results in order the last doctor doesn’t have to study
all results of examination to select a correct type of anesthesia. This will be modeled
using three states my = 3. State 2 will mean doctor interpret results of examination
correctly. State 1 will mean doctor make small mistakes in interpretation but these
mistakes are not deadly for patient. The state 0 will mean the doctor interprets the
results incorrectly and if this type of anesthesia is taken, it will be deadly for patient.

The last component x3 permits to describe the second doctor’s work responsible
for the anesthesia during surgery. This doctor has to take results written by the first
doctor and depending on them give to the patient a correct type of anesthesia. This
will be modeled also using 3 states. State 2 will mean doctor interprets results correctly
and gives patient that type of anesthesia that is shown by the results. State 1 will
mean doctor makes small mistake and pick anesthesia that is harmful for patient but
not deadly. State 0 will mean the doctor picks a wrong type of the anesthesia.

This system with three states (m = 3) is whether the patient receives anesthesia,
that is not harmful at all for him (state 2) or that type of anesthesia that is for him
harmful but not deadly (state 1) or anesthesia that is deadly for him (state 0). The
structure function of this system can be defined based on the expert evaluation and in
the form of truth table it can be seen in Table (4.1

Critical states of this system can be calculated using the IDPLDs and .
The first of these derivatives allows indicating of critical states depending of specified
change of the component state (Table . According to the Table there are five
critical states for the first component failure and five critical state for the component
recover. It means that there are five situation when the mistake in the examination
about the anesthesia type results the change of a surgery depending on the anesthetic
examination. These critical states show that the incorrect type of the anesthesia has
influence on the result of surgery if one of the doctors is wrong or both of them are right.
The mistake of the first doctor (the second system component) results in surgery’s
problem if the type anaesthesia is not correct and the second doctor makes mistake or

works correctly. The mistake of the second doctor (anesthetist) has strong influence on

66

Table 4.2: Critical states for anesthesia examination according to Eq.

T3

~ o~ ~~ ~~
~—~ o~ o~ —~

P T g

Y ~— ~— ~—

~ o~ o~ ~~
~—~~ o~ o~ o~~~ o~~~

= D D D D D

= T T = —

~ o~ ~~ ~
~—~ ~ ~~

~— ' ~— ~— ~—

N N ~— ~— ~—

~—~ o~ ~~ —~
~—~ ~ ~~ —~

~— ~— ~— ~— ~—

N N N ~— ~—

~~ I~ ~~ ~~
~ Y~ o~ o~ o~

o e o O o

= D T — — ~—

~ o~ ~~ o~
~—~ o~~~ o~

— ~— ~— ~— ~—

Y ~— ~— ~—

~—~ o~ o~ ~~

—~ ~ ~~ —~

—~ o~ o~ —~

—~ ~~ ~~ —~

Components and their states

S N = @ o w 8 o« — N o A« o N = ™ o = § o« - N o =9«
—~ o~~~ ~ o~ o~~~ ~ o~ o~ o~ —~ — o~~~ —~ o~ o~~~ ~ o~ o~ o~ —~
— — — — [a] [\l [a\} [a\} o N [a\l o o N (en) jan)} o o o o o o o — — — — —
3 N T T T T 7 T T T 7 T T 1T 1 T T T T 7 T T T 7
o o o o o o o o o) — — = o NN N N A NN N NN
~— N S~ e N N N~ ~— N N~ ~ ~— N N~ ~— N N~ N~ S~ N N N
o (=) — — o o o — — o (=) — — — (=) =) — — o (=) =) — — (== =) — — —
— N ~— S~ N N~ N~ — N N~ N~ = ~— N N~ — N N~ N~ S~ N N~ ~—
—~ o~ o~~~ —~ o~ o~~~
S = N o« o = a o«
o o o a « o o o a «
s = = = —~ o~ o~~~
S

N Y —
~— ~— ~— ~— ~—

~— ' ~— ~— ~—
~— ~— ~— ~— ~—

System state change

0—1

0— 2

1—2

1—-0

2—0

2—>1

67

Table 4.3: Critical states for anesthesia examination according to Eq.

Components and their states
System state change
T To I3
00D (102)
(011)
(111)
0—1 (022)
(112)
(102) 120)
(111) (
(000)
000 000 oD
(000) | (000) 011)
(022) | (022)
0—2 (022)
(102) | (102
120) | (120 (102)
((111)
(120
(012)
012 (021)
1—=2 (101)
(112)
(112)
(121)
(012) (012)
(021) (021)
1—=0 (101) (101)
(112) (112)
(121) (121)
(00 2) (002)
(002) | (010) (010)
(020) | (020) (020)
2—=0
(100) | (100) (100)
(122) | (110 (110
(122) (122)
(010
002 (020)
2—1 (100)
122
(110
(122)

68

the surgery too. All critical states are shown in Table for this system component.

The analysis of the critical states depending on the system performance level change
is implemented based on derivatives and results are shown in Table[d.3] In terms of
our example failure of the anesthesia examination tests leads to patient’s death in case
it fails and both of the doctors perform perfectly or none of them performs correctly.
Failure of the anesthesia examination tests leads to the correct type of anesthesia in
case exactly one of the doctors fails. For the component x; there are no critical state
vectors for other changes of system state, namely for changes 0 — 1,1 — 2,1 — 0
and 2 — 1. The first component has two states only therefore to define the detail of
the component changes the additional investigation are not needed. But in case of
component with more number of states it can be needed. For example, for the critical
state (011 for system performance level change 0 — 1 the direction of the second
component should be investigated by two derivatives DPLDs 0¢(0 — 1)/0z2(1 — 0)
and 0¢(0 — 1)/0x9(1 — 2), which calculated according to (1.4

According to the Table 4.2)and Table [4.3] we can see that the most number of critical
states have the second and the third system components which describe the work of two

doctors. Therefore the doctors’ mistakes have more influence on the surgery result.

4.2 Hepatitis dataset

In this section, we will present reliability analysis calculus of patient survival chance
based on dataset obtained from repository [89]. This dataset has been used in paper
[90] to present method for minimization of variables needed to create Multi-Valued
Decision Function. This function can be then used for reliability analysis. We are using
different approach to analyse this system - using methods of datamining a decision tree
is created [50} 66] that is in the next step reduced using proposed algorithm to MDD.
Final MDD is then used for importance measures calculation.

Dataset we use for presenting this method consists of 19 attributes. The final state
of system is represented by binary variable. Value 1 represents case, when patient
will survive illness and vice versa. Therefore, also our modeled system is two-stated
although not all attributes are binary.

6 of 19 attributes are multi-valued, specifically:

o Age: 10, 20, 30, 40, 50, 60, 70, 80

69

« Bilirubin: 0.39, 0.80, 1.20, 2.00, 3.00, 4.00
o Alk phosphate: 33, 80, 120, 160, 200, 250
« SGOT: 13, 100, 200, 300, 400, 500
e Albium: 2.1, 3.0, 3.8, 4.5, 5.0, 6.0
o Protime: 10, 20, 30, 40, 50, 60, 70, 80, 90

and the remaining 13 variables are two-valued, specifically:

o Sex e Anorexia o Ascites
e Steriod o Liver big e Varices
o Ativirals o Liver firm « Histology
« Fatigue e Spleen palpable

o Malaise e Spiders

The whole dataset contains 155 entries as vector of attributes values and a final
state value. Only 80 of these entries are fully specified, i.e. we know value of every
attribute.

We will present 2 approaches in calculus of this system. The first one will be by
using only 80 fully specified entries, similarly as was presented in the paper [90]. The

another one will be by using all 155 entries.

4.2.1 Calculus using only fully specified entries

As we mentioned in previous section, in order to create MDD we firstly need to
build DT. Then we reduce DT to MDD using algorithm described in section [2.3.2] Tt
turned out, not all variables are relevant, i.e. not all system components have an impact
on system state, but only 7 of them, specifically: Protime, Spiders, Ascites, Age, Alk
phosphate, Sex and Antivirals. The result MDD has 9 non-sink nodes, as we can see on
Fig [4.1]

This diagram was used to calculate Structure Importance for each component.

Calculated results can be seen in Fig. On the x axis, there are system component

70

1
4

3620

A.LK
PHOSPHATE,

l\

‘///,\
g

Figure 4.1: MDD from hepatitis dataset using only fully specified records

changes and system performance level changes. The y axis contains values of SI for
individual components. The highest number of SI means, the given component is
most important for whole system performance and vice versa, value 0 of SI for some
component means that given component has no impact on system performance. The
highest values from Fig. along with system component changes and system changes

are following:
e Protime

— 40 — 10, patient state changes from Dead — Live
— 40 — 100, patient state changes from Dead — Live
— 60 — 40, patient state changes from Live — Dead

— 80 — 40, patient state changes from Live — Dead
ST = 0.0902778
o Ascites
— Yes — No, patient state changes from Dead — Live
SI = 0.0486111
o Spiders

71

I e e - e e e e e~~~ S e s e -~ S E S~ — - - ——— s~ — 5o . FAPAP PP AP
=]

® PROTIME ® ALK_PHOSPHATE ® AGE ® SPIDERS @ ASCITES @ SEX @ ANTIVIRALS

Figure 4.2: SI results for hepatitis dataset using only fully specified records

— Yes — No, patient state changes from Dead — Live

SI = 0.037037

4.2.2 Calculus using all entries

Differently we can take all entries into account instead of using only fully specified
ones. In this case, after applying presented methods, resulting diagram can be seen
in Fig. [4.3] In this case 9 attributes are relevant for system performance, specifically:
Albumin, Protime, Spiders, Age, Alk phosphate, Ascites, Bilirubin, Live firm and
Anorexia. The result MDD has 17 non-sink nodes. Also note, that a new system state
has to be added. This state can be interpreted as a case we cannot decide whether
patient will survive or not and probably another tests has to be done.

Results calculated using diagram from Fig. [£.3] are shown in Fig. [£.4] with similar

meaning as it was in previous figure. The biggest values of SI are following;:
e Albumin

— 5 — 2.1, patient state changes from Live — Dead
— 6 — 2.1, patient state changes from Live — Dead

— 6.4 — 2.1, patient state changes from Live — Dead

72

Figure 4.3: MDD from hepatitis dataset using all records

SI = 0.125
o Spiders
— Yes — No, patient state changes from Live — Unknown
SI = 0.0417
e Protime

— 70 — 10, patient state changes from Live — Unknown

SI = 0.0227

4.3 Bike crashes dataset

In this section we will demonstrate application of described methods in dataset
obtained from [91]. This dataset contains information about bicycle crashes such as
driver age, whether ambulance was called or not, what was the weather like etc., together
with information if bicycle driver was killed, injured or without injure. The whole
dataset consists of 11 attributes and 162 records. In order to simplify manipulation with
data, each attribute value was mapped into numeric value. Complete list of attributes

together with possible values and their mapping can be seen in Table [£.4]

73

Table 4.4: Details of Bike Crashes Dataset

Number
Attribute Name List of Values (mapped into state)
of values
Ambulance 2 Yes (1), No (0)
Age 7 | 0—10(0), 11 — 19 (1), 20 — 29 (2),... T0+ (7)
Bike Direction 4 With Traffic (0), Facing Traffic (1), Not applicable
(2), Unknown (3)
Bike Position 7 Travel Line (0), Sidewalk / Crosswalk / Driveway
Crossing (1), Non-Roadway (5), Bike Lane / Paved
Shoulder (6), Driveway / Alley (3), Multi-use Path
(4), Unknown (2)
Sex 2 Male (0), Female (1)
Biker Alcohol 2 Yes (1), No (0)
Driver Alcohol 3 Yes (2), No (0), Missing (1)
Driver speed 8 0—10 (0), 11 —20 (1), 21 — 30 (2),...,61 — 65 (6),
Unknown (7)
Light Condition 5 DayLight (3), Dark - No Light (1), Dark - Lighted
(2), Dusk (0), Unknown (4)
Road Surface 5 Croashed Asphalt (4), Smooth Asphalt (3), Concrete
(0), Gravel (1), Other (2)
Weather 3 Clear (2), Cloudy (1), Rain (0)

74

0.1

[] o 00
0.08
° ° ° °
0.06 Cd ° ° °
%, ° ° ° f
0.04 ® -
L] L] L]
..
L]
..
002 o o
by] .
[] 0
4 L4
° < ® ') o0
o ot ']
oy © ARG TR N ’ °
0%&... 000ip 3% o, 0 et 8 Judf, 09 LV 0
ONHNOHONHNOHONHNOHONHNOHONHNOHONHNOHONHNO HONHNOHONHNOHONHNOHONHNO
ANANANNKNANARNNRNANANNKANANANNARNNAANNANRNAANANARNAANANRNNANANNNRARANNNRANRANNNRANRNARNANANM
AHNONO ANONOHANONOHANONOHANONOHANONOHANONOHANONOHAANONOHAANONOHANONO

® ALBUMIN @ SPIDERS ® PROTIME ® ALK_PHOSPHATE ® AGE ® SPLEEN_PALPABLE @ LIVER_FIRM ® ANOREXIA ® ASCITES @ BILIRUBIN

Figure 4.4: SI results for hepatitis dataset using all records

In order to handle incompleteness of these data, methods of datamining presented
in [50], 66] was used. Using these methods, decision tree was created. This tree was in
the next step reduced into MDD using methods described in paper [61, 65 62] and
in the section [2.3.2] of this thesis. Resulting MDD can be seen in Fig. [4.5] Created

mathematical model is in the next step used to perform quantitative analysis.

4.3.1 Topological analysis

In the first step, created mathematical model was used to perform topological
analysis, specifically SI for each component was calculated. According to eq. [[.11} From
definition of this equation, different DPLDs can be used to calculate SI. Firstly we take
into account only cases, when decrease of system component state leads to decrease
of system performance. This corresponds to DPLD %, where h < JAs < 7.
Results of this calculation can be seen in Fig. [4.6l The z axis contains individual
component and system changes. On the y axis there are values of calculated SIi for
every component. So for example values in column “2 — 0|1 — 07 is equal to value of
SI, when system component state changes from 2 to 0 and system changes from 1 to 0.

From these results we can identify most crucial components according to system

structure. These can be seen in Tab. [L.5

9¢(j—h)

Bra(sor) where h > j A's < r. This

Similarly, second SI was calculated using DPLD

5

5

BIKER
No\ ALCOHOL

050

\ 1149, 2029, 6069

BIKER AGE

Nor Yes:
0101120
2150, 5140
Tayion
ok
Male” \Female
i
| Dark - Roadway Not Lighted,
Dark - Lighted Roaduay,
Dayigh SE
ok Ligntea
Unknown Dark - Roagway
Not g
704
[e o 6-10, 11-19, 20-29,
3030, 40.49, 50.69,60.69
BiKER — . 40-49,50.59
POSITION Non-Roadway.) 0
Unknown 0164410, 4049,
— 059, 0.60,70% = Mising
Mutti-use e priveway / Alley.
Bike Lane Poved Shoulder
Sicewalk/
Crosonal/
Driveway Crossing
RoAD
Coarst Abphalt
Concretd, SURFACE
vl
N e
ves //
N
7o e TravelLie, en
ok 50 ‘ K e/ Crosawal/ Orvensy Cossn, —{ peeetay
1049, 5

14:

6-10, 11-10, 4>
5050, 6069, 70%,
2020

Driveway / Alley,
Mult-use Path
Non-Roadway,
Bike Line / Paved Shouides
6-10, 20-29, 30-39,
40-49, 5059, 70+

Killed Injury No Injury

Figure 4.5: MDD of Bike Crashes Dataset

02
0.18]
0.16
0.14
0.12
01

0.08

0.06

a M A
M M :‘ M M NNN M M
A

84,0294 0 90 o % o o . . ’ .
R N I YV S S N S YV N
Vool o ol o o G G I Y WV G
A AT A A AV P R R s b b e P R e e e e e e e e R
A S S L L i L ™ L L L L ™ L i L i L G

W BIKER_ALCOHOL & DRIVER_SPEED AMBULANCE A LIGHT_COMDITION » DRIVER_ALCOHOL
BIKER_AGE M BIKER_POSITION BIKER_SEX ® ROAD SURFACE

Figure 4.6: Results of SI?¢ for Bike Crashes Dataset

76

Table 4.5: Attributes with highest values of SI%¢ for Bike Crashes Dataset

Component Component change|System change | Value of SIji
Biker Sex 1—-0/1—=0 0.0787426
Ambulance 1—-0/1—0 0.0651749
Biker Alcohol 1—-0/1—0 0.0499926
Light condition 1—-0/1—=0 0.0354167
. |
0.14 N
M
00z o v a, ~
onBMEAMM AR ME AW M 3 . AN > e .

AT A7 A
A BT B R S N . o L T L T B B . B B R L B S B T S T R S
O O O e N g O O NN OO

N AT a7 e e e e W W W W W W W @ AT AT AT ATAT ATTAT AT AT AT

W BIKER_ALCOHOL & DRIVER_SPEED AMBULANCE 4 LIGHT_CONDITION ® DRIVER_ALCOHOL
BIKER_AGE M BIKER_POSITION T BIKER_SEX @ ROAD_SURFACE

Figure 4.7: Results of SI; for Bike Crashes Dataset

contains only cases, when system component performance decrease leads to the case
system increase its state. Results of this calculation can be seen in Fig. [£.7 The most
crucial components together with value of its SI can be seen in Table [4.6]

In the next step, these two SIs was summed for each system component state change
and specific system change. This can be expressed using the following form:

SE* —3°3°TD <a¢(j_>k)> s (4.1)

r=0s=0 Ly (T - 8)

Table 4.6: Attributes with highest values of SI; for Bike Crashes Dataset

Component Component change|System change Value of SI;
Biker Alcohol 1—-0/0—1 0.187783
Driver Speed | 6 —0/0 = 1,6 - 1|0 = 1,6 — 2|0 — 1 | 0.0626488

Light Condition 2-510—-1,4—-10—1 0.025

7

0.25

0.2

H MM M
015
M M
M M
01
" [
M
" H e ¢ ¢ ¢ o Mo o M oe ¢ e ¢ + o @
M
0.05 M M
M
4 L] 2] L]
A WA b A b
pAR A M
n“‘u .‘ A 4 A M oM MMM M
: M
IS OO L LR TN TS Y + M M PP ¢

4 5
AL A AN AN AN AN AN AN AANMA AN A AN A NMAANAN
o Y o T T T S T T T G T D T T Y T Y G W S S T W T Y NS
~) R R e s Pt P~ - Rl R S P Pl R L M- M- R - - R i S Sy P - R - R - B)
\’.‘? ,\;‘? "’ﬂ q;‘? '},:? ,5;‘? '57? 'g’f 'b:? b‘.‘? bﬂ bﬂ b‘o‘? N‘? bf? (‘Qﬂ (‘5‘7 b:? b.‘? %7? (‘5‘? (o:? “5‘? &;‘? %ﬂ h.‘? b:? h;‘? %ﬂ h.‘? b:? b.‘? ,\ﬂ ,\ﬂ ,\.‘7 ,\.‘? ,\7? ,\ﬂ ,\.‘7 ,\:? ,\;‘? ,\7?

‘.

W BIKER_ALCOHOL & DRIVER_SPEED AMBULANCE 4 LIGHT_CONDITION ® DRIVER_ALCOHOL
BIKER_AGE M BIKER_POSITION T BIKER_SEX @ ROAD_SURFACE

Figure 4.8: Results of SI; for Bike Crashes Dataset

Table 4.7: Attributes with highest values of SI' for Bike Crashes Dataset

Component Component change|System change Value of SI%¢
Biker Alcohol 1 =001 0.2377756
Biker Sex 1—-0/0+1 0.0787426
Ambulance 1 —-0/0<1 0.0774108
Driver Speed |4 — 3|0« 1,5 3|0+ 1,7 — 3|0+ 1| 0.06264881
Light Condition 1 =001 0.0354167

This includes both - cases when decrease of system component leads to decrease of
system state and cases when decrease of system component leads to increase of system
state. Results of this case can be seen in Fig. [£.8] The components with highest SI can
be seen in Tab. .7

The last mentioned SI is sum of m; x (m; — 1) values for component z;. In case of
heterogeneous system it is necessary to normalize these values as they are results of
different number of summed values. This can be performed using the following equation:

‘ Pk
SIn’* = St;

C T s (= 1) (4.2)

Results of this normalization can be seen in Tab. [£.9.
According to Tab. the most crucial attribute of this system is biker alcohol.

This can be interpreted as the fact, that whether biker drank alcohol or not is the

78

Table 4.8: SI for specific system change for Bike crashes dataset

System state change from j to k

Attribute 2—=0 2—1 1—0 1—2 0—2 0—1
Biker Alcohol 0 0 0.04999 | 0.01235 | 0.01234 | 0.18778
Driver Speed 0 0.00002 | 0.00104 | 0.00007 | 0.00004 | 1.00104
Ambulance 0.00625 | 0.00938 | 0.06517 | 0.00541 | 0.00158 | 0.01224

Light Condition | 0.00858 | 0.00558 | 0.10586 | 0.06997 | 0.01356 | 0.08813
Driver Alcohol | 0.00006 | 0.00009 | 0.00006 | 0.01667 | 0.01685 | 0.01815

Biker Age 0.00843 | 0.00151 | 0.00924 | 0.00313 | 0.01311 | 0.04712
Biker Position 0.31134 | 0.53930 | 0.64874 | 0.24834 | 0.04074 | 0.54636
Biker Sex 0 0 0.07874 | 0.00802 0 0
Road Surface 0.00214 | 0.00071 | 0.00214 0 0 0

Table 4.9: Normalized SI for specific system change for Bike crashes dataset

System state change from j to k

Attribute 2—-0(2=21|1-0|1—=2[0—2]0—1
Biker Alcohol 0 0 0.025 | 0.0062 | 0.0062 | 0.0939
Driver Speed 0 0 0 0 0 0.0179
Ambulance 0.0031 | 0.0047 | 0.0326 | 0.0027 | 0.0008 | 0.0061
Light Condition | 0.0004 | 0.0003 | 0.0053 | 0.0035 | 0.0007 | 0.0044
Driver Alcohol 0 0 0 0.0028 | 0.0028 | 0.003
Biker Age 0.0002 0 0.0002 | 0.0001 | 0.0003 | 0.0011
Biker Position | 0.0074 | 0.0128 | 0.0154 | 0.0059 | 0.001 | 0.013
Biker Sex 0 0 0.0394 | 0.004 0 0

Road Surface 0.0001 0 0.0001 0 0 0

79

static void Main(string[] args)

{
int x = 10;
int y = 28;
for (int i = x; 1 < y; i++)
{
if (1 % 3 == 0)
Console.WriteLine("1");
else
Console,WriteLine("0");
}
}

Figure 4.9: Example of source code

most significant factor that makes difference between his death or injury. The next
crucial attribute is ambulance. The fact ambulance was called to accident has significant
impact on result of the accident. The next one is biker sex. The dataset implies, that
women has less deaths than men. Significant role in biker survival is caused also by
driver speed, where change from 51 — 55 mps to 31 — 40 or from 41 — 50 to 31 — 40
leads to the fact biker will be alive.

On the other hand, factors as weather or bike direction (whether it is with traffic or
facing traffic) has no impact on result of the accident. However it should be noted, that

accuracy of these results depends on amount of available data.

4.4 Software reliability evaluation

In this section we will demonstrate whole process of reliability analysis of software
system from source code, through syntax tree and reliability model creation to calculation
of software characteristics using typical method of reliability analysis - differential
calculus.

Let us take the source code from Fig. 1.9 It is a simple program written in C#
language in which 2 local variables are declared. Then there is a for loop statement in
which it is iterated between these two local variables. In case current value is divisible

by 3, value "1" is written into standard output. Otherwise value "0" is written.

80

—em mm Em Em Em Em B Em Em Em o o B B Em Em Ay,

-

.
¢ static void Main(string[] args) - - - » Block

K -
. ,,_'_int X =10 b m e e e e e e e e = = L - — 3 Local declaration
e]
v ity =20, b - - -----o oo -7 - - % Local declaration
: ,for (int i = x; i < y; i++) !
1 { 1!
1 (1
ro if (1 % 3 ==) o
1 = = M 0y
;1 Console.WriteLine("1"); |_:_ - =» For statement
! else :|
1 s maw
: . Console.WriteLine("@"); ;1
V) ':
\ } \A-. ________________ "'”

.7 for f_(_:'Lan;1'__;_;(_;-_5_._2_}_;__1_4;1_)} === ==» Forheader
L * k= - -y Forstatement
| . .
:: if (1 % 3 == 0) !
— N n n I
1 Console.WriteLine("1");!,
P k= = = =3 Forblock
. else _ _ o |:
i Console.WriteLine("@')jll
‘:\} _________________ /‘:’

Figure 4.11: Second level of source code description - for loop

4.4.1 Syntax tree creation

This source code can be interpreted in form of syntax tree in the following way. The
main block of code consists of three elements, as can be seen in Fig. [£.10] There are
two local declaration statements and one for loop statement. In the syntax tree, local
declaration can be taken as is and nodes for them are created. The for loop statement
can be analysed deeper, as can be seen in Fig. [4.11] For loop consists of the header
and the body. The header contains declaration, iteration step and condition to stop the
loop. Fig. describes the body of the for loop. It contains only one element - if
statement. And finally, if statement consists of 3 elements: condition, true block and
false block. This can be seen in Fig. [{.13]

All of the mentioned elements are taken into the final syntax tree as can be seen in
Fig. The elements of the source code from one block are on the same level of the

syntax tree. Please note, that it is possible to continue and split some nodes into parts.

81

s TS EEEEEEEEES ~

1 if (1 % 3 == 0) ! For block
I C le.WriteLine("1");"

! onsole (Vi _ =)» |If statement
, else I

1 Console.writeLine("B")j"

)

Figure 4.12: Third level of source code description - body of for loop

- mEEEEE D Emmm e m . —-—-—-—- » |f statement
1V if i%3==0------ Y- -3 Ifheader

Vi _ Longoleiriteline(T1T)jh = = => True block
V8lse :

11_ _ Console.WriteLine("0");% = = =)» False block
M am mm mm o mm mm omm mm mm mm mm mm omm mm mm -

Figure 4.13: The final level of source code description - if statement

For example there is a node for the header element in the for loop statement. In our
case, we take it only as one node - variable declaration, but actually this consists of
three elements: variable declaration, iteration step and condition to stop. Similarly this
split can be applied also to the other elements.

In practise there are several tools, that constructs syntax tree from the source code,
for example .NET compiler platform Roslyn for C# language [92] or AST parser for
Java language [93]. But a syntax tree created using these tools has too large dimension
and is not suitable for the creation of the reliability model unless unnecessary nodes are
removed or merged together. Example of the syntax tree generated using Roslyn can
be seen in Fig. [3.12] This is representation of the local declaration statement. As we
can see, there are 16 nodes, although many of them are not important for our purposes.
Therefore this tree has to be processed before using to create a reliability model.

Either way we process our source code into syntax tree, i.e. either we split blocks of
code into nodes or we merge unnecessary nodes, the main decision that has to be taken
is what depth should be taken in order to create reliability model from syntax tree.
There are several options. We can for example use fixed depth and process syntax tree
only on the first level. In this case our resulting syntax tree will consist only of 4 nodes
- block, 2 local declaration statement and for loop. Other option, we also have used in

our work is not to use fixed depth, but to use specific depth for specific elements, i.e.

82

Figure 4.14: Resulting syntax tree corresponding to source code in Fig.

Table 4.10: Individual source code elements and how to split them

Source code element | Split
block | split

declaration statement | no split

for loop | declaration statement & block
if | equal expression & true clause & else clause
equal expression | no split
true clause | no split

else clause | no split

depending on the type of the element, we decide to split or not. Actual decisions for
each element can be seen in Table [4.10] In this table, value "no split" means, we stop
on the given element and don’t continue in current branch. This is used for the true
and the else clause of the if statement as they contains only one element of code. In
case there will be more than one element, we would decide to continue splitting. Value
"split" means we continue in actual branch. In our case we are using it in the block
element. That means we take the block as is and all containing elements will be placed
in the next level. For other elements of our example, table contains information what
element will it be divided into. Please note that this table does not cover all elements
of source code, but only the ones used in example. There can be also other elements

like other types of loops, function calls, more complex conditions etc.

A

Local Local
declaration declaration ;:{e',‘,’,ﬂﬁt
statement statement

Variable
declaration

51
l |
[exfg:i:on] [True clause] [Else clause]

Figure 4.15: Example of fault tree created using syntax tree from Fig. [4.14

4.4.2 The creation of the reliability model from syntax tree

Created syntax tree will be in the next step used to create a reliability model. We
have decided to use fault tree. Each node of syntax tree will match with one event in
fault tree. This event describes situation where the given elements fail. For example a
failure of the local declaration statement means there is an unexpected value assigned
to this variable or the local declaration statement is defined with unexpected type as it
was expected etc. A failure of the for loop means, that at least one of its child elements
fails, e.g. wrong iteration step will be set or it will iterate between incorrect boundaries,
ete.

Another decision that has to be taken is how to connect individual events together.

84

Table 4.11: Probabilities of states for each node in Fig. 4.15
Node name | Component label | p; q;
Local declaration statement 1 0.98 | 0.02
Local declaration statement To 0.98 | 0.02
Variable declaration T3 0.90 | 0.10
Equal expression x4 0.95 | 0.05
True clause Ts 0.96 | 0.04
Else clause Tg 0.96 | 0.04

The main problem is that failure of these events is not independent. In our example
failure of the first local declaration statement will lead to failure of the whole for loop
as the for loop iterates between these two local variables. And furthermore a variable
declared in the for loop statement is then used in the if statement. So the mentioned
failure of the first local declaration statement can lead to the failure of the whole
software. Therefore we decide to connect these events using AND gates. This will
ensure that this model will not work incorrectly. But using AND gates between all
events can lead to an inaccuracy of this model as not every failure lead to the failure
of the whole software. Let us consider situation, where a value assigned to the local
declared variable "x" will be 1 instead of 10 and a value assigned to the variable "y" will
be 11 instead of 20. The number of iterations in the for loop statement will be the same
(10 iterations) and even the output of the software will match with the expected one.
In this case a mutual failure of both local declaration statements lead to the correct
behavior of the software. Mentioned inaccuracy is in this model neglected.

The resulting reliability model created using syntax tree from Fig. can be seen
in Fig. Structure of this model corresponds to the syntax tree this model was
constructed from and individual events are connected via AND logic gates together.

Created fault tree can be easily transformed into structure function in the form
of the truth table. This allows us to use the logic differential calculus and using this
tool perform topological analysis and calculate also other characteristics of the system
such as system reliability. Calculation of some of these characteristics is possible only
with information about probabilities of individual system component states. These

probabilities can be seen in Table 4.11] Probabilities listed in the mentioned table

are only example values. Real values can be obtained using statistical information or

85

Table 4.12: Structure function in form of Truth Table

¢(x)

Te

Ty

Ty

xs3

T2

T

¢(x)

Te

Ty

Xy

xs3

T2

T

86

estimations of experts. Please note, that only leaf nodes of the fault tree is required as
probabilities of non-leaf nodes depend only on these leaf nodes. This table also contains
information about mapping node names into variable names. This makes work with

these nodes simpler. Structure function in form of the truth table can be seen in Table

4. 121

4.4.3 Quantitative analysis

These information allow us to perform quantitative analysis according to section
As we mentioned, reliability is a probability system works without failure. From
structure function represented in the form of truth table as can be seen in Table
[4.12] there is only one row, where system is working and that is the case, when all
of its components works. Therefore the reliability of this system can be calculated as

following;:

R =p1 X pa X p3 X ps X p5 X pe
R =10.98 x 0.98 x 0.90 x 0.95 x 0.96 x 0.96 (4.3)
R =0.7567

Similarly unreliability U is defined as a probability system will fails. Using the truth

table we can see, there are 63 cases, when system will fails. To calculate the unreliability

we can either sum the probabilities of these cases or to use calculated reliability:

U=1-R
U=1-0.7567 (4.4)
U = 0.2433

Structure function can be also used to calculate importance measures for individual
components. Firstly we will demonstrate the calculation of the structure importance
for component z1. Using direct partial Boolean derivative and information from Table
4.12, we can see, that there is only one case, when the failure of this component results
in the failure of the whole system and it is in the case, when all other components are
working. The number of all possible DPBDs for the component z; are 32. The resulting

SI for component x; can be therefore calculated as following:

87

dp(1 — 0) 1
L=TD|——""L] = _— ~0.0312 4,
Sk <8x1(1—>0)> 5g ~ 003125 (4:5)

Structure importance can be similarly calculated also for other components. The
results of this calculation can be seen in Table As we can see, the resulting SI
is equal for all components. That means, that from topological point of view every
component, or in our case every element of the source code, has the same impact on

system reliability, or in our case the same impact for the software to work correctly.

Table 4.13: Results of SI; calculation

Component SI;
1 0.03125
T 0.03125
T3 0.03125
T4 0.03125
Ts 0.03125
T 0.03125

The usage of the information about probabilities of the individual component
states presented in Table allow us to calculate also different importance measure,
Birnbaum’s importance. A calculation of BI for the component z; is similar to the
calculation of SI. Using DPBD we find cases, where failure of the component x; results
in the failure of the system. Then we will calculate the probability of the occurrence of
this cases. There is only one case for the component x; where DPBD takes value 1 -
when all components are working. The Birnbaum’s importance for this component can

be then calculated as following;:

Bl = p2 X ps X ps X ps X pe
BI; = 0.98 x 0.90 x 0.95 x 0.96 x 0.96 (4.6)
BI; =~ 0.7722
The Birnbaum’s importance calculus for the other components will be similar to
the calculus of the first one. The results of this calculation can be seen in Table .14

The results show, that component x5 is slightly more important for our system that

the other components. Component z3 represents a variable declaration statement in

88

the for loop statement and it is caused by the fact, there is a higher probability of its
failure as it is for the other elements of the source code. The second most important
component according to results is the component x4, what represents condition in the
if statement. Then there is components x5 and zg and the least important according
to Birnbaum’s importance are components x; and x,. The results show us, that we
need to put a bigger effort and be more careful when writing declarations of the for

loop statement and conditions compared to declaring local variables.

Table 4.14: Results of BI; calculation

Component BI;
1 0.7722
To 0.7722
x3 0.8408
T4 0.7966
x5 0.7883
T 0.7883

89

Conclusion

The main focus of our work was on reliability analysis of non-coherent systems.
Within this process, we set several goals, specifically: 1. The investigation of methods
for reliability analysis of multi-state non-coherent systems. 2. The investigation of
methods for the reduction of computational complexity of structure function. 3. The
investigation of methods for construction of structure function based on incompletely
specified data.

The first goal is described in sections and [2.2] This goal is achieved by proposing
new approach for non-coherent MSS analysis based on mathematical methods of MVL.
Similarly to the studies [6, 41], the investigated system is represented by structure
function. According to [6], the structure function can be interpreted as an MVL function,
and this allows us to use MVL mathematical methods for analysis and evaluation of
MSS. In particular in this thesis the analysis of critical system component states are
considered. The critical component states are defined for every system component.
For these states, the specified change of component state results in the change of the
system performance level. According to previous studies in [6], the critical system state
can be computed by methods of Logical Differential Calculus, in particular, Direct
Partial Logical Derivatives (DPLD). In study [41] the derivatives named Integrated
Direct Partial Logical Derivatives (IDPLD) have been developed for calculation of
Importance Measures of coherent MSS. Other modification of DPLD in [42] allows
definition of minimal cut/path sets of coherent MSS. In this thesis, we develop DPLD-
based approach for the computation of critical component states of non-coherent system.
The development of this approach is based on analysis of definition of non-coherent
MSS proposed in investigation [33, 34} 35} 36, [37].

The application of this method is presented in section 4.1 where example of anesthesia
examination is considered. On this system, critical state vectors are calculated using
proposed method. This allows us to investigate the system behaviour from reliability
point of view more deeply.

The second goal is described in section and is achieved using MDD representation
of structure function. Thanks to the fact that this representation is compact it is

possible to describe also systems with large dimension of structure function. This

90

representation can be also easily used to perform quantitative analysis, both - topological
and probabilistic. This is due to the fact that MDD is an orthogonal representation of
SF [64]. Within this goal, we also decide to represent MDD using vector of neighbours
as is described in section 2.3.1]

The application of this method is present in section [4.2] In this section, case study
for patient with hepatitis survival chance is described. Using data obtained from [89],
MDD is constructed and this diagram is used to calculate structure and Birnbaum’s
importance.

The last specified goal was to investigate methods for construction of incompletely
specified structure function. This problem is described in section [2.4) and partially in
and is achieved using methods of data mining to analyse system and construct decision
tree. Decision tree can be reduced into MDD. Algorithm of this reduction is described
in section [2.3.2l As MDD is a form of structure function, it can be then easily used to
perform reliability analysis using DPLD and other methods for SF analysis.

The application of this method is present in sections and [£.3] Both of these case
studies describe systems with incompletely specified data and, using the mentioned
method, MDD are constructed. These case studies also demonstrate the quantitative
analysis.

The last part of this thesis described in chapter [3]is focused on software reliability.
The main idea of our proposed method is to use a source code and syntax tree to create
software reliability model. This method consists of 2 essential steps. In the first step,
source code is used to construct abstract syntax tree (AST) and, in the second step,
its reliability model is constructed using the created AST. Specifically, fault tree is
created. This can be easily transformed into structure function. This allows us to
analyse software using typical methods for reliability analysis. The main disadvantage
of this method is the large dimension of structure function even for simple software.
However natural breakdown of source code into functions and procedures allows us to
easily use methods for reduction of this complexity.

The application of this method is present in section [£.4] where example of the whole
process of analysis of source code and the creation of structure function is demonstrated.
This structure function is used to calculate basic characteristics, such as reliability.

Our future work will be focused on investigation of non-coherent systems more

91

deeply. We will consider the usage of proposed DPLD and critical state vectors to
perform also quantitative analysis based on importance measures. In the next part of
our future research, we will investigate a possibility to further reduce computational
complexity of performing reliability analysis for systems with large structure function,
for example, to use methods as modular decomposition [94, 44, 05] in MDD. Finally, we
plan to deal with improvement of our proposed method for software analysis, as there
are mainly 2 problems with current model. The first one is its large dimension. As can
be seen in section [£.4] even quite simple code results in structure function with large
dimension. There are several ways to solve this problem. The first one is by reducing
the size of the syntax tree, necessary to create this model, by merging or removing nodes
until resulting syntax tree has more suitable size. This way, created reliability model
will also have reduced size, therefore, the whole analysis will be simpler. The other
solution is to use method of modular decomposition [94], 44, [95]. Using this method,
reliability model can be divided into several modules, and each module can be analysed
separately. This will reduce time required to perform reliability calculation of the whole
system with usage of methods like parallelism. The next problem is the usage of the
AND gates what can leads to inaccuracy in the created model. In order to solve this
problem, the future research is required. This will help us to determine how each event

should be connected to other events in order to increase accuracy of the created model.

92

Resume

Spolahlivost je v sticasnosti dolezita charakteritstika akéhokolvek systému. Analyza
spolahlivosti je komplexny proces, ktorého prvym krokom je tvorba matematickej
reprezentacie skiimaného systému [4, 5l [6]. Matematicky model systému je tvoreny s
ohladom na Specifikd analyzy systému a vlastnosti daného systému. V zavislosti od
poctu trovni vykonnosti mézu byt matematické modely rozdelené na dve skupiny [4]:
dvojstavové systémy a viacstavové systémy.

Oba tieto typy mozu byt v zavislosti od vplyvu degradacie komponentu na funkénost
systému koherentné a nekoherentné [7, [8 ©]. Degradécia alebo zlyhanie komponentu
koherentného systému nemoze viest k zvyseniu urovne funkcénosti systému a vsetky
komponenty koherentného systému si relevantné pre fungovanie systému [10, 8]. V
spolahlivostnom inzinierstve st koherentné systémy v porovnani s nekoherentnymi
intenzivne studované.

Analyza spolahlivosti nekoherentnych systémov vyzaduje Specidlne metody. Je
to spésobené nemonoténnym vplyvom zlyhania komponentu na funkcénost systému.
Najcastejsi pristup k nekoherentnym dvojstavovym systémom je zalozeny na analyze
prostych implikantov. Tieto boli pouzité pri vyvoji metéd na ohodnotenie nekoherent-
nych systémov v publikdciach [27, 12} 28, 29]. Primarne implikanty boli navrhnuté v [29]
ako analdgia k mnozindm miniméalnych rezov na definovanie minimalnych kombinécii
zlyhani komponentov, ktoré spésobia zlyhanie systému. Stromy poruchovych stavov a
mnoziny minimalnych rezov su efektivnym nastrojom na analyzu koherentnych systémov,
ale nie si ekvivalentné s primarnymi implikantami a neberti do ivahy nemonoténny
vplyv zlyhania komponentu nekoherentného systému.

Na rozdiel od dvojstavovych systémov, nekoherentné viacstavové systémy nie su
intenzivne studované. Existuju studie takychto systémov, kde sa zvazuju niektoré
teoretické aspekty [33], B4, 35], 36], ale metédy analyzy neboli este rozvinuté. Je to
sposobené tazkostami a nepresnostami v teoretickej interpretacii nekoherentnych viac-
stavovych systémov a taktiez vypoctovej zlozitosti analyzy takychto systémov. Koncept
koherencie a nekoherencie dvojstavovych systémov bol zovseobecneny pre viacstavové
systémy v publikacidch [34] B35, B6]. Vypocet charakteristik a ukazovatelov nekoher-

entnych viacstavovych systémov bol prezentovany v publikdciach [38, 39, [40]. Bossche

93

v publikéciach [38, B9] navrhol frekvencéné ohodnotenie spolahlivosti nekoherentnych
viacstavovych systémov zalozené na stromoch poruchovych stavov s aplikaciou prostych
implikantov. Autor zovseobecnil koncept prostych implikantov z nekoherentnych dvojs-
tavovych systémov a upravil pristup dvojhodnotovej logiky pre analyzu viacstavovych
systémov. Metody viachodnotovej logiky sa pouzivaju na definovanie ukazovatelov
délezitosti nekoherentnych viacstavovych systémov v publikédcii [40]. Avsak autori
navrhli vypocet ukazovatelov dolezitosti intuitivne a neanalyzovali teoreticky zdklad a
definicie nekoherentnych viacstavovych systémov.

V rdmci prace sme sa preto rozhodli stanovit si nasledujtce ciele:

1. Preskimat metédy analyzy spolahlivosti viacstavovych nekoherentnych systémov.
2. Preskimat metody redukcie vypoctovej zlozitosti analyzy struktirnej funkcie.

3. Preskimat metody tvorby Struktirnej funkcie zalozené na netuplne definovanych

datach.

Okrem tychto cielov sme sa rozhodli rozsirit nas vyskum taktiez na spolahlivost
softvéru a preskiimat moznosti reprezentacie softvéru vo forme struktiurnej funkcie.

V ramci prace navrhujeme novy pristup pre analyzu viacstavovych nekoherentnych
systémov zalozenych na matematickych metdédach viachodnotovej logiky. Tento pristup
vychadza zo studii koherentnych viacstavovych systémov, ktoré boli prezentované v
publikaciach [6, 41]. Podobne ako v danych stididch, skiimany systém je reprezentovany
pomocou struktirnej funkcie, ktorda mapuje vsetky mozné stavy komponentov na
troven vykonnosti systému. Podla [6] struktirna funkcia mdze byt interpretovand ako
viachodnotova logicka funkcia a tento fakt ndm umoznuje pouzitie metdd viachodnotove;
logiky pri analyze a ohodnoteni viacstavového systému. V nasej praci navrhujeme pristup
pomocou orientovanych parciadlnych logickych derivacii na vypocet kritickych stavov
komponentov systému pre nekoherentné systémy. Vyvoj tohto pristupu je zalozeny na
analyze definicii nekoherentnych viacstavovych systémov navrhnutych a preskiimanych

v publikdciach [33, 34, 35, 136, [37].

Zakladné definicie a principy v spolahlivostnom inzinierstve

Ohodnotenie spolahlivosti systému je komplexny proces, ktorého vysledkom st

informécie o systéme a jeho charakteristiky z pohladu spolahlivosti ako spolahlivost,

94

ukazovetele dolezitosti, ktirické stavy atd. Celd analyza je prisposobend v zavislosti od
charakteristik, ktoré chceme ziskat. Toto prisposobenie pozostava z vyberu matematick-
¢ho modelu analyzovaného systému. Existuji viaceré matematické modely pouzivané

pri analyze spolahlivosti a pri jeho vybere sa bert do tivahy 2 kritéria:
e pocet stavov systému;

o matematicky pristup, ktory urcuje algoritmy a metédy pouzité na ohodnotenie

systému.

Pocet stavov systému a jeho komponentov zavisi od poziadaviek na analyzu. Podla

poctu stavov systému delime systémy na dvojstavové a viacstavové.

Dvojstavovy systém je matematicka reprezentacia systému s dvomi droviami vykon-
nosti, t.j. systém bud funguje alebo zlyhal. Tato matematicka reprezentacia sa pouziva,

ak st systémy prirodzene binarne [211, [43], alebo ak analyzujeme néasledky zlyhani [5].

Viacstavovy systém nam umoznuje definovat viac ako dve trovne vykonnosti sys-
tému a popisaf postupni degradaciu vykonnosti systému z tplne funkéného na tplne
nefunkény [44, 4, [45]. Viacstavovy systém ndm umoznuje analyzovat systém detailne-
jsie, ale vypoctova zlozitost analyzy sa zvySuje a si potrebné specifické metody pre

kvantitativnu analyzu systému reprezentovanu takymto modelom.

Struktdrna funkcia

V zavislosti od matematického zakladu pouzitého v analyze systémov existuje viacero
modelov. Jednym z nich je strukturna funkcia, ktord vyjadruje zavislost zmeny drovne
vykonnosti systému od zmeny trovne vykonnosti jeho komponentov. Majme viacstavovy
systém s n komponentami. Systém ma m trovni vykonnosti. i-ty komponent takéhoto
systému ma m; stavov. Urovne vykonnosti systému a jeho komponentov nadobtidaji
hodnoty od 0 na reprezentaciu zlyhania systému po m — 1 a m; — 1 respektive na
reprezentaciu perfektnej funkcénosti. Zavislost medzi troviiou vykonnosti systému a

jeho komponentov méze byt vyjadrend pouzitim Struktirnej funkcie vo forme [47, [6]:

O(x1, 9, ..., xy) = P(x) {0,1,....my — 1} x {0,1,...,my — 1} X ...

x{0,1,...,mp — 1} = {0,1,...,m — 1},

95

kde z; je stav i-teho komponentu systému, i € {1,2,...,n}, x = (21, 29, ..., T,) je stavovy
vektor komponentov systému.

Pravdepodobnost, ze i-ty komponent je v stave 7 moze byt definovana nasledovne:
pij = Pr{z = j}

qi = Dio = Pr {% = 0}'

Reprezentacie struktirnej funkcie

Struktirna funkcia moze byt reprezentovand viacerymi sposobmi:

tabulka pravdivostnych hodnot,

blokovy diagram spolahlivosti,

dvoj a viachodnotovy rozhodovaci diagram,

mnozina minimalnych rezov a vektor minimélnych rezov.

Mnoho realnych systémov pozostava z velkého mnozstva komponentov, ¢o vedie k
velkému rozmeru struktirnej funkcie. Preto je potrebné pouzivat efektivne reprezentacie

strukturnej funkcie, napriklad viachodnotovy rozhodovaci diagram.

Logicky diferencialny pocet

Interpretacia struktirnej funkcie ako viachodnotovej logickej funkcie nam umoznije
pouzitie matematickych metéd viachodnotovej logiky na analyzu a ohodnotenie viac-
stavovych systémov. Autori publikacii [50, [51] navrhli pouzitie orientovanych parcialnych
logickych derivacii na ohodnotenie dolezitosti komponentov systému. V publikécii [41]
boli predstavené uazovatele dolezitosti definované pomocou tychto derivacii. Avsak tento
vyskum sa zameriaval na koherentné viacstavové systémy. V tejto praci je navrhnuté
ich pouzitie pre ohodnotenie nekoherentnych systémov.

Orientované parcialne logické derivacie boli definované pre binarne funkcie a neskor
zovSeobecnené pre viachodnotové logické funkcie v publikacii [52]. Tieto derivacie vo
viachodnotovej logike s ohladom na premennu z; indikuji zmenu funkcie z j na h v

zavislosti od zmeny premennej z s na r. V oblasti spolahlivosti, orientovana parcialna

96

logicka derivacia Strukturnej funkcie umoznuje definovat zmenu trovne vykonnosti

systému z j na h v zavislosti od zmeny stavu i-teho komponentu z s na r [50]:

99(j — h) L, if ¢(s,@) =7 and ¢(r,@)=nh

Owils =) 0, otherwise

pre s,r € {0,1,....m; — 1}, s #r,j,h € {0,1,....,m — 1},j # h.

Vsetky mozné zmeny trovne vykonnosti systému mozu byt definované vzladom na
orientovanu parcialnu logickt derivaciu pre specifickii zmenu stavu komponentu
z s na r, ak je tato derivacia vypocitana pre vsetky mozné zmeny trovne vykonnosti
systému definované parametrami j a h. Toto vyzaduje vypocet velkej mnoziny derivacii.
V publikécii [41] boli definované nové typy derivacii pre analyzu mnoziny trovni
vykonnosti systému v zavislosti od Specifickej zmeny komponentu systému. Tieto
derivacie sa nazyvaju integrované orientované parcialne logické derivacie. V publikacii
[41] boli predstavené 3 typy tychto derivicii definované pre zmenu i-teho komponentu z
s na s — 1 pre analyzu degradacie systému. Integrované orientované logické derivacie
pre zmenu stavu komponentu z s na s + 1 nam umoznuju analyzovat zvySenie arovne
funkénosti systému [41] a derivacie pre zmenu i-teho komponentu z s na r moézu byt
definované podobnym sposobom.

Integrované orientované parcidlne logické derivacie I. typu ndm umoznuja identi-
fikovat stavové vektory, kedy degradacia i-teho komponentu zo stavu s na r sposobi

degradaciu tirovne vykonnosti systému z j na akykolvek stav h < j:

(i L) i-19¢(j — h) L if ¢(s,x)=j and o(r,x)<j

m B h:()a.’lfi(S =) N 0, otherwise

pre j € {1,2,....,m — 1}.

Dalsia verzia 1. typu tejto derivicie pre koherentné systémy nam umoziiuje iden-
tifikovat stavové vektory, kde degradacia i-teho komponentu zo stavu s na r vedie k
degradacii irovne vykonnosti systému z akéhokolvek stavu A > j na j:

Aol 4) m-1 9p(h — j) |1, if o(s,®)>j and o(r,x) =

0zi(s = 1) h=j+10x;(s =) 0. otherwise

pre j € {1,2,....,m — 1}.

97

Analyza vsetky moznych vplyvov zmeny stavu i-teho komponentu z s na r sa da

vypocitat pomocou derivacie II. typu. Tato derivéacia je definovana ako spojenie derivacii

I. typu:

0p(1) m e mo2 9ol)) L if ¢lsi, ®) > ¢(ri, @)

C0e(l) _ _ 4.8
Oxi(s —r) j=10zi(s — 1) j=00xi(s =) 0, otherwise Y

III. typ integrovanych orientovanych parcialnych logickych derivacii pre zmenu
urovne vykonnosti systému j identifikuje vsetky stavové vektory, pre ktoré zmena stavu
komponentu ¢ z s na r spésobi zmenu trovne vykonnosti systému z hodnoty vacsej ako

alebo rovnej j na uroven mensiu ako j:

1, if o(s;,x) >3

a¢(h2j — h<j) _ mot It M — and gb(?“ 33) <]' (4.9)

Ori(s = 71) hu=j he=0 Oxi(5 — 1)

0, otherwise

kde j € {1,2,...,m — 1} a notacia h>;(h<;) znamend, ze vSetky stavy systému vicsie
ako alebo rovné (mensie ako) j sa berti do tivahy.

Spomenuté integrované orientované logické parcidlne derivacie mozu byt pouzité na
urcenie kritickych stavov systému.

Pri zovseobecneni tychto derivacii pre analyzu nekoherentnych systémov musime
vziat do tivahy moznost degradacie a zvysenia Specifikovanej urovne vykonnosti systému

j v zévislosti od zmeny stavu i-teho komponentu systému z s na r [12, [53].

Koherentné a nekoherentné systémy

V zavislosti od spravania sa mézeme systémy rozdelit na dve skupiny - koherentné
and nekoherentné [11], 34, [7]. Dominantnou skupinou systémov st koherentné, pre
ktoré zlyhanie akéhokolvek komponentu moze sposobit zlyhanie systému. Nekoherentné
systémy su preskimané najméa pre dvojstavové systémy. Nalsedujice kritéria musia

platit, aby bol dvojstavovy systém koherentny [34, [7) [12]:

1. strukturna funkcia je monoténne neklesajica: ¢(1;,x) > ¢(0;,x) pre akykolvek
komponent i, kde ¢(1Z,£C) = (b(a:l,...,l'i,l,1,$i+1,...,) () (ml,...,xi,l,

Oaxi—l-lu 7‘rn)a

98

2. Kazdy komponent systému je pre systém relevantny: ¢(1;,x) # ¢(0;,x) pre

niektoré x.

Vacsina technickych systémov je koherentna. Ak aspon jedna z podmienok neplati,
potom je systém nekoherentny [7), 12]. Priklad nekoherentnych systémov médze byt sys-
tém dodavky plynu [12] [7], logické obvody a siete [21], systémy s Tudskym faktorom [54]
alebo softvérové komponenty [30]. Jeden z relevantnych problémov pri nekoherentnych
dvojstavovych systémov je vypocet analyzy dolezitosti [7, 12] [19]. Autori publikécie [51]
navrhuju pouzitie logického diferencialneho poctu pre vypocet ukazovatelov ddleziosti
dvojstavovych systémov. Ako bolo ukdzané v publikdcidch [53] 2], tento pristup moze
byt pouzity aj pre nekoherentné dvojstavové systémy. V rovnakom case bol zovseobec-
neny pristup logického diferencialneho poctu pre analyzu viachodnotovych logickych
funkcii a stal sa efektivnym néastrojom na analyzu viacstavovych systémov. Metédy
analyzy koherentnych viacstavovych systémov zalozené na logickom diferencialnom

pocte boli prezentované napriklad v publikacidch [6l, 41].

Kvantitativna analyza

Struktirna funkcia méze byt pouzitd na analyzu systému z hladiska spolahlivosti.
Toto zahfna vypocet charakteristik systému ako st spolahlivost a dostupnost. Okrem
tychto charakteristi je mozné vypocitat charakteristiky jednotlivych komponentov ako

su ukazovatele dolezitosti.

Spolahlivost je zédkladné charakteristika systému a moze byt definovand ako pravde-
podobnost, ze systém funguje.
R =Pr{¢(x) =1}.
V pripade viacstavovych systémov je mozné vyjadrit taktiez pravdepodobnost

ostatnych urovni funkénosti systému. V tom pripade hovorime o dostupnosti.

Dostupnost a nedostupnost modzu byt definované ako pravdepodobnost, Ze systém
je aspon v stave j. Podobne nedostupnost je pravdepodobnost, ze systém funguje v

stave nizsom ako j.
A=l (p) = Pri¢(z) > j},
U= (p) = Pr{s(z) < j}

99

kde p je vektor pravdepodobnosti stavov komponentov [55] [45], 44].
V mnohych pripadoch je potrebné poznat nielen charakteristiky systému, ale taktiez
ako je uroven funkcénosti systému ovplyvnend jednotlivymi komponentami. Na to nam

sluzia ukazovatele dolezitosti.

Struktirna délezitost SI;

Struktirna dolezitost vyjadruje vplyv komponentu systému na troven funkénosti

systému z topologického hladiska. Moze byt vypocitany nasledovne:

SI, =TD M
Ox;(r — s)
kde TD je funkcia definovana ako relativny pocet pripadov, kedy funkcia %

nadobida hodnotu 1 ku vSetkym moznym pripadom [56].

Birnbaumova dolezitost BI;

BI; je podobna ako SI; s jednym zasadnym rozdielom a to, ze BI; berie do tvahy

pravdepodobnosti stavov jednotlivych komponentov. BI; moze byt vypocitana nasle-

BIi:Pr{Wzl}.

0zi(r — s)

dovne [56], 57, 58]:

Nekoherentné systémy

V predchédzajtcej casti boli predstavené zakladné terminy zo spolahlivostného
inzinierstva. Tato ¢ast je zamerana na nekoherentné systémy, ktoré si preskimané viac

do hibky, ¢o je taktiez hlavné zameranie nadej prace.

Struktirna funkcia nekoherentnych viacstavovych systémov

Podobne ako pri dvojstavovych systémoch, aj viacstavové systémy je mozné rozdelif
v zavislosti od spravania sa systému na dve skupiny: koherentné a nekoherentné.
Koncept koherentnych a nekoherentnych systémov bol naskor preskiimany pre analyzu
viacstavovych systémov v publikdcidch [33], 34, [35] 36]. Tento koncept je zovseobecneny

z konceptu pre dvojstavovy systém [10].

100

Podmienky relevancie maju niekolko interpretacii pre viacstavové systémy. Publika-
cie od autorov Barlow & Wu [§], El-Neweihi, Proschan, Sethuraman [9] and Natvig [37]
sa venuju skimaniu zakladnych principov koherencie viacstavovych systémov a navrhli
niektoré definicie relevancie komponentov. Tabulka sumarizuje definicie relevancie
komponentov. Predpokladame, Ze tieto podmienky st najuzitocnejsie pre analyzu
spolahlivosti systémov, pretoze ndm umoznuju deklarovat silni a slabu relevanciu v

nasledujicom poradi:

o(si,x) > o((s — 1);,x),
¢((ml - 1)i7$> > (b(Oi,CC),

pre vSetky s € {1,...,m; — 1} a niektoré ¢(.;,x).
V zavislosti od typu relevancie boli definované tri typy viacstavovych homogénnych

systémov:
1. silno koherentné,
2. koherentné,

3. slabo koherentné.

Orientovana parcialna logicka derivacia nekoherentnych viac-

stavovych systémov

Logicky diferencialny pocet ndm umoznuje analyzu viacstavovych systémov zalozeni
na logickych vyrazoch. Analyza spolahlivosti viacstavovych systémov s vyuzitim vi-
achodnotovej logiky umoznuje priamy vypocet ohodnotenia viacstavovych systémov.
Avsak vacsina znamych metod analyzy viacstavovych systémov zaloZzenych na viachod-
notovej logike bola vyvinuta pre koherentné systémy [56} [61) [6]. Takéto metody sa daji
efektivne pouzit pri analyze kritickych stavov viacstavovych systémov [6] a analyze
dolezitosti [41]. V rdamci nasej prace sme navrhli aplikovanie orientovanych parcidlnych
logickych derivacii pri analyze a ohodnoteni nekoherentnych viacstavovych systémov na
definovanie kritickych stavov systému.

Analyza nekoherentnych viacstavovych systémov by mala brat do tvahy rozdielny
vplyv zmeny funkcénosti komponentu na troven funkcénosti systému. Integrované ori-

entované parcialne logické derivacie predstavené v predchadzajucej sekcii je mozné

101

Table 4.15: The conceptions of relevance for coherent MSS

Definition
Relevance Homogenous Non-homogenous Coherence type
for Vi =1,...,n
for Vi = 1,....,n,
and Vj = 0,....m — 1,
‘ 3¢(.4,x) such that strong
EPS [34] d¢(.;,x) such that
. . o(si,x) =j coherent
o and @(r;,x) # j for s £ r
and ¢(li,x) # j, j #1
for Vi =1,...,n
forVi=1,...,n
and Vj =1,....m — 1,
‘ and for Vs =1,....m; — 1,
G1 [35] 3¢(.;,x) such that coherent
o0 — o) < D(in) 3p(.;,2) such that
J— 1);,x) < Ji),
. .. ¢((S - 1)i7w) < qb(s,»,a:)
¢(J)=74,7=1..m
for Vi =1,....n
for Vi = 1,...,n,
‘ and Vj = 10,....m — 1, weak
G2 [35] J¢p(.;,x) such that
J¢(.;,x) such that coherent
¢(0,) < o((m; — 1);,2)
¢(0;,x) < ¢((m —1);,x)
for Vi =1,....n for Vi = 1,....,n,
and V5 = 0,...,m, Vs=1,...m; — 1
N1 [37] ¢(.;,x) such that 3¢p(.;,x) such that coherent
and ¢((j — 1)) < j—1 and ¢((s — 1);,x) < j
for Vi =1,...,n
and Vj = 0,....m — 1,
: weak
BS [60] J¢(.4,2) such that is not defined
coherent

¢(0) =0
and p(m —1)=m —1

102

pouzit na analyzu degradéacie tirovni funkcénosti systému v zavislosti od fixnej zmeny
sledovaného komponentu zo stavu s na stav r. Nenulova hodnota tychto derivacii zod-
poveda kritickym stavom i-teho komponentu. Vyvoj a zovseobecnenie tychto derivacii
pre nekoherentné viacstavové systémy ndm umoznuje definovat nové typy integrovanych
orientovanych parcialnych logickych derivacii pre fixni zmenu ¢-teho komponentu zo
stavu s na stav r. Analyza nekoherentnych viacstavovych systémov pomocou tychto
derivéicii by mala brat do tvahy kazdd zmenu trovne vykonnosti systému j (pre
j €40,1,...,m — 1}) spOsobent zmenou stavu komponentu. To méze byt definované

nasledovne:

(i 41) 1, if ¢(s;,x) =7 and ¢(ri, @) #J

Ozi(s =) 0, otherwise

Spomenutd derivacia nam umoznuje identifikovat kritické stavy nekoherentného
viacstavového systému pre fixni troven funkcénosti systému j v zavislosti od zmeny
stavu i-teho komponetu z s na r.

Orientovana parcialna logicka derivacia pre nekoherentny viacstavovy systém moze
byt zovseobecnena pre vsetky mozné trovne funkcénosti systému nasledovne:

Oo(1) _mor 96 i) _ L i s) £ el @) (4.10)

0, otherwise

Oxi(s — 1) 7=00x(s — 1)

Informécie o kritickych stavoch ziskané spominanymi derivaciami nemusia byt
postacujuce v niektorych pripadoch, pretoze nam umoznuja urcite kritické stavy systému
vzhladom na komponent a jeho Specifickii zmenu a zmena trovne vykonnosti systému
je druhorada. Preto je vhodné navrhnut derivaciu, ktora by brala do tvahy Specificki
zmenu urovne funkcénosti systému. Tuto je mozné definovat vzhladom na komponent @

a zmenu urovne funkcnosti systému z j na h nasledovne:

ng(ja;h): , i @(si,) =5 and ¢(ri,) | (4.11)

0, otherwise
pre akékolvek s, € 0,...,m; — 1, kde s # r.
Tato derivacia je pocitand pre vsetky mozné zmeny i-tej premennej, ktoré boli

definované hodnotami s a r. Tato derivacia moze byt definovana aj inym sposobom s

103

ohladom na definiciu orientovanej parcialnej logickej derivacie:

06—+ h) _ 06— h) 96 1)
~omil s=10¢(j — h) mi=2 mi=1 9¢(j — h)
=1 r=007(s = 1) s20 r=st107,(s = 7)

Téato derivacia pozostava z dvoch casti. Prva z nich nam umoznuje identifikovat
kritické stavy systému pre ktoré degradacia i-teho komponentu systému vedie k zmene
urovne funkénosti systému z hodnoty j na hodnotu h. Druha cast tejto derivacie
nam umoznuje ziskaf kritické stavy systému, kde je zmena tirovne funkcénosti systému

sposobend zvysenim funkénosti -teho komponentu systému.

Viachodnotovy rozhodovaci diagram

Kedze struktirna funkcia redlnych systémov moze mat velky rozmer, je potrebné
reprezentovat ju efektivnym sposobom, napriklad vo forme viachodnotového rozhodova-

cieho diagramu. Tento diagram je acyklicky graf, ktory spliia dve podmienky [62, 63]:
1. graf je kanonicky,
2. graf je kompaktny.

Viachodnotovy rozhodovaci diagram pozostava z listovych vrcholov, ktoré pred-
stavuju droven vykonnosti systému a nelistovych vrcholov, ktoré predstavuju jednotlivé
komponenty systému. Kazdy z nich ma prave m; vystupnych hran, ktoré je mozné
interpretovat ako stav komponentu. Cesta z korena do listu predstavuje Specificki
kombinaciu trovni funkénosti komponentov systému a k nim prislichajticu troven
vykonnosti systému.

Kedze tento diagram je ortogonélna forma struktirnej funkcie [64], je mozné ju pouzit
aj na pravdepodobnostni analyzu. V tomto pripade su hrany vrcholov ohodnotené

pravdepodobnostou jednotlivych stavov.

Reprezentacia viachodnotového rozhodovacieho diagramu pomocou pola suse-

dov

Grafové struktiry je mozné v pocitaci reprezentovat roznymi sposobmi. Jednym z

nich je pole susedov. Tato reprezentacia pozostava z troch poli, ako je mozné vidiet

104

Vector of indexes Vector of neighbours

Initial state 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9
(equal to Fig.2.0(a)) ‘ 0 ‘ 2 ‘ 4 ‘ 6 ‘ 8 ‘ 10 ‘]0‘ ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 5 ‘ 5 ‘ 5 ‘ 6 ‘
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7

State after step 2.

cquitoFig 20y | 0] 2]4]e]s s8] i[1]2]s]a]ls[e]s5]s6]

State after step 3. 0 1 2 3 4 5 6 0 1 2 3 4 5§

(equal to Fig. 2.9(d)) ‘ 0 ‘ 2 ‘ 4 ‘ 4 ‘ 4 ‘ 6 ‘ 6 ‘ ‘ 1 ‘ 2 ‘ 5 ‘ k) ‘ 5 ‘ 6 ‘

Map vector

0 1 2 3 4 5 6

[a]x]|x][x[x]o]1]

Figure 4.16: DT to MDD reduction using vector of neighbours

na obrdzku [4.16] menovite mapovacie pole, pole indexov a pole susedov. Mapovacie
pole obsahuje informéacie o mapovani vrcholov rozhodovacieho diagramu na index. Pole
indexov obsahuje indexy jednotlivych vrcholov do pola susedov. Na indexe 0 v poli
indexov je zapisana pociatoc¢na pozicia susedov v poli susedov pre komponent s indexom
0. Na indexe 1 je pociatocna pozicia susedov pre komponent s indexom 1 atd. Pole
susedov obsahuje susedné vrcholy jednotlivych vrcholov diagramu.

Reprezentacia viachodnotového rozhodovacieho diagramu pomocou pola susedov
ma niekolko vyhod. Jednou z nich je jednoduché redukcia rozhodovacieho stromu na

viachodnotovy rozhodovaci diagram. Algoritmus tejto redukcie pozostava z 3 krokov:

1. Redukcia poétu listovych vrcholov - toto je mozné vyriesit spravnym namapovanim

vrcholov do mapovacieho pola.

2. Odstranenie vrcholov, kde vsetky vystupné hrany koncia v rovnakom vrchole -

toto je mozné vyriesit hladanim rovnakych ¢isel v poli susedov pre niektory vrchol.

3. Odstranenie izomorfnych podgrafov - toto je mozné vyriesit hladanim rovnakych

sekvencii pre vrcholy reprezentujice rovnaky komponent systému.

105

Neuplne definovana struktarna funkcia viacstavového systému

Hlavny problém tradi¢nych metdd v analyze spolahlivosti je nutnost tplnej informacie
o analyzovanom systéme. Tuto vSak v mnohych redlnych systémoch neméme. Preto
je potrebné pouzit iny pristup. V nasej praci sme nadviazali na prace nasich kolegov
popisané v publikaciach [50] a [66]. Pomocou metdéd dolovania dat sa vytvori rozhodovaci
strom, ktory sa nasledne redukuje na viachodnotovy rozhodovaci diagram, ¢o je forma

struktirnej funkcie a je mozné pouzit klasické metédy analyzy spolahlivosti.

Model spolahlivosti softvéru zalozeny na syntaktickom strome

Vyvoj metdd na ohodnotenie spolahlivosti softvéru je v sticasnosti relevantny problém
spolahlivostného inzinierstva [68, [69]. VacSina v sucastnosti pouzivanych modelov na
analyzu spolahlivosti softvéru si pravdepodobnostné modely. Tieto sa daji pouzif na
vypocet charakteristik systému ako st spolahlivost, avSsak nie je mozné ich pouzif na
analyzu jednotlivych komponentov softvérovych systémov a ich vplyvu na funkénost
systému. Existuje vsak niekolko takych, ktoré berti do tvahy aj struktiru softvéru,
avsak je mozné ich pouzit len v Specifickych pripadoch, napriklad ked je softvérovy
systém implementovany pomocou architekttiry mikroservisov. Preto sme sa rozhodli
navrhnuf vlastny model. Hlavny princip navrhovanej metody je pouzit zdrojovy kéd na
tvorbu spolahlivostného modelu. Tato metéda pozostava z 2 krokov. Prvym z nich je
tvorba abstraktného syntaktického stromu zo zdrojového kédu. Syntakticky strom je
jazykovo nezavisly, je mozné ho jednoducho vyuzif na vyjadrenie struktiry softvéru a
je mozné pomocou neho jednoduchym sposobom odfiltrovat nepodstatné informacie zo
zdrojového kodu. Druhym krokom je tvorba spolahlivostného modelu zo syntaktického

stromu. Syntakticky strom je mozné transformovat na strom poruchovych stavov.

Pripadové studie

Pouzitie vSetky spomenutych metod je demonstrované v kapitole Tato kapi-
tola obsahuje 4 pripadové stiudie. Prva z nich je anesteziologické vysetrenie. Tento
systém je pouzity na prezentovanie vypoctu kritickych stavov pouzitim navrhovanych
integrovanych logickych derivéacii nekoherentnych viacstavovych systémov. Dalsie dve

priapdové studie, t.j. prezitie pacientov s hepatitidou a zrazky cyklistov si pouzité na

106

demonstrovanie vypoctu analyzy spolahlivosti spolu s kvantitativnou analyzou systé-
mov s neuplne definovanymi datami a taktiez pouzitie struktirnej funkcie vo forme
viachodnotového rozhodovacieho diagramu na tato analyzu. Posledna pripadova sti-
dia predstavuje moznost vypoctu analyzy spolahlivosti softvérového systému spolu so
vsetkymi krokmi, t.j. tvorba syntaktického stromu zo zdrojového kédu, tvorba matem-

atického modelu z tohoto stromu a néslednéd kvantitativna analyza tohto systému.

Zaver

Hlavné zameranie nasej prace je na analyzu spolahlivosti nekoherentnych viac-
stavovych systémov. Vramci toho sme si stanovili viacero cielov, Specificky: 1. Presku-
maf metddy analyzy spolahlivosti viacstavovych nekoherentnych systémov. 2. Presku-
mat metody redukcie vypoctovej zlozitosti struktirnej funkcie. 3. Preskimat metddy
tvorby struktirnej funkcie zalozené na netplne Specifikovanych datach.

Prvy ciel sme dosiahli ndvrhom nového pristupu pre analyzu nekoherentnych viac-
stavovych sysémov pomocou matematickych metdd viachodnotovej logiky. Podibne
ako v studidch [6l [41] sme interpretovali struktirnu funkciu ako viachodnotovi logicki
funkciu, ¢o nam umoznilo pouzit metédy viachodnotovej logiky na analyzu a ohodnote-
nie viacstavového systému. Specificky sme v ramci nasej prace navrhli moznost analyzy
kritickych stavov takychto systémov. Aplikaciu tejto metédy sme demonstrovali na
pripadovej studii ansesteziologického vysetrenia.

Druhy ciel bol dosiahnuty pouzitim viachodnotového rozhodovacieho diagramu ako
reprezentacie struktirnej funkcie. Vdaka tomu, ze tato reprezentacia je kompaktna, je
mozné pomocou nej popisat taktiez systémy velkych rozmerov. Tato reprezentacia je
taktiez vhodna na vypocet kvantitativnej analyzy - topologickej aj pravdepodobnostne;j.
V ramci tohto ciela sme sa taktiez rozhodli reprezentovat tento diagram pomocou pola
susedov. Aplikéacia tejto metdédy bola prezentovana na prikladoch prezitia pacientov s
hepatitidou a zrazok cyklistov.

Posledny sSpecifikovany ciel sme splnili pouzitim metod dolovania dat a tvorby
rozhodovacieho stromu. V ramci nasej prace sme popisali algoritmus redukcie rozhodova-
cieho stromu na viachodnotovy rozhodovaci diagram pri pouziti pola susedov ako
reprezentacie tohto diagramu. Aplikacia tejto metdédy je demonstrovana na prikladoch

prezitia pacientov s hepatitidou a zrazok cyklistov.

107

Posledna cast nasej prace bola zamerana na spolahlivost softvéru. Hlavna myslienka
nami navrhovanej metddy je pouzitie zdrojového kédu a syntaktického stromu na tvorbu
spolahlivostného modelu. Tato metdda bola prezentovana na priklade jednoduchého
softvéru.

V ramci nasej budicej prace sa chceme zameriaf na preskiimanie nekoherentnych
viacstavovych systémov viac do hibky. Preskdmame pouzitie navrhovanych oriento-
vanych parcidlnych logickych derivacii a kritickych stavov na kvantitativnu analyzu a
vypocet ukazovatelov dolezitosti. V dalsej casti nasho budiceho vyskumu preskimame
moznsot dalsej redukcie vypoctovej zlozitosti analyzy spolahlivosti systémov velkych
rozmerov, napriklad pouzitim metéd modularnej dekompozicie [94] 44], 95] pri viachod-
notovych rozhodovacich diagramoch. Nakoniec planujeme vylepsit navrhovany model
spolahlivosti softvéru, kedze v sticasnosti obsahuje najmé 2 problémy. Prvy z nich je
jeho velky rozmer, ¢o mozme vidief aj na prezentovanom priklade, kedy aj pomerne
jednoduchy zdrojovy koéd vyustil do Struktirnej funkcie velkého rozmeru. Existuje
viacero sposobov ako vyriest tento problém. Prvym z nich je redukovat velkost syntak-
tického stromu potrebného na tvorbu tohto modelu spajanim a odstranovanim vrcholov,
pokym vysledny syntakticky strom nebude vhodnejsej velkosti. Takymto sposobom
bude taktiez vytvoreny matematicky model mensi a celd analyza bude jednoduchsia.
Iné riesenie je pouzit modularnu dekompoziciu, ako uz bolo spominané. Pouzitim
tejto metody moézme rozdelif spolahlivostny model na viacero modulov a kazdy z nich
analyzovat zvlast. Toto znizi cas potrebny na analyzu spolahlovosti celého systému
s pouzitim metéd ako paralelizdcia. Dalsi problém tohto modelu je pouzitie AND
logickych operécii, ¢o vedie k nepresnostiam vo vytvorenom modeli. Na vyriesenie tohto
problému bude potrebny dalsi vyskum. Toto nam pomoze uréit akym sposobom maji
byt prepojené jednotlivé udalosti v strome poruchovych stavov, aby sme zvysili presnost

vytvoreného modelu.

108

Bibliography

1]

[10]

What are microservices? https://www.redhat.com/en/topics/microservices/

what-are-microservices. [Accessed: 15-Apr-2020].

Zhigang Zang, Qiaoyan Wen, and Kangming Xu. A fault tree based microser-
vice reliability evaluation model. IOP Conference Series: Materials Science and

Engineering, 569:032069, August 2019.

Ali Sedaghatbaf and Mohammad Abdollahi Azgomi. Reliability evaluation of
UML/DAM software architectures under parameter uncertainty. [ET Software,
12(3):236-244, June 2018.

Anatoly Lisnianski and Gregory Levitin. Multi-State System Reliability. WORLD
SCIENTIFIC, March 2003.

Enrico Zio. An Introduction to the Basics of Reliability and Risk Analysis. World
Scientific Publishing Company, February 2007.

Elena Zaitseva and Vitaly Levashenko. Reliability analysis of multi-state system
with application of multiple-valued logic. International Journal of Quality &

Reliability Management, 34(6):862-878, June 2017.

Hananeh Aliee, Emanuele Borgonovo, Michael Glafla, and Jurgen Teicha. On the

boolean extension of the birnbaum importance to non-coherent systems. Reliability

Engineering € System Safety, 160:191-200, April 2017.

Richard E. Barlow and Alexander S. Wu. Coherent systems with multi-state
components. Mathematics of Operations Research, 3(4):275-281, November 1978.

Emad El-Neweihi, Frank Proschan, and Jayaram Sethuraman. Multistate coherent

systems. Journal of Applied Probability, 15(4):675-688, December 1978.

Richard E. Barlow. Statistical theory of reliability and life testing: probability
models. Holt, Rinehart and Winston, New York, 1974.

109

https://www.redhat.com/en/topics/microservices/what-are-microservices
https://www.redhat.com/en/topics/microservices/what-are-microservices

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

John D. Andrews and Sally Beeson. Birnbaum's measure of component importance
for noncoherent systems. IEEE Transactions on Reliability, 52(2):213-219, June
2003.

Sally Beeson and John D. Andrews. Importance measures for non-coherent-system

analysis. IEEE Transactions on Reliability, 52(3):301-310, September 2003.

Gregory Levitin, Liudong Xing, and Yuanshun Dai. Reliability of non-coherent
warm standby systems with reworking. IEEE Transactions on Reliability, 64(1):444—
453, March 2015.

Hoang Pham. Optimal design of a class of noncoherent systems. IEFEE Transactions

on Reliability, 40(3):361-363, August 2015.

Klaus D. Heidtmann. A class of noncoherent systems and their reliability analysis.
In Proceedings of 11th Annual Symposium on Fault Tolerant Computing, pages
96-98. IEEE Comput. Soc, 1981.

Beena Nailwal and Suraj B. Singh. Reliability and sensitivity analysis of an
operating system with inspection in different weather conditions. International

Journal of Reliability, Quality and Safety Engineering, 19(2), April 2012.

Yuchang Mo, Liudong Xing, and Joanne B. Dugan. Performability analysis of k-to-
l-out-of-n computing systems using binary decision diagrams. IEEE Transactions

on Dependable and Secure Computing, 15(1):126-137, 2018.

Francesco Di Maio, Samuele Baronchelli, Matteo Vagnoli, and Enrico Zio. Deter-
mination of prime implicants by differential evolution for the dynamic reliability
analysis of non-coherent nuclear systems. Annals of Nuclear Energy, 102:91 — 105,

2017.

Jussi Vaurio. Importances of components and events in non-coherent systems and

risk models. Reliability Engineering € System Safety, 147:117-122, March 2016.

Shambhu J. Upadhyaya and Hoang Pham. Analysis of noncoherent systems and
an architecture for the computation of the system reliability. IEEE Transactions

on Computers, 42(4):484-493, 1993.

110

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Miroslav Kvassay, Elena Zaitseva, Vitaly Levashenko, and Jozef Kostolny. Reliabil-
ity analysis of multiple-outputs logic circuits based on structure function approach.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
pages 1-1, 2016.

Suprasad V. Amari. Performance computing failure frequency of noncoherent

systems. International Journal of Performability Engineering, 2(2):123, 2006.

Qin Zhang and Qizhi Mei. Reliability analysis for a real non-coherent system.

IEEE Transactions on Reliability, R-36(4):436-439, October 1987.

Peter S. Jackson. On the s-importance of elements and prime implicants of

non-coherent systems. IEEE Transactions on Reliability, R-32(1):21-25, 1983.

Winfrid G. Schneeweiss. A short boolean derivation of mean failure frequency for
any (also non-coherent) system. Reliability Engineering € System Safety, 94(8):1363
— 1367, 20009.

Miroslav Kvassay, Elena Zaitseva, Vitaly Levashenko, and Jozef Kostolny. Binary
decision diagrams in reliability analysis of standard system structures. In 2016
International Conference on Information and Digital Technologies (IDT), pages
164-172, 2016.

Emanuele Borgonovo. The reliability importance of components and prime im-
plicants in coherent and non-coherent systems including total-order interactions.

European Journal of Operational Research, 204(3):485 — 495, 2010.

Guenter Becker and Leonidas Camarinopoulos. Failure frequencies of non-coherent

structures. Reliability Engineering €& System Safety, 41(3):209 — 215, 1993.

Chris Garrett and George Apostolakis. Context in the risk assessment of digital
systems. Risk Analysis, 19(1):23-32, 1999.

Vaurio Jussi. Ideas and developments in importance measures and fault-tree
techniques for reliability and risk analysis. Reliability Engineering & System Safety,
95:99-107, February 2010.

111

[31]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Antoine Rauzy and Yves Dutuit. Exact and truncated computations of prime
implicants of coherent and non-coherent fault trees within aralia. Reliability

Engineering & System Safety, 58(2):127 — 144, 1997. ESREL ’95.

Ayyoub Juba Imakhlaf, Yunhui Hou, and Mohamed Sallak. Evaluation of the relia-
bility of non-coherent systems using binary decision diagrams. IFAC-PapersOnLine,

50(1):12243-12248, July 2017.

Abdulrahman M. Abouammoh and M. A. Al-Kadi. Component relevancy in
multistate reliability models. IEEE Transactions on Reliability, 40(3):370-374,
1991.

Emad El-Neweihi and Frank Proschan. Degradable systems:a survey of multistate
system theory. Communications in Statistics - Theory and Methods, 13(4):405-432,
January 1984.

William S. Griffith. Multistate reliability models. Journal of Applied Probability,
17(3):735-744, September 1980.

Praveen P. Gupta and S. C. Agarwal. A boolean algebra method for reliability
calculations. Microelectronics Reliability, 23(5):863-865, January 1983.

Bent Natvig. Two suggestions of how to define a multistate coherent systems. J.

Applied Probability, 15:675—688, 1978.

Andre Bossche. The top-event’s failure frequency for non-coherent multi-state fault

trees. Microelectronics Reliability, 24(4):707 — 715, 1984.

Andre Bossche. Calculation of critical importance for multi-state components.

IEEE Transactions on Reliability, R-36(2):247-249, June 1987.

Elena Zaitseva, Miroslav Kvassay, Vitaly Levashenko, and Jozef Kostolny. Intro-
duction to knowledge discovery in medical databases and use of reliability analysis
in data mining. In Proceedings of the 2015 Federated Conference on Computer
Science and Information Systems. IEEE, October 2015.

Miroslav Kvassay, Elena Zaitseva, and Vitaly Levashenko. Importance analysis
of multi-state systems based on tools of logical differential calculus. Reliability

Engineering and System Safety, 165:302-316, 2017.

112

[42]

[46]

[47]

[48]

[51]

Miroslav Kvassay, Vitaly Levashenko, and Elena Zaitseva. Analysis of minimal
cut and path sets based on direct partial boolean derivatives. Proceedings of
the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
230(2):147-161, 2016.

Mihir R. Choudhury and Kartik Mohanram. Reliability analysis of logic circuits.
IEEE Transactions on Computer-Aided Design of Integrated Clircuits and Systems,
28(3):392-405, March 2009.

Bent Natvig. Multistate Systems Reliability Theory with Applications. John Wiley
& Sons, Ltd, January 2011.

Anatoly Lisnianski, Ilia Frenkel, and Yi Ding. Multi-state System Reliability
Analysis and Optimization for Engineers and Industrial Managers. Springer London,

2010.

Terje Aven, Piero Baraldi, Roger Flage, and Enrico Zio. Uncertainty in Risk
Assessment: The Representation and Treatment of Uncertainties by Probabilistic

and Non-Probabilistic Methods. Wiley, 2013.

Way Kuo and Xiaoyan Zhu. Importance Measures in Reliability, Risk, and Opti-
mization. John Wiley & Sons, Ltd, May 2012.

Miroslav Kvassay and Elena Zaitseva. Topological analysis of multi-state sys-
tems based on direct partial logic derivatives. In Springer Series in Reliability

Engineering, pages 265-281. Springer International Publishing, August 2017.

Miroslav Kvassay, Elena Zaitseva, and Vitaly Levashenko. Minimal cut and minimal
path vectors in reliability analysis of binary- and multi-state systems. In ICTERI,
2017.

Elena Zaitseva and Vitaly Levashenko. Construction of a reliability structure
function based on uncertain data. IEEE Transactions on Reliability, 65(4):1710-
1723, December 2016.

Elena Zaitseva and Vitaly Levashenko. Multiple-valued logic mathematical ap-
proaches for multi-state system reliability analysis. Journal of Applied Logic,

11(3):350-362, September 2013.

113

[52]

[53]

[54]

[57]

[59]

[60]

[61]

Moiez A. Tapia, Tayeb A. Guima, and Abdollah Katbab. Calculus for a multivalued-
logic algebraic system. Applied Mathematics and Computation, 42(3):255-285,
April 1991.

Miroslav Kvassay, Elena Zaitseva, Jozef Kostolny, and Vitaly Levashenko. Reliabil-
ity analysis of noncoherent systems based on logical differential calculus. In Risk,
Reliability and Safety: Innovating Theory and Practice, pages 1367-1374. CRC
Press, September 2016.

Elena Zaitseva, Vitaly Levashenko, Jan Rabcan, and Emil Krsak. Application of
the structure function in the evaluation of the human factor in healthcare. 2020,

12, 93. Symmetry, 12:93, 2020.

Anatoly Lisnianski and Gregory Levitin. Multi-state system reliability: Assessment,

optimization and application. Proc. FEng., 6, 01 2003.

Miroslav Kvassay, Elena Zaitseva, Vitaly Levashenko, and Jozef Kostolny. Minimal
cut vectors and logical differential calculus. In 2014 IEEE 44th International
Symposium on Multiple- Valued Logic. IEEE, May 2014.

Miroslav Kvassay, Elena Zaitseva, Jozef Kostolny, and Vitaly Levashenko. Im-
portance analysis of multi-state systems based on integrated direct partial logic
derivatives. In 2015 International Conference on Information and Digital Tech-

nologies. IEEE, July 2015.

Miroslav Kvassay, Elena Zaitseva, and Vitaly Levashenko. Importance analysis
of multi-state systems based on tools of logical differential calculus. Reliability

Engineering & System Safety, 165:302-316, September 2017.

Nader Ebrahimi. Multistate reliability models. Naval Research Logistics Quarterly,
31(4):671-680, December 1984.

Thomas H. Savits Henry W. Block. A decomposition for multistate monotone

systems. J.Applied Probability, 19:391-402, 1982.

Peter Sedlacek, Jan Rabcan, and Jozef Kostolny. Importance analysis of multi-state

system based on incompletely specified data by multi-valued decision diagrams.

114

[62]

[65]

[66]

[67]

[68]

[69]

[70]

In 2019 International Conference on Information and Digital Technologies (IDT).
IEEE, June 2019.

Michael D. Miller and Rolf Drechsler. Implementing a multiple-valued decision
diagram package. In Proceedings. 1998 28th IEEE International Symposium on
Multiple- Valued Logic (Cat. No.98CB36138). IEEE Comput. Soc.

Yuchang Mo, Liudong Xing, and Suprasad V. Amari. A multiple-valued decision
diagram based method for efficient reliability analysis of non-repairable phased-

mission systems. [EEE Transactions on Reliability, 63(1):320-330, March 2014.

Michael D. Miller and Rolf Drechsler. On the construction of multiple-valued
decision diagrams. In Proceedings 32nd IEEE International Symposium on Multiple-
Valued Logic. IEEE Comput. Soc.

Yuchang Mo, Liudong Xing, Lirong Cui, and Shubin Si. MDD-based performability
analysis of multi-state linear consecutive- k -out-of- n : F systems. Reliability

Engineering € System Safety, 166:124—131, October 2017.

Elena Zaitseva, Vitaly Levashenko, Miroslav Kvassay, and Jan Rabcan. Application
of ordered fuzzy decision trees in construction of structure function of multi-state
system. In Information and Communication Technologies in Education, Research,

and Industrial Applications, pages 56-75. Springer International Publishing, 2017.

Dragan Jankovic, Radomir S. Stankovic, and Rolf Drechsler. Reduction of sizes of
multi-valued decision diagrams by copy properties. In Proceedings. 34th Interna-

tional Symposium on Multiple- Valued Logic. IEEE Comput. Soc.

R. Dillibabu P. Govindasamy. Development of software reliability models using
a hybrid approach and validation of the proposed models using big data. The
Journal of Supercomputing, 76:2252—-2265, April 2020.

Stefano Russoa Roberto Pietrantuono, Peter Popov. Reliability assessment of
service-based software under operational profile uncertainty. Reliability Engineering

& System Safety, 204:1-13, December 2020.

Kazuhira Okumoto John D. Musa, Anthony lannino. Software reliability-

measurement, prediction, application. McGraw-Hill, 1987.

115

[71] Shigeru Yamada. Software Reliability Modeling. Springer, 2014.
[72] Min Xie. Software Reliability Modeling. Springer, 1991.

[73] Pratik Roy, G.S. Mahapatra, Pooja Rani, S.K.Pandey, and Kashi N.Dey. Robust
feedforward and recurrent neural network based dynamic weighted combination

models for software reliability prediction. Applied Soft Computing, 22:629-637,
September 2014.

[74] Z. Jelinski and P. Moranda. SOFTWARE RELIABILITY RESEARCH. In
Statistical Computer Performance Fuvaluation, pages 465-484. Elsevier, 1972.

[75] Yuan-Shun Dai Min Xie, Kim-Leng Poh. Computing System Reliability. Kluwer
Academic Publishers, 2004.

[76] Maxim S. Finkelstein. A point-process stochastic model for software reliability.

Reliability Engineering € System Safety, 63:67-71, January 1999.

[77] Giuseppe Di Marco Alberto Pasquini, Elio De Agostino. An input-domain based
method to estimate software reliability. IEEE Transaction on Reliability, 45:95-105,
March 1996.

[78] Arne Nordmann Peter Munk. Model-based safety assessment with sysml and
component fault trees: application and lessons learned. Software and Systems

Modeling, 19:889-910, February 2020.

[79] Bernhard Kaiser, Catharina Gramlich, and Marc Forster. State/event fault trees—a
safety analysis model for software-controlled systems. Reliability Engineering €9

System Safety, 92:1521-1537, November 2007.

[80] Christoph A. Thieme, Ali Mosleh, Ingrid B. Utne, and Jeevith Hegde. Incorpo-
rating software failure in risk analysis — part 1: Software functional failure mode

classification. Reliability Engineering € System Safety, 197:106803, 2020.

[81] Michal Duracik, Emil Krsak, and Patrik Hrkut. Issues with the detection of
plagiarism in programming courses on a larger scale. In 2018 16th International

Conference on Emerging eLearning Technologies and Applications (ICETA). IEEE,
November 2018.

116

[82]

[83]

[84]

[39]

[90]

[91]

Michal Duracik, Emil Krsak, and Patrik Hrkut. Source code representations for
plagiarism detection. In Communications in Computer and Information Science,

pages 61-69. Springer International Publishing, 2018.

[ulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding source
code evolution using abstract syntax tree matching. In Proceedings of the 2005
international workshop on Mining software repositories - MSR '05. ACM Press,
2005.

Qiuyuan Chen, Han Hu, and Zhaoyi Liu. Code summarization with abstract syntax
tree. In Communications in Computer and Information Science, pages 652—660.

Springer International Publishing, 2019.

Vartika Agrahari and Sridhar Chimalakonda. AST[AR] — towards using augmented
reality and abstract syntax trees for teaching data structures to novice programmers.
In 2020 IEEE 20th International Conference on Advanced Learning Technologies
(ICALT). IEEE, July 2020.

Sohag Kabir. An overview of fault tree analysis and its application in model based

dependability analysis. Expert Systems with Applications, 77:114-135, July 2017.

Jichuan Kang, Liping Sun, and C. Guedes Soares. Fault tree analysis of floating

offshore wind turbines. Renewable Energy, 133:1455-1467, April 2019.

Svetlana Yanushkevich, Michael Miller, Vlad Shmerko, and Radomir Stankovic.
Decision Diagram Techniques for Micro- and Nanoelectronic Design Handbook,

volume 2. CRC Press, Boca Raton, FL, dec 2005.

Hepatitis data set. https://archive.ics.uci.edu/ml/datasets/hepatitisl
[Accessed 2019-04-16].

Tsutomu Sasao. On a minimization of variables to represent sparse multi-valued
input decision functions. In 2019 IEEFE }9th International Symposium on Multiple-
Valued Logic (ISMVL). IEEE, May 2019.

Bicycle crashes. https://catalog.data.gov/dataset/bicycle-crashes. [Ac-
cessed 2019-09-05].

117

https://archive.ics.uci.edu/ml/datasets/hepatitis
https://catalog.data.gov/dataset/bicycle-crashes

[92] The .net compiler platform sdk (roslyn apis) | microsoft docs. https://docs.
microsoft.com/sk-sk/dotnet/csharp/roslyn-sdk/. (Accessed on 11/02/2020).

[93] Class ast. https://www.ibm.com/support/knowledgecenter/SS5JSH_9.5.0/
org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/AST.
html. (Accessed on 11/07/2020).

[94] Z. W. Birnbaum and J. D. Esary. Modules of coherent binary systems. Journal of
the Society for Industrial and Applied Mathematics, 13(2):444-462, June 1965.

[95] Miroslav Kvassay, Patrik Rusnak, and Jan Rabcan. Time-dependent analysis of
series-parallel multistate systems using structure function and markov processes.

In Advances in System Reliability Engineering, pages 131-165. Elsevier, 2019.

118

https://docs.microsoft.com/sk-sk/dotnet/csharp/roslyn-sdk/
https://docs.microsoft.com/sk-sk/dotnet/csharp/roslyn-sdk/
https://www.ibm.com/support/knowledgecenter/SS5JSH_9.5.0/org.eclipse .jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/AST.html
https://www.ibm.com/support/knowledgecenter/SS5JSH_9.5.0/org.eclipse .jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/AST.html
https://www.ibm.com/support/knowledgecenter/SS5JSH_9.5.0/org.eclipse .jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/AST.html

Appendices

119

List of Publications

10.

. Erik Parso ... [et al.]. FRIMAN. In Central European researchers journal, vol. 2,

iss. 2, pp. 70-76, 2016

. Peter Sedlacek. Tool for topological reliability analysis of reversible logic circuits.

In Central Furopean Researchers Journal, vol. 4, iss. 2, pp 10-16, 2018

. Peter Sedlacek and Monika Vaclavkova. Tool for supporting Education process

in Information technology. In 16th IEEE International Conference on Emerging

eLearning Technologies and Applications, pp. 483-488, 2018

. Elena Zaitseva, Vitaly Levashenko, and Peter Sedlacek. Reliability analysis based

on incompletely specified data. In Pattern recognition and information processing,

pp. 20-32, 2019

. Patrik Rusnak ... [et al.]. Structure function based methods in evaluation of

availability of healthcare system. In 10th International Conference on Dependable

Systems, Services and Technologies, pp. 13-18, 2019

Miroslav Kvassay, Patrik Rusnak, Peter Sedlacek. Computation of Birnbaum’s
importance using logic differential calculus. In 42nd International conference on

telecommunications and signal processing, pp. 613-616, 2019

. Patrik Rusnak ... [et al.]. Logic differential calculus in time-dependent importance

analysis based on minimal cut vectors. In TELSIKS 2019, pp. 74-77, 2019

Michal Mrena, Peter Sedlacek and Miroslav Kvassay. Practical applicability
of advanced implementations of priority queues in finding shortest paths. In

Information and digital technologies 2019, pp. 335-344, 2019

. Peter Sedlacek, Jan Rabcan and Jozef Kostolny. Importance analysis of multi-state

system based on incompletely specified data by multi-valued decision diagrams.

In Information and digital technologies 2019, pp. 409-416, 2019

Monika Vaclavkova, Marek Kvet and Peter Sedlacek. Graphical development
environment for object programming teaching support. In 15th International

Scientific Conference on Informatics, pp 435-440, 2019

120

11.

12.

Peter Sedlacek, Marek Kmec and Patrik Rusnak. Software Visualization Ap-
plication for Threads Synchronization Handling in Operating Systems. In 18th
International Conference on Emerging eLearning Technologies and Applications,

pp. 580-585, 2020

Dominik Smalik ... [et al.] Software Tool for Importance Measures Computation
Used in Reliability Analysis. In 18th International Conference on Emerging
eLearning Technologies and Applications, pp. 620-627, 2020

121

